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SYMPLECTIC FILLINGS OF LINKS
OF QUOTIENT SURFACE SINGULARITIES

MOHAN BHUPAL and KAORU ONO

Abstract. We study symplectic deformation types of minimal symplectic fill-
ings of links of quotient surface singularities. In particular, there are only

finitely many symplectic deformation types for each quotient surface singu-
larity.
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§1. Introduction

In recent years, the geometry of contact structures on 3-manifolds has
been a subject of intensive studies. In particular, tight contact structures
have been the focus of interest. For instance, tight contact structures on lens
spaces have now been classified by Giroux [3] and Honda [7]. The link L of
an isolated surface singularity (V,O) provides examples of tight contact in
3-manifolds. Namely, the complex tangency to the link gives a codimension
1 distribution ξ = TL ∩ J(TL) which is completely nonintegrable, hence a
contact structure. Here J is the complex structure on V \ O. Let π : Ṽ → V

be a resolution of the singularity, and let U be a neighborhood of O in V such
that ∂U = L. Then π−1(U) is a so-called symplectic filling of (L, ξ) and ξ is
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2 M. BHUPAL AND K. ONO

a symplectically fillable contact structure, which implies that ξ is tight by a
theorem of Eliashberg [4, Corollary 4.5] and Gromov [6, Section 2.4.D′

2(b)].
It is also interesting to classify symplectic fillings of the links of certain

classes of isolated surface singularities. For the case of cyclic quotient singu-
larities of An,1-type, McDuff [15] classified symplectic deformation classes
of minimal symplectic fillings. H. Ohta and the second named author inves-
tigated the cases of simple singularities [20] and simple elliptic singularities
[19]. Meanwhile, Lisca [11] presents a classification for the case of cyclic
quotient singularities. In this paper, we study the case of quotient surface
singularities C/Γ, where Γ is a finite subgroup of GL(2;C). Note that this
class contains all simple singularities, which is the case where Γ ⊂ SL(2;C).
Simple singularities are characterized as isolated surface singularities which
are described by both quotient singularities and hypersurface singularities.
Thus, we can use both aspects in the argument. Namely, since they are
quotient singularities, the link is a spherical space form. In particular, they
carry a metric of positive scalar curvature. This fact is one of main ingredi-
ents in [18]. They are also hypersurface singularities with explicit defining
equations. This enables us to describe the compactifications of their Milnor
fibers in appropriate weighted projective spaces (see [23]). The results in [20]
are some of the main ingredients in this paper. Since the situation here is
more complicated than in the case of simple singularities, we have to study
rational curves with negative self-intersection numbers carefully. The main
theorem is the following.

Theorem 1.1. A symplectic filling of the link of a quotient surface sin-
gularity is symplectic deformation equivalent to the complement of a certain
divisor in an iterated blowup of CP 2 or CP 1 × CP 1.

A detailed description of the symplectic fillings is given later. In particu-
lar, we get finiteness of symplectic deformation types of minimal symplectic
fillings for each quotient surface singularity.

§2. Preliminaries

Although a complete understanding of symplectic 4-manifolds is far from
being realized, we have a good understanding of closed symplectic 4-mani-
folds containing a pseudoholomorphic embedded sphere of nonnegative self-
intersection number thanks to works by Gromov [6] and McDuff [15] (see
Theorem 2.1 below). These are the so-called rational or ruled symplectic
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4-manifolds, and they are symplectomorphic to blowups of rational or ruled
surfaces, in the sense of complex surface theory, equipped with some Kähler
form (see [9]). Note that blowing up and down can be performed in the
symplectic category. The existence of such pseudoholomorphic spheres is a
highly nontrivial issue. Shortly after the discovery of Seiberg-Witten mono-
pole invariants, Taubes [24] established a striking theory relating Seiberg-
Witten invariants and Gromov invariants, which count pseudoholomorphic
curves in a certain way. In particular, the Seiberg-Witten invariant is nonzero
for a spinc structure if and only if there exists a pseudoholomorphic curve
in the corresponding homology class as long as b+

2 > 1. His argument can
be applied in the case that b+

2 = 1 under suitable conditions as in Theorem
2.2 below.

We adopt the argument in [20] and [19] to determine the symplectic
fillings of quotient surface singularities. We explain our strategy in the fol-
lowing.

Let (L, ξ) be a closed contact manifold. A compact symplectic manifold
X = (X,ω) with boundary is called a strong symplectic filling (resp., strong
concave filling) of (L, ξ) if ∂X = L and if there exists a Liouville vector
field v, that is, Lvω = ω, on a collar neighborhood of ∂X such that v points
outward (resp., inward) along ∂X and satisfies ξ = ker(ι(v)ω|L). There is
also a notion of a weak symplectic filling. When L is a rational homology
sphere, we can modify a weak symplectic filling to a strong symplectic filling
(see, e.g., [18]). In the case of the link of a quotient surface singularity, the
link is a rational homology 3-sphere; hence, we simply call it a symplectic
filling.

If X− and X+ are a strong symplectic filling and a strong concave filling,
respectively, after possibly rescaling the symplectic structure either on X−

or on X+ and inserting a suitable subset of the symplectization, we can glue
them to obtain a closed symplectic manifold.

Now let (L, ξ) be the contact link of a quotient surface singularity (V,O).
First, we realize the singularity (V,O) in a successive blowup of the com-
plex projective plane. Then the complement of a small neighborhood of the
singularity gives a strong concave filling. We will find a suitable realization,
hence a suitable concave filling Y . In fact, Y is a regular neighborhood of
the compactifying divisor (see Section 3). For a given symplectic filling X ,
we glue X and Y to obtain a closed symplectic 4 manifold Z.

Next we apply the criterion in Theorem 2.2 and an elementary topological
consideration to conclude that the Z is a successive blowup of the complex
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4 M. BHUPAL AND K. ONO

projective plane. The original X is the complement of Y in Z, since the
embedding of Y in Z can be seen from the embedding of the compactifying
divisor in Z. The compactifying divisor is a treelike configuration of holo-
morphic spheres. To detect such holomorphic spheres, we use some results on
holomorphic spheres in rational symplectic 4-manifolds, which are explained
in the remainder of this section. Note that the holomorphic spheres appear-
ing in the compactifying divisor Z have negative self-intersection numbers,
hence, they are not realized by J -holomorphic spheres for a generic choice
of J . We are thus forced to use a nongeneric J to find such a configuration
of holomorphic spheres.

We now present several facts which are necessary to carry out these steps.
First of all, we recall some basic results for rational and ruled symplectic
4-manifolds.

Theorem 2.1 (see McDuff [15]). Let (M,ω) be a closed symplectic 4-
manifold. If M contains a symplectically embedded 2-sphere C of nonneg-
ative self-intersection number k, then M is either a rational symplectic 4-
manifold or a blowup of a ruled symplectic 4-manifold. In particular, if k = 0
(resp., 1), M becomes a ruled symplectic 4-manifold (resp., the complex pro-
jective plane) after blowing down symplectic (−1)-curves away from C.

Here a rational symplectic 4-manifold means a symplectic blowup of the
complex projective plane at some points, and a ruled symplectic 4-manifold
means a 2-sphere bundles over an oriented surface with a symplectic struc-
ture which is nondegenerate on each fiber. Combining Theorem 2.1 and
Taubes’s theorem “SW = Gr,” we get the following.

Theorem 2.2 (see [17], [13]). Let (M,ω) be a closed symplectic 4-mani-
fold such that

∫
M c1(M) ∧ ω > 0. Then (M,ω) is either a rational symplectic

4-manifold or a (blowup of a) ruled symplectic 4-manifold.

If the pseudoholomorphic curve C is singular, we have the following result
as a byproduct of uniqueness of minimal symplectic fillings of the link of a
simple singularity (see [20]).

Theorem 2.3 (see [21]). Let M be a closed symplectic 4-manifold con-
taining a pseudoholomorphic rational curve C with a (2,3)-cusp point. Sup-
pose that C is nonsingular away from the (2,3)-cusp point. If the self-
intersection number C2 of C is positive, then M must be a rational sym-
plectic 4-manifold and C2 is at most 9. Moreover, if M \ C does not contain
any symplectic (−1)-curves, then C represents the Poincaré dual to c1(M),
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that is, an anticanonical divisor. When C2 = 9, M = CP 2 and C is a pseu-
doholomorphic cuspidal cubic curve.

For the statement that C represents an anticanonical class if M \ C does
not contain any symplectic (−1)-curves, we use the following fact: since the
condition that a divisor D is an anticanonical divisor is preserved under the
blowup at a regular point of D and the blowdown of a (−1)-curve E such
that E · D = 1, we find that C is an anticanonical divisor.

We call a homology class e ∈ H2(M ;Z) a symplectic (−1)-class if e is rep-
resented by a symplectically embedded 2-sphere of self-intersection number
−1. A symplectic (−1)-curve class is represented by a J -holomorphic sphere
for a generic tame almost complex structure J . However, if we restrict the
class of tame almost complex structure, this may not be the case. Here we
have the following (essentially [21, Proposition 4.1]).

Proposition 2.4. Let M be a symplectic 4-manifold, and let C1, . . . ,Ck

be irreducible J0-holomorphic curves in M with respect to a tame almost
complex structure J0. Suppose that each of C1, . . . ,Ck is either nondegener-
ate, singular, or of higher genus. Then, for a generic J among tame almost
complex structures for which C1, . . . ,Ck are pseudoholomorphic, any sym-
plectic (−1)-curve has a unique J-holomorphic representative.

Here we call Ci nondegenerate if the linearized operator of the pseudo-
holomorphic curve equation is surjective at Ci. Now we collect a series of
observations.

If a pseudoholomorphic curve C intersects a (−1)-curve transversally, [20,
Lemma 4.1] ensures that the image under the blowing-down map is also
pseudoholomorphic with respect to a suitable almost complex structure.
Transversality of intersections can be achieved by a small perturbation of
the almost complex structure.

Lemma 2.5. Let M be a closed symplectic 4-manifold, and let L be a
symplectically embedded 2-sphere of self-intersection number 1. Then any
irreducible singular or higher genus pseudoholomorphic curve C in M sat-
isfies C · L ≥ 3. In particular, neither an irreducible singular nor a higher
genus pseudoholomorphic curve is contained in M \ L.

Proof. If necessary, we perturb the almost complex structure slightly in
such a way that the (−1)-curves do not pass through the singular points
of C. We then blow down a maximal disjoint family of pseudoholomorphic
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6 M. BHUPAL AND K. ONO

(−1)-curves away from L. Here we can assume that L and C are also pseu-
doholomorphic with respect to the same almost complex structure (Propo-
sition 2.4). Then M becomes the complex projective plane and L becomes
a line. Since C is singular and irreducible or of higher genus, the image C

has degree at least 3. Thus we have C · L = C · L ≥ 3.

Lemma 2.6. Let M be a closed symplectic 4-manifold, and let C be a
pseudoholomorphic rational curve with a (2,3)-cusp point as a unique sin-
gularity. Suppose that the self-intersection number of C is positive. Then
neither an irreducible singular nor a higher genus pseudoholomorphic curve
is contained in M \ C.

Proof. Suppose that D is such a singular or a higher genus pseudoholo-
morphic curve. Let J be a tame almost complex structure on M with respect
to which C and D are pseudoholomorphic. By Proposition 2.4, we may
assume that all symplectic (−1)-classes are represented by J -holomorphic
(−1)-curves. We blow down a maximal family of J -holomorphic (−1)-curves
in M \ C. Thus, we may assume that M \ C does not contain any symplectic
(−1)-curves. By Theorem 2.3, C is an anticanonical divisor, and we have
c1(M)[D] = 0. If D is singular or of higher genus, the adjunction formula
tells us that D · D ≥ 0. On the other hand, the intersection form on M \ C

is negative definite. Hence, [D] is homologous to zero, which is absurd.

Lemma 2.7. Let M and C be as in Lemma 2.6. Suppose that the self-
intersection number of C is at least 2. Then there does not exist a pseu-
doholomorphic curve A such that A is either singular and irreducible or of
higher genus and such that A · C = 1.

Proof. If such a curve A exists, we blow up M at the intersection point
of A and C. Then the proper transform of A violates the conclusion of
Lemma 2.6.

If the self-intersection number of C is 1, then there exist singular or
genus 1 pseudoholomorphic curves A such that A · C = 1. In addition, if
M \ C is minimal, it turns out that A is homologous to C in M .

Lemma 2.8. Let M be a closed symplectic 4 manifold, and let L be a sym-
plectically embedded sphere of self-intersection number 1. Then no symplec-
tically embedded sphere of nonnegative self-intersection number is contained
in M \ L. Pseudoholomorphic (−1)-curves in M \ L are mutually disjoint.
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Lemma 2.9. Let M be a closed symplectic 4-manifold, and let C be an
irreducible singular or higher genus pseudoholomorphic curve. Then no sym-
plectically embedded sphere of nonnegative self-intersection number is con-
tained in M \ C.

Proof. Let A be a symplectically embedded sphere in M \ C. Set k = A · A.
If k = 1, the result follows from Lemma 2.5. If k > 1, blow up M at k − 1
points on A. The proper transform of A has self-intersection number 1.
So this case is reduced to the case where k = 1. If k = 0, we blow down
a maximal disjoint family of pseudoholomorphic (−1)-curves away from
A. Note that Proposition 2.4 guarantees that these (−1)-curves and C are
pseudoholomorphic with respect to the same almost complex structure. The
blown-down manifold is a ruled symplectic 4-manifold, and A is a fiber.
Since C is singular and irreducible or of higher genus, its image C under
the blowing-down map is also singular and irreducible or of higher genus.
Thus, it is not a fiber of the ruling. Since fibers sweep out the whole space, C

should intersect a fiber. This contradicts the fact that C · A = C · A = 0.

Similarly, we get the following.

Lemma 2.10. Let M be a closed symplectic 4-manifold, and let C be a
singular pseudoholomorphic curve. Then there is no symplectically embedded
sphere A of nonnegative self-intersection number such that A · C = 1.

Proof. If k = A · A is positive, we blow up M at k points on A \ C. So
we may assume that k = 0. We blow down a maximal disjoint family of
pseudoholomorphic (−1)-curves away from A to get a ruled symplectic 4-
manifold. Then the image C of C under the blowing-down map satisfies
C · A = 1. However, there exists another fiber A′ passing through a singular
point of C, for which we have C · A′ ≥ 2. This is a contradiction.

The following lemma is a consequence of [18, Theorem 1].

Lemma 2.11. Let X be a symplectic filling of the link of a quotient sur-
face singularity. Then pseudoholomorphic (−1)-curves in X are mutually
disjoint.

Proof. Suppose that there are two pseudoholomorphic (−1)-curves E and
E′ which intersect each other. Contract E, and denote the blowing-down
map by π : X → X ′. Then the homology class π∗[E′] has nonnegative self-
intersection number. Note that X ′ is also a symplectic filling of ∂X . Also
note that the link of a quotient surface singularity is a spherical space form;

https://doi.org/10.1017/S0027763000022297 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000022297


8 M. BHUPAL AND K. ONO

hence, it carries a metric of positive scalar curvature. This contradicts the
fact that any symplectic filling of a contact manifold with a metric of positive
scalar curvature has negative definite intersection form ([18, Theorem 1], [10,
Theorem 1.4]).

Remark 2.12. In Lemmas 2.5–2.7, we showed the nonexistence of higher
genus pseudoholomorphic curves in the complement of a certain divisor D.
These arguments also imply the nonexistence of a cycle of pseudoholomor-
phic spheres in the complement of D. Indeed, a cycle of pseudoholomorphic
spheres is a stable map of genus 1. By gluing the adjacent components
around the nodes, we get an irreducible symplectically embedded surface
of genus 1 which is pseudoholomorphic with respect to a tame almost com-
plex structure which coincides with the original almost complex structure
outside of a neighborhood of the nodes. But Lemmas 2.5–2.7 prohibit the
existence of such a pseudoholomorphic curve of genus 1.

We now state some further lemmas that will be useful when we discuss
symplectic fillings of links of quotient surface singularities.

Lemma 2.13. Let L, C1, . . . ,Ck be a collection of symplectically embed-
ded 2-spheres in a closed symplectic 4-manifold M with L · L = 1, Ci · Ci ≤
0 (i = 1, . . . , k). Suppose that J is a tame almost complex structure for
which L, C1, . . . ,Ck are pseudoholomorphic. Then there exists at least one
J-holomorphic (−1)-curve in M \ L.

Proof. If one of the Ci which are disjoint from L is a symplectic (−1)-
curve, there is nothing to prove. Suppose that none of the Ci which are dis-
joint from L are symplectic (−1)-curves. By Theorem 2.1, M is a rational
symplectic 4-manifold. Since C1 · C1 ≤ 0, M is not minimal. So, by The-
orem 2.1, there are symplectic (−1)-curves in M \ L. After blowing them
down, we get the complex projective plane. Denote by E a symplectic (−1)-
curve in M \ L. If the homology class [E] is represented by a J -holomorphic
sphere, we are done. Suppose that [E] is not represented by a J -holomorphic
sphere. Pick a sequence of tame almost complex structures Jn such that L

is Jn-holomorphic, [E] is represented by a Jn-holomorphic sphere En, and
{Jn} converges to J . Then En converges to the image of a J -stable map.
Let A1, . . . ,Al be its irreducible components. Since c1(M)[E] = 1, there is a
component Aj with c1(M)[Aj ] > 0. Note that Aj is disjoint from L. (Other-
wise, E · L must be positive.) If Aj is a multiply covered component, take the
underlying reduced curve E′. Then Lemma 2.5 implies that Aj or E′ is an
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embedded pseudoholomorphic sphere. Also, Lemma 2.8 implies that Aj or
E′ has self-intersection less than 0. Since c1(M)[Aj ] > 0, by the adjunction
formula, Aj or E′ is a J -holomorphic (−1)-curve.

Lemma 2.14. Let M be a closed symplectic 4-manifold with a tame almost
complex structure J0 containing a pseudoholomorphic rational curve D with
a (2,3)-cusp point and an embedded pseudoholomorphic 2-sphere A with
self-intersection number 0 intersecting D at the cusp point. Suppose that
A · D = 2. If M \ (A ∪ D) is minimal, then D represents the anticanonical
class of M .

Proof. By Proposition 2.4, we may find a tame almost complex structure
J with respect to which A and D are pseudoholomorphic and any symplectic
(−1)-curve has a unique J -holomorphic representative. If we blow down all
(−1)-curves away from A, we get either CP 1 × CP 1 or the 1-point blowup
of CP 2 (these are CP 1-bundles over CP 1). (Theorem 2.1 implies that M

blows down to a ruled symplectic 4-manifold; the existence of a cuspidal
pseudoholomorphic rational curve implies that it is not irrationally ruled.)
We show that J -holomorphic representatives of such (−1)-curves intersect
D once transversally. Suppose that E is a (−1)-curve in the complement
of A which intersects D with multiplicity > 1. After perturbing the almost
complex structure, we can make the intersection of E and D transversal. So
after blowing down all (−1)-curves, including E, away from A, we obtain
a rational ruled surface with A being a ruling fiber. Pick a ruling fiber F

through the image p of E under the blowing-down map, through which D,
the image D, passes. We can assume that, locally around p, D consists of
a bunch of pseudoholomorphic curves intersecting at a point in such a way
that any two branches intersect transversally. (We may call such a point a
simple multiple point.) Since A and D intersect with multiplicity 2, F and
D intersect only at p with multiplicity 2. Before blowing down E, F must
be a (−1)-curve which is disjoint from A ∪ D. If we assume that M \ (A ∪ D)
is minimal, then such a situation does not arise. So D becomes a bidegree
(2,2)-cuspidal curve in CP 1 × CP 1 or the proper transform of the cuspidal
cubic curve in CP 2 blown up at a regular point of the cuspidal curve. Then
the original D is a proper transform of such a standard object (which is an
anticanonical divisor in these surfaces) under blowing up at regular points
of the cuspidal curve. Hence, D represents the anticanonical class.

Lemma 2.15. Let M be a closed symplectic 4-manifold with a tame almost
complex structure J0 containing a pseudoholomorphic rational curve D with
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10 M. BHUPAL AND K. ONO

a (2,3)-cusp point and embedded pseudoholomorphic 2-spheres A and B

both with self-intersection number 0 intersecting as depicted in Figure 7. If
M \ (A ∪ B ∪ D) is minimal, then D represents the anticanonical class of M .

Proof. Suppose that M \ (A ∪ B ∪ D) is minimal. If M \ (A ∪ D) is also
minimal, then the conclusion follows from Lemma 2.14. If M \ (A ∪ D) is not
minimal, then there must be a (−1)-curve E in the complement of A ∪ D

such that E · B ≥ 1. By Proposition 2.4, we may find a tame almost complex
structure J with respect to which A,B, and D are pseudoholomorphic and
E has a unique J -holomorphic representative. By perturbing the almost
complex structure J , if necessary, we may assume that E and B intersect
transversally. If E · B > 1, then blowing down E contradicts Lemma 2.9. If
E · B = 1, then blowing down E contradicts Lemma 2.5.

Remark 2.16. In [20], we used the fact that the canonical bundles of the
minimal symplectic fillings of the links of simple singularities are trivial. In
the cases of types E6,E7, and E8, we used K3 surfaces to find an appropriate
compactification. This argument is also applied to the cases of types An and
Dn with n small such that the corresponding configuration of (−2)-curves is
realized in some K3 surface. For general An and Dn, this fact was shown by
Kanda in [8]. Here we note that in the cases of type Dn, the compactification
contains a pseudoholomorphic rational curve A of self-intersection number
0 and a pseudoholomorphic rational curve D with a (2,3)-cusp intersecting
as described in Lemma 2.14. It follows from Lemma 2.14 that the canoni-
cal bundle of the complement of the compactifying divisor is trivial. For the
cases of type An, the compactification contains a pair of pseudoholomorphic
rational curves A and B both having self-intersection number 0 and a pseu-
doholomorphic rational curve D with a (2,3)-cusp intersecting as depicted
in Figure 7. In this case, Lemma 2.15 shows that the canonical bundle of
the complement of the compactifying divisor is trivial.

§3. Quotient singularities

We consider germs of quotient singularities (C2/G,0), where G is a finite
subgroup of GL(2,C). It is known that every such quotient singularity is iso-
morphic to the quotient of C

2 by a small group G < GL(2,C), where small
means that G does not contain any reflections. Also, it is known that, for
small groups G1,G2, the singularity (C2/G1,0) is analytically isomorphic
to (C2/G2,0) if and only if G1 is conjugate to G2. Hence, the problem of
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SYMPLECTIC FILLINGS OF LINKS OF QUOTIENT SURFACE SINGULARITIES 11

classifying quotient singularities (C2/G,0) is reduced to the problem of clas-
sifying small subgroups of GL(2,C) up to conjugation. Since G is finite, we
may assume that G ⊂ U(2). The action of G on C

2 lifts to an action on the
blowup of C

2 at the origin: π : C̃
2 → C

2. The exceptional divisor E = π−1(0)
is stable under the G action which is induced by G ⊂ U(2) → PU(2) ∼= SO(3).
The image of G in SO(3) is (conjugate to) either a cyclic subgroup, a dihe-
dral subgroup, the tetrahedral subgroup, the octahedral subgroup, or the
icosahedral subgroup. If G is the cyclic group Cn,1 whose generator ϕn,1

acts on C
2 via (u, v) �→ (ζnu, ζnv), where ζn = e2πi/n, then the quotient

space C̃
2/G is smooth with the image of E a (−n)-curve. Otherwise, let

F be the set of points of E which have nontrivial stabilizer subgroups.
Then the quotient space C̃

2/G has isolated singularities at F/G, each of
which is a cyclic quotient singularity. The end result of this is given in
[2]. Briefly, quotient singularities can be divided into five families: cyclic
quotient singularities, dihedral singularities, tetrahedral singularities, octa-
hedral singularities, and icosahedral singularities. Presently, we describe the
possible minimal resolutions that occur for quotient singularities together
with compactifying divisors which are convenient from our point of view.
The latter can be obtained by the method of McCarthy and Wolfson [14];
for more information on quotient singularities, see [22].

3.1. Cyclic quotient singularities, An,q, where 0 < q < n

and (n, q) = 1
It is well known that the minimal resolution of An,q is given by

,

where the bi are defined by the Hirzebruch-Jung continued fraction:

n

q
= [b1, b2, . . . , br] = b1 −

1

b2 −
1

. . . −
1
br

, bi ≥ 2 for all i.

It is not difficult to check that the following configuration of curves gives a
compactifying divisor for An,q:
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12 M. BHUPAL AND K. ONO

where the ci are given by

n

n − q
= [c1, c2, . . . , ck], ci ≥ 2 for all i.

3.2. Dihedral singularities, Dn,q, where 1 < q < n and (n, q) = 1
The minimal resolution is given by

,

where b, bi, i = 1, . . . , r are defined by

n

q
= [b, b1, . . . , br], b ≥ 2, bi ≥ 2 for all i.

In this case, one can check that a compactifying divisor is given by
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Table 1: Dual resolution graphs and compactifying divisors for tetrahedral
singularities

Tetrahedral
singularity

Dual resolution graph Compactifying divisor

m = 6(b − 2) + 1

m = 6(b − 2) + 3

m = 6(b − 2) + 5

where c, ci, i = 1, . . . , k are given by

n

n − q
= [c, c1, . . . , ck], c ≥ 2, ci ≥ 2 for all i.

3.3. Tetrahedral singularities, Tm, where m = 1,3,5 mod 6
The dual resolution graphs and compactifying divisors are given in

Table 1.

3.4. Octahedral singularities, Om, where (m,6) = 1
The dual resolution graphs and compactifying divisors are given in

Table 2.

3.5. Icosahedral singularities, Im, where (m,30) = 1
The dual resolution graphs and compactifying divisors are given in

Table 3.
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Table 2: Dual resolution graphs and compactifying divisors for octahedral
singularities

Octahedral
singularity

Dual resolution graph Compactifying divisor

m = 12(b − 2) + 1

m = 12(b − 2) + 5

m = 12(b − 2) + 7

m = 12(b − 2) + 11

§4. Compactification of symplectic fillings

Let X be a symplectic filling of the link of a quotient surface singularity.
Without loss of generality, we may assume that X is minimal, that is, that
X does not contain any symplectically embedded spheres of self-intersection
number −1. Denote by Y a regular neighborhood of the compactifying divi-
sor K presented in Section 3. We may take Y so that it is a strong concave
filling of ∂Y ∼= ∂X (see [1], [21]). Gluing X and Y , we get a closed symplec-
tic manifold Z. The classification problem of symplectic fillings reduces to
the symplectic deformation classification of the pair (Z,K).

For a configuration C of finitely many pseudoholomorphic curves, we
denote by J C the space of tamed almost complex structures J , for which all
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Table 3: Dual resolution graphs and compactifying divisors for icosahedral
singularities

Icosahedral
singularity

Dual resolution graph Compactifying divisor

m = 30(b − 2) + 1

m = 30(b − 2) + 7

m = 30(b − 2) + 11

m = 30(b − 2) + 13

m = 30(b − 2) + 17

m = 30(b − 2) + 19

(continued)
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Table 3: Continued

Icosahedral
singularity

Dual resolution graph Compactifying divisor

m = 30(b − 2) + 23

m = 30(b − 2) + 29

the curves in C are J -holomorphic. For a generic choice of J ∈ J C , the maxi-
mal number of mutually disjoint J -holomorphic (−1)-curves away from C is
equal to the maximal number of mutually disjoint symplectic (−1)-spheres
away from C.

4.1. Cyclic quotient singularities
Let D = L ∪ C1 ∪ · · · ∪ Ck be a string of symplectically embedded 2-

spheres in a closed symplectic 4-manifold M with L · L = 1. Here by a
string of spheres we mean a configuration of spheres whose dual graph is
an unbranched tree. We assume that the vertices corresponding to L and
Ck are the leaves. The main examples are the compactifying divisors for
cyclic quotient singularities given in Section 3. Note that C1 · C1 ≤ 0 and
that Ci · Ci < 0 (i = 2, . . . , k). Note also that M is a blowup of CP 2 by
Theorem 2.1.

Let J be a tame almost complex structure for which L, C1, . . . ,Ck are
pseudoholomorphic. By Lemma 2.13, there exists at least one J -holomorphic
(−1)-curve in M \ L. In fact, by successively blowing down, the compactify-
ing divisor is reduced to two complex projective lines in the complex projec-
tive plane as Lisca [11] claimed.∗ Here we give a proof based on Lemma 2.13
for the sake of completeness.

∗After we finished this manuscript, Lisca’s paper [12] appeared.
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We call a configuration D = L ∪ C1 ∪ · · · ∪ Ck of rational curves admissible
(for symplectic fillings of links of cyclic quotient singularities) if it is the total
transform of two distinct lines in CP 2 under some iterated blowup.

Suppose that M \ (L ∪ C1 ∪ · · · ∪ Ck) is minimal. Denote by J D the set
of tame almost complex structures with respect to which D = L ∪ C1 ∪
· · · ∪ Ck is pseudoholomorphic. We will blow down a maximal family {Ei}
of pseudoholomorphic (−1)-curves in M \ L to reduce the configuration of
rational curves to an admissible configuration. Note that these (−1)-curves
are mutually disjoint (Lemma 2.8).

Proposition 4.1. Let J be a tame almost complex structure, which is
generic in J D. Denote by M ′ the symplectic 4-manifold obtained by blowing
down all J-holomorphic (−1)-curves {Ej } away from L, and denote by C ′

i

the image of Ci. Then {L,C ′
i } is an admissible configuration for a symplectic

filling of a link of cyclic quotient singularity.

Proof. First, we note that any pseudoholomorphic (−1)-curve in M ′ \ L

is one of the C ′
i (i ≥ 2). Indeed, assume to the contrary that there is a

pseudoholomorphic (−1)-curve E in M ′ \ L which is not one of the C ′
i.

Perturbing the almost complex structure slightly, we may assume that E

does not pass through the images of the blown-down (−1)-curves Ej . Hence,
we may assume that E is actually a pseudoholomorphic (−1)-curve already
in M \ L, which contradicts the maximality of {Ej }.

Next we note that each C ′
i is embedded. It is enough to show that each

Ej intersects exactly one of the Ci with Ej · Ci = 1 for that i. Perturbing the
almost complex structure away from D, we may assume that Ej intersects
each Ci transversally. Suppose that Ej intersects Ci with Ej · Ci ≥ 2. After
contracting Ej , Ci becomes a nodal curve, which is singular. The existence
of such a curve is prohibited by Lemma 2.5. Similarly, Lemma 2.5 and
Remark 2.12 exclude the possibility that Ej intersects at least two of the Ci.

Thus, Lemma 2.13 implies that one of the C ′
i is a symplectic (−1)-curve.

After blowing it down, we get a new configuration of rational curves L ∪
C ′ ′

1 ∪ · · · ∪ C ′ ′
k−1. Let M ′ ′ denote the resulting ambient symplectic 4-manifold.

We claim that there are no symplectic (−1)-curves in M ′ ′ \ L except for
some of the C ′ ′

i . Suppose that E is such a pseudoholomorphic (−1)-curve.
A similar argument as above shows that E can be lifted to a pseudoholo-
morphic (−1)-curve in M \ L. This contradicts the maximality of {Ej }.

Continuing this process, we can successively blow down (−1)-curves until
we obtain the complex projective plane and C1 has been transformed into
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a complex projective line L′ transversal to L. The other Ci are contracted
to a point on L′ in the process.

4.2. Dihedral singularities
Let M̃ be a closed symplectic 4-manifold containing a configuration of

symplectically embedded 2-spheres intersecting in the manner shown in the
first picture in Figure 1. Here c, ci ≥ 2, i = 1, . . . , k. By a sequence of blow-
downs and a blowup, as in [20] in the simple dihedral case, we can transform
this configuration into a configuration containing a cusp curve (see Figure 1).
Let M denote the resulting ambient manifold.

To obtain a classification of fillings of links of dihedral singularities, we
proceed via a process of blowing down symplectic (−1)-curves in M . From
the proof of Lemma 2.14, it follows that M , and hence M̃ , is rational.

Consider now, generally, a closed symplectic 4-manifold Z containing a
configuration of rational curves D = A ∪ D ∪ C1 ∪ · · · ∪ Ck as depicted in
Figure 2. Here D is a singular curve with a (2,3)-cusp, A is an embedded 0-
curve intersecting D at the cusp point, and C1, . . . ,Ck are embedded curves.
By [21], D · D ≤ 8. Also, by Lemmas 2.9 and 2.10, Ci · Ci ≤ −1 for all i.

Lemma 4.2. Assume that the string C1, . . . ,Ck is nonempty. Let J be a
tame almost complex structure for which A,D,C1, . . . ,Ck are pseudoholo-
morphic. Then C1 is a (−1)-curve or there exists a J-holomorphic (−1)-
curve in Z \ (A ∪ D).

Proof. First suppose that the complement of A ∪ D is minimal. Then, by
Lemma 2.14, we know that the anticanonical class of Z is represented by
D. Since C1 · D = 1, it follows that C1 is a (−1)-curve.

Suppose now that Z \ (A ∪ D) is not minimal. Then there exists a sym-
plectic (−1)-curve E in Z \ (A ∪ D). If [E] is represented by a J -holomorphic
curve, we are done. If [E] cannot be represented by a J -holomorphic curve,
then pick a sequence of tame almost complex structures Jn converging to
J such that [E] is represented by a Jn-holomorphic curve En for each n.
By the compactness theorem, after taking a subsequence, En converges to
the image of a stable map. Let A1, . . . ,Al denote the irreducible compo-
nents of this stable map. Arguing as in the proof of [21, Proposition 4.1],
it can be shown that none of the Ai coincide with (or multiply covers) D.
Hence, it also follows that none of the Ai intersect D. Note also that Aj is
disjoint from A. Since c1(Z)[E] = 1, it follows that c1(Z)[Aj ] > 0 for some
j. By replacing Aj by the underlying simple curve, if Aj is multiply cov-
ered, assume that Aj is a simple curve. By Lemma 2.6, Aj is an embedded
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20 M. BHUPAL AND K. ONO

Figure 2: General configuration of rational curves considered in
case of symplectic fillings of links of dihedral singularities

J -holomorphic sphere. Also, by Lemma 2.9, Aj · Aj < 0. By the adjunction
formula, it now follows that Aj is a J -holomorphic (−1)-curve.

In general, we call a configuration of rational curves D = A ∪ D ∪ C1 ∪
· · · ∪ Ck as in Figure 2, in a closed symplectic 4-manifold Z, admissible (for
symplectic fillings of links of dihedral singularities) if it can be obtained as
the total transform of an iterated blowup of either

(a) a union of a cuspidal rational curve of bidegree (2,2) and a 0-curve
intersecting only at the cusp point in the ruled surface CP 1 × CP 1, or

(b) a union of a singular rational curve representing the class 3CP 1 − L and
a 0-curve intersecting only at the cusp point in the 1-point blowup of
CP 2, where L represents the exceptional curve of the blowup.

We call A ∪ D ∪ C1 ∪ · · · ∪ Ck a preadmissible configuration if it becomes
admissible after possibly blowing down some (−1)-curves intersecting only D.

Assume now that M \ (A ∪ D ∪ C1 ∪ · · · ∪ Ck) is minimal. The following
proposition shows that after blowing down a maximal family of pseudoholo-
morphic (−1)-curves in M \ (A ∪ D), the configuration A ∪ D ∪ C1 ∪ · · · ∪ Ck

is reduced to a preadmissible configuration. Note that by Lemma 2.11 these
(−1)-curves are necessarily disjoint. Note also that if these (−1)-curves are
not contained in the string C1, . . . ,Ck, then they can intersect it at most
once; that is, for any such (−1)-curve E,

∑
E · Ci ≤ 1. Indeed, suppose that

there is a (−1)-curve E such that
∑

E · Ci > 1; then, after contracting E,
we get either a singular pseudoholomorphic curve or a cycle of pseudoholo-
morphic spheres whose intersection number with A is 0. This contradicts
Lemma 2.9 and Remark 2.12. Now let J C denote the set of tame almost
complex structures with respect to which C = A ∪ D ∪ C1 ∪ · · · ∪ Ck is pseu-
doholomorphic.
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Proposition 4.3. Let J be a tame almost complex structure which is
generic in J C . Denote by M ′ the symplectic 4-manifold obtained by blowing
down all J-holomorphic (−1)-curves in M \ (A ∪ D), and denote by C ′

i

the image of Ci. Then {A,D,C ′
i } is a preadmissible configuration for a

symplectic fillings of a link of a dihedral singularity.

Proof. We first show that one of the C ′
i is a (−1)-curve. If C ′

1 is a (−1)-
curve, we are done. If C ′

1 is not a (−1)-curve, then, by Lemma 4.2, there
exists a (−1)-curve in M ′ \ (A ∪ D). We claim that this (−1)-curve must be
one of the C ′

i (i > 1). Suppose that it is not. Then it can intersect only one
of the C ′

i at exactly one point transversally. Hence, it must already have
been in M \ (A ∪ D), contradicting the fact that we blew down all such
(−1)-curves. We now blow down this curve to obtain a new configuration
{A,D′,C ′ ′

i }. If the string {C ′ ′
i } is not empty, we can argue in a similar way

to show that it must also contain a (−1)-curve. Blowing down this (−1)-
curve also and continuing in this way, we can show that the whole string
{C ′

i } can eventually be blown down. Thus, we are left with A and the image
D of D such that the complement of A ∪ D is minimal. Now, as in the
proof of Lemma 2.14, we can see that any pseudoholomorphic (−1)-curve
in the complement of A intersects D once transversally. After contracting
any such (−1)-curves, we get a configuration of type (a) or (b). As we have
noticed before, such (−1)-curves, if they exist, must exist in the original
manifold M . Changing the order of the blowing-down processes, we find
that {A,D,C ′

i } is a preadmissible configuration.

4.3. Tetrahedral, octahedral, and icosahedral singularities
For the purposes of classification of symplectic fillings of tetrahedral,

octahedral, and icosahedral singularities, it is convenient to divide these
singularities into two sets: those with a branch consisting of two (−2)-curves
intersecting the central curve in the minimal resolution, and those with
a branch consisting of a single (−3)-curve intersecting the central curve.
We designate these singularities as type (3,2) singularities and type (3,1)
singularities, respectively. There is exactly one class of quotient singularities
which lies in both sets, namely, the tetrahedral singularities T6(b−2)+3.

We begin by discussing the classification of fillings of type (3,2) singular-
ities. Note that, given a singularity Γ of type (3,2), we can always choose a
compactifying divisor such that its central curve has self-intersection num-
ber −1. Namely, if b = 2, the central curve given in Section 2 is a (−1)-
curve. If b ≥ 3, we blow up the compactifying divisor given earlier at the
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transversal intersection of the central curve and the third branch—that is,
the branch that does not consist of a single (−2)- or (−3)-curve (except in
case Γ = T6(b−2)+1, in which case we blow up at the intersection of the cen-
tral curve and one of the (−3)-curves)—repeatedly until the self-intersection
number of the central curve has dropped to −1. Now let M̃ be a closed sym-
plectic 4-manifold containing a configuration of symplectically embedded
2-spheres intersecting in the manner shown in the first picture in Figure 3.
Here a ≥ 1 and ci ≥ 2 for i = 1, . . . , k. Note that a = 1, when b ≥ 3. When
b = 2, 2 ≤ a ≤ 5 (see Tables 1–3). It will be convenient to transform this
configuration of symplectically embedded 2-spheres into one containing a
cusp curve. We achieve this by a sequence of blowdowns, as in [20, cases
E6,E7,E8] (see Figure 3). Let M denote the resulting closed symplectic 4-
manifold, let D denote the cusp curve, and let C1, . . . ,Ck denote the string
of curves attached to D. As the self-intersection number of the cusp curve
D is always positive, we can immediately conclude, by Theorem 2.3, that
M , and hence M̃ , is a rational symplectic manifold.

Consider now, generally, a closed symplectic 4-manifold Z containing a
configuration of rational curves D = D ∪ C1 ∪ · · · ∪ Ck as depicted in Figure 4
with D · D > 0. Here, D is a singular curve with a (2,3)-cusp, and C1, . . . ,Ck

are embedded curves. By Theorem 2.3, D · D ≤ 9. Also, by Lemmas 2.9 and
2.10, Ci · Ci ≤ −1 for all i.

Lemma 4.4. Assume that the string C1, . . . ,Ck is nonempty. Let J be a
tame almost complex structure for which D,C1, . . . ,Ck are pseudoholomor-
phic. Then C1 is a (−1)-curve or there exists a J-holomorphic (−1)-curve
in Z \ D.

Proof. Suppose that the complement of D is minimal. Since D · D > 0,
Theorem 2.3 implies that an anticanonical divisor is given by D. It follows
that C1 is a (−1)-curve. The remainder of the proof proceeds in a similar
way to the proof of Lemma 4.2.

Denote by D0 ⊂ CP 2 a cuspidal cubic curve. Following the process of
blowup and blowdown from (M,D) to (CP 2,D0), we find that D is an
anticanonical divisor when M \ D does not contain symplectic (−1)-curves.

In general, we call a configuration of rational curves D = D ∪ C1 ∪ · · · ∪ Ck

as in Figure 4, in a closed symplectic 4-manifold Z, admissible (for symplec-
tic fillings of links of tetrahedral, octahedral, and icosahedral singularities of
type (3,2)) if it can be obtained as the total transform of an iterated blowup
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Figure 4: General configuration of rational curves considered in
case of symplectic fillings of links of tetrahedral, octahedral, and

icosahedral singularities of type (3,2)

of the cuspidal cubic curve in CP 2, or of the cuspidal curve of bidegree (2,2)
in CP 1 × CP 1. In [20], we can always blow down a maximal family of (−1)-
curves to get a cuspidal cubic curve in CP 2. In fact, if b2(M) ≥ 3, one can
also contract another maximal family of (−1)-curves to get CP 1 × CP 1. In
our present situation, we do not blow down (−1)-curves intersecting both D

and some Ci. Hence, we may arrive not at CP 2 but at CP 1 × CP 1. Again,
we call such a configuration preadmissible if it becomes admissible after
possibly blowing down some (−1)-curves intersecting only D.

Now assume that M \ (D ∪ C1 ∪ · · · ∪ Ck) is minimal. The following propo-
sition shows that, after blowing down a maximal family of pseudoholomor-
phic (−1)-curves in M \ D, the configuration D ∪ C1 ∪ · · · ∪ Ck is reduced to
a preadmissible configuration. By Lemma 2.11, these (−1)-curves are nec-
essarily disjoint. Also, if these (−1)-curves are not contained in the string
C1, . . . ,Ck, then they can intersect it at most once. Indeed, suppose that
there is such a (−1)-curve E such that

∑
E · Ci ≥ 2; then, after contract-

ing E, the image of all the curves Ci contains a singular pseudoholomorphic
curve or a cycle of pseudoholomorphic spheres. This contradicts Lemma 2.6,
Lemma 2.7, or Remark 2.12, thus proving the assertion. (Note that for a
type (3,2) singularity Γ for which the string C1, . . . ,Ck is nonempty, the
self-intersection number D · D ≥ 3.) In summary, after contracting any pseu-
doholomorphic (−1)-curve in M \ D, we again get a configuration consisting
of D and a string of embedded spheres.

Let J C denote the set of tame almost complex structures with respect
to which C = D ∪ C1 ∪ · · · ∪ Ck is pseudoholomorphic. We can prove the
following proposition in a similar way to the proof of Proposition 4.3.

Proposition 4.5. Let J be a tame almost complex structure which is
generic in J C . Denote by M ′ the symplectic 4-manifold obtained by blowing
down all J-holomorphic (−1)-curves in M \ D, and denote by C ′

i the image
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of Ci. Then {D,C ′
i } is a preadmissible configuration for a symplectic filling

of a link of a tetrahedral, octahedral, or icosahedral singularity of type (3,2).

We now turn to the classification of fillings of type (3,1) singularities.
Again, given a singularity Γ of type (3,1), as in the case of type (3,2) sin-
gularities, we can always choose a compactifying divisor whose central curve
has self-intersection number −1. Namely, as before, when b ≥ 3, we blow up
the compactifying divisor given earlier at the transversal intersection of the
central curve and the third branch, that is, the branch that does not consist
of one or two (−2)-curves (except in case Γ = T6(b−2)+5, in which case we
blow up at the intersection of the central curve and one of the branches
consisting of two (−2)-curves) repeatedly until the self-intersection number
of the central curve has dropped to −1. Now let M̃ be a closed symplectic
4-manifold containing a configuration of symplectically embedded 2-spheres
intersecting in the manner shown in the first picture in Figure 5. Here a ≥ 1
and ci ≥ 2 for i = 1, . . . , k. Again, it will be convenient to transform this
configuration of symplectically embedded 2-spheres into one containing a
cusp curve. We achieve this by a sequence of blowdowns and a blowup (see
Figure 5). Let M denote the resulting closed symplectic 4-manifold, D the
cuspidal curve, A the 0-curve, B the (−1)-curve, and C1, . . . ,Ck the string
of curves intersecting D. From the proof of Lemma 2.14, it follows that M ,
and hence M̃ , is rational. Let J C denote the set of tame almost complex
structures with respect to which C = A ∪ B ∪ D ∪ C1 ∪ · · · ∪ Ck is pseudo-
holomorphic.

Lemma 4.6. Let J be generic in J C . Then there exists a J-holomorphic
(−1)-curve E in M \ (A ∪ D) such that B · E = 1. Moreover, such a curve
E is unique.

Proof. Let J D denote the set of tame almost complex structures with
respect to which D = A ∪ B ∪ D is pseudoholomorphic. By Proposition 2.4
applied to the curves A ∪ B ∪ D, for a generic almost complex structure
J ′ ∈ J D, any symplectic (−1)-curve in M has a unique J ′-holomorphic rep-
resentative. In particular, for any maximal disjoint family E1, . . . ,EN of
symplectic (−1)-curves in the complement of A ∪ D, we have a unique fam-
ily of J ′-holomorphic representatives E′

1, . . . ,E
′
N . It follows, by the results

of [20], that an anticanonical divisor of M is given by D −
∑

E′
i. Now since

c1(M)[B] = 1 and B · D = 2, it follows that there is exactly one E′
i such that

B · E′
i = 1 and B · E′

j = 0 if j �= i. Assume, without loss of generality, that
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B · E′
1 = 1. Now consider a sequence of generic almost complex structures

Jn ∈ J D converging to J such that [E′
1] is represented by a Jn-holomorphic

curve Bn for each n. By the compactness theorem, Bn converges to the
image of a stable map. Let A1, . . . ,Al denote the irreducible components of
this stable map. By the proof of [21, Proposition 4.1], no component of this
stable map coincides with (or is a multiple cover of) D. Hence, in particular,
no component can intersect D. Since [B] · [E′

1] = 1, there is a component Ai

such that Ai · B = 1. It follows that Ai is a simple curve. Since Ai is disjoint
from D, by Lemma 2.9, Ai is a rational curve of negative self-intersection.
Now the fact that J is generic away from the configuration C allows us to
conclude that Ai is in fact a (−1)-curve. (The virtual dimension of the mod-
uli space of singular pseudoholomorphic curves of negative self-intersection
number is negative.) Taking E = Ai gives the required J -holomorphic (−1)-
curve.

If E and E′ are pseudoholomorphic (−1)-curves such that E · B = E′ · B =
1, then, for a generic J ′ ∈ J D, both [E] and [E′] are represented by J ′-
holomorphic (−1)-curves. By Lemma 2.11, they are mutually disjoint, and
we may assume that E and E′ are contained in {E′

1, . . . ,E
′
N }. However,

as we saw, there is exactly one E′
i such that B · E′

i = 1. Hence, we find
uniqueness; that is, E = E′.

Note that E can intersect at most one of the Ci (see Remark 2.12). In
a similar way, E · Ci = 1 if E intersects Ci. There are now two cases to
consider: the case where E is disjoint from the string C1, . . . ,Ck, and the
case where E intersects precisely one member of the string C1, . . . ,Ck.

Case I: E · Ci = 0 for all i. In this case, blow down the (−1)-curve E

and denote the image of B under the blowing-down map by B′. Then B′ is
a 0-curve, and the resulting configuration C ′ = A ∪ B′ ∪ D ∪ C1 ∪ · · · ∪ Ck is
as in Figure 6. Let M ′ denote the resulting symplectic 4-manifold. We will
show that, after blowing down (−1)-curves in M ′ \ (A ∪ B′ ∪ D), the string
C1, . . . ,Ck is transformed into one which can be sequentially blown down.

Consider, generally, a closed symplectic 4-manifold Z containing a con-
figuration of rational curves D = A ∪ B ∪ D ∪ C1 ∪ · · · ∪ Ck as depicted in
Figure 7. Here, D is a singular curve with a (2,3)-cusp, A and B are embed-
ded 0-curves intersecting transversely at the cusp point of D, and C1, . . . ,Ck

are embedded curves. By [21], D · D ≤ 8. Also, by Lemmas 2.9 and 2.10,
Ci · Ci ≤ −1 for all i.
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Figure 6: Image of compactifying divisor after blowing down the
(−1)-curve E in Case I

Figure 7: General configuration of rational curves considered in
Case I symplectic fillings of links of tetrahedral, octahedral, and

icosahedral singularities of type (3,1)

Lemma 4.7. Assume that the string C1, . . . ,Ck is nonempty. Let J be
a tame almost complex structure for which A,B,D,C1, . . . ,Ck are pseu-
doholomorphic. Then C1 is a (−1)-curve or there exists a J-holomorphic
(−1)-curve in Z \ (A ∪ B ∪ D).

Proof. Suppose that the complement of A ∪ B ∪ D is minimal. Then, by
Lemma 2.15, we know that an anticanonical divisor is given by D. It follows
that C1 is a (−1)-curve. The remainder of the proof proceeds in a similar
way to the proof of Lemma 4.2.

In general, we call a configuration of rational curves D = A ∪ B ∪ D ∪ C1 ∪
· · · ∪ Ck as in Figure 7, in a closed symplectic 4-manifold Z, admissible (for
case I symplectic fillings of links of tetrahedral, octahedral, and icosahedral
singularities of type (3,1)) if it can be obtained as the total transform of
an iterated blowup of a union of a cuspidal rational curve of bidegree (2,2)
and two 0-curves intersecting transversely at its cusp point in CP 1 × CP 1.
Again, we call such a configuration preadmissible if it becomes admissible
after possibly blowing down some (−1)-curves intersecting D only.
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Figure 8: Image of compactifying divisor after blowing down the
(−1)-curve E in Case II

Assume now that M ′ \ (A ∪ B′ ∪ D ∪ C1 ∪ · · · ∪ Ck) is minimal. The follow-
ing proposition shows that, after blowing down a maximal family of (−1)-
curves in M ′ \ (A ∪ B′ ∪ D), the configuration C ′ = A ∪ B′ ∪ D ∪ C1 ∪ · · · ∪ Ck

is reduced to a preadmissible configuration. Note that, by construction,
C2, . . . ,Ck are not (−1)-curves and that C1 intersects D. By Lemma 2.9,
these (−1)-curves are necessarily disjoint. Again, by Lemma 2.6, Lemma 2.7,
and Remark 2.12, any such (−1)-curve, if it is not contained in the string
C1, . . . ,Ck, can intersect it at most once. Let J C ′ denote the set of tame
almost complex structures with respect to which all the irreducible compo-
nents of the configuration C ′ are pseudoholomorphic.

Proposition 4.8. Let J be a tame almost complex structure which is
generic in J C ′ . Denote by M ′ ′ the symplectic 4-manifold obtained by blowing
down all J-holomorphic (−1)-curves in M ′ \ (A ∪ B′ ∪ D), and denote by C ′

i

the image of Ci. Then {A,B′,D,C ′
i } is a preadmissible configuration for a

Case I symplectic filling of a link of a tetrahedral, octahedral, or icosahedral
singularity of type (3,1).

Case II: E · Ci = 1 for some i. Again, begin by blowing down E. Denote
the resulting symplectic 4-manifold by M ′, the image of B by B′, and the
image of Cj by C ′

j for j = 1, . . . , k. Then B′ is a 0-curve, C ′
i · C ′

i = −ci +1, and
the resulting configuration C ′ = A ∪ B′ ∪ D ∪ C ′

1 ∪ · · · ∪ C ′
k is as in Figure 8.

As in other cases, we blow down some pseudoholomorphic (−1)-curves and
reduce the compactifying divisor to a standard form. For each pseudoholo-
morphic (−1)-curve F in the complement of A ∪ B′, F intersects at most
one of the C ′

j . Moreover, their intersection number is 1. After contract-
ing such (−1)-curves, C ′

1, . . . ,C
′
k remain symplectically embedded spheres,

whose dual graph is a string. The image C ′ ′
j of C ′

j (j �= i) is contained in the
complement of A ∪ B′ and hence has negative self-intersection number. Note
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Figure 9: General configuration of rational curves considered in
Case II symplectic fillings of links of tetrahedral, octahedral, and

icosahedral singularities of type (3,1)

that F may also intersect D. In such a case, we have F · D = 1. If F · D > 1,
after contracting F , the image of D contains at least two singular points.
However, the intersection with A (resp., B′) remains the same. Thus, after
contracting other (−1)-curves in the complement of A ∪ B′, the image of D

should represent a homology class of bidegree (2,2). This is absurd.
Consider now, generally, a closed symplectic 4-manifold Z containing a

configuration of rational curves D = A ∪ B ∪ D ∪ C1 ∪ · · · ∪ Ck intersecting
each other as in Figure 9, but with the possibility that there might be more
intersections between the string C1, . . . ,Ck and the singular curve D than
indicated in the figure. Here D is a singular curve with a (2,3)-cusp, A

and B are embedded 0-curves intersecting transversely at the cusp point
of D, and C1, . . . ,Ck are embedded curves. By [21], D · D ≤ 8. Also, by
Lemmas 2.9 and 2.10, Cj · Cj ≤ −1 for all j.

Lemma 4.9. Let J be a tame almost complex structure for which the
irreducible components of the configuration D are pseudoholomorphic. Then
there exists a J-holomorphic (−1)-curve in Z \ (A ∪ B), unless k = 1, C1 ·
C1 = 0 and D · D = 8.

Proof. By [20], we know that after collapsing a maximal family of (−1)-
curves in the complement of A ∪ B, the manifold Z is reduced to CP 1 × CP 1

with the image D being a pseudoholomorphic cuspidal rational curve of
bidegree (2,2). If k > 1, there are at least two Cj , one of which is contained
in the complement of A ∪ B. Hence, its self-intersection number is negative.
Suppose that C1 is the only member of the string and that C1 · C1 �= 0.
Since C1 does not intersect A, the self-intersection number of C1 must be
negative. Otherwise, the self-intersection number of D is less than 8. In each
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Figure 10: Arrangement of curves in CP 1 × CP 1 giving rise to
admissible configurations for Case II symplectic fillings of links of
tetrahedral, octahedral or icosahedral singularities of type (3,1)

case, we find that the complement of A ∪ B is not minimal. The proof now
proceeds in a similar way to the proof of Lemma 4.2.

In general, we say that a configuration of rational curves D = A ∪ B ∪ D ∪
C1 ∪ · · · ∪ Ck in a closed symplectic 4-manifold Z, where A ∪ B ∪ D are as
in Figure 9 and C1, . . . ,Ck is a string of embedded curves, is admissible (for
Case II symplectic fillings of links of tetrahedral, octahedral, or icosahedral
singularities of type (3,1)) if it can be obtained as a total transform, under
an iterated blowup, of a configuration D ′ = A ∪ B ∪ C ∪ D′ in CP 1 × CP 1,
intersecting as depicted in Figure 10. Here D′ is a cuspidal rational curve
of bidegree (2,2) and A,B,C are ruling fibers. (Note that D necessarily
intersects the string C1 ∪ · · · ∪ Ck twice in an admissible configuration.)

Assume now that the complement of the configuration C ′ = A ∪ B′ ∪ D ∪
C ′

1 ∪ · · · ∪ C ′
k in M ′ is minimal, and let J C ′ denote the set of tame almost

complex structures with respect to which C ′ is pseudoholomorphic.

Proposition 4.10. Let J be a tame almost complex structure which is
generic in J C ′ . Denote by M ′ ′ the symplectic 4-manifold obtained by blowing
down all J-holomorphic (−1)-curves in M ′ \ (A ∪ B′), denote by D′ the
image of D, and denote by C ′ ′

l the image of C ′
l . Then {A,B′,D′, {C ′ ′

l }} is
an admissible configuration for a Case II symplectic filling of a link of a
tetrahedral, octahedral, or icosahedral singularity of type (3,1).

Proof.

Claim 1. There is a J-holomorphic (−1)-curve F in M ′ \ (A ∪ B′) such
that F · D = 1, F · C ′

j = 1 for some j, and F · C ′
l = 0, l �= j.

Proof of Claim 1. Suppose that there is no such curve F . Note that any
J -holomorphic (−1)-curve in the complement of A ∪ B′ cannot intersect
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Figure 11: See proof of Claim 1

the string C ′
1 ∪ · · · ∪ C ′

k with intersection number greater than 1 for the
same reason as mentioned in the dihedral singularities case. Thus, any J -
holomorphic (−1)-curve in M ′ \ (A ∪ B′) is disjoint either from D or from
C ′

1 ∪ · · · ∪ C ′
k. After blowing down all such (−1)-curves, denote the image of

D by D′ and denote the image of C ′
l by C ′ ′

l . We now appeal to Lemma 4.9
to find further (−1)-curves away from A ∪ B′ in the resulting symplectic
4-manifold M ′ ′. Arguing as in other cases, any such (−1)-curve must be
one of the C ′ ′

l , l �= i. After iteratively blowing down all such (−1)-curves,
we arrive at the situation depicted in Figure 11. But this situation cannot
be minimal since, if it were, C ′ ′ ′

i would have to be homologous to A and
hence would have to intersect D′ ′ twice. Hence, arguing as in the proof of
Lemma 4.9, there must still be a (−1)-curve in the resulting symplectic
4-manifold M ′ ′ ′ away from A ∪ B′. But this (−1)-curve must have already
existed in M ′ \ (A ∪ B′), which is a contradiction since we are assuming that
we blew down all such (−1)-curves.

Claim 2. Let F be as in Claim 1. Then j ≥ i.

Proof of Claim 2. Suppose that j < i; then, after blowing down all (−1)-
curves in M ′ \ (A ∪ B′), let M ′ ′ denote the resulting symplectic 4-manifold,
and denote by D′ the image of D and by C ′ ′

l the image of C ′
l . Arguing as

in the proof of Claim 1, we can now iteratively blow down all the curves
C ′ ′

l , l �= i. Let M ′ ′ ′ denote the resulting symplectic 4-manifold, and denote
by D′ ′ the image of D′. Since the image of the string C ′

1, . . . ,C
′
i−1 in M ′ ′

intersects D′ at least twice, D′ ′ will have a singular point away from the
cusp point. Now, after contracting a maximal family of pseudoholomorphic
(−1)-curves in M ′ ′ ′ \ (A ∪ B′), we obtain a (2,2)-curve in CP 1 × CP 1 with
at least two singular points, which is impossible.

Claim 3. There is at most one such curve F as in Claim 1.
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Figure 12: See proof of Claim 3

Proof of Claim 3. Suppose there is more than one such curve, and denote
these curves F1, . . . , Fs. Assume that Fl · C ′

j(l) = 1 for l = 1, . . . , s. Then,
by Claim 2, j(l) ≥ i for all l. First, suppose that 	{l | j(l) > i} ≥ 2. Then
after contracting all (−1)-curves in M ′ \ (A ∪ B′), the image of the string
C ′

i+1, . . . ,C
′
k in the resulting symplectic 4-manifold M ′ ′ intersects the image

of D at least twice. The proof is now as in the proof of Claim 2. Now
suppose that 	{l | j(l) > i} ≤ 1. Then, after contracting all (−1)-curves in
M ′ \ (A ∪ B′) and then iteratively contracting the images of the curves C ′

l ,
l �= i, denote by M ′ ′ ′ the resulting symplectic 4-manifold, by D′ ′ the image of
D, and by C ′ ′ ′

i the image of C ′
i (see Figure 12 for the case s = 2). Note that

this situation does not occur in CP 1 × CP 1 since C ′ ′ ′
i is a smoothly embedded

rational curve which is disjoint from A and hence must be homologous to
A but C ′ ′ ′

i · D′ ′ ≥ 3. Since blowing down (−1)-curves away from A ∪ B′ can
only increase the intersection number C ′ ′ ′

i · D′ ′, it follows that M ′ ′ ′ can also
not be a blowup of CP 1 × CP 1, which is absurd.

We prove the proposition. After contracting all (−1)-curves in M ′ \ (A ∪
B′) it follows from Claim 3 that the image of the string C ′

1, . . . ,C
′
k intersects

the image of D exactly twice. Namely, C ′ ′
1 and C ′ ′

j for some j ≥ i intersect
D′. One can now, using Lemma 4.9, iteratively blow down the curves C ′ ′

l ,
l �= i to obtain the configuration given in Figure 10. This shows that the
configuration {A,B′,D′, {C ′ ′

l }} is an admissible configuration.

§5. Conclusion

In Section 4, we reduced the compactification to a standard configuration
of rational curves in either CP 2 or CP 1 × CP 1 as follows.

(1) Cyclic quotient singularities: two distinct lines in CP 2.
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(2) Dihedral singularities: a union of a 0-curve and a cuspidal curve of
bidegree (2,2) in CP 1 × CP 1 which intersect at the cusp point, or the
proper transform of a union of a line and a cuspidal cubic curve in CP 2

which meet at the cusp point under the blowup of their transversal
intersection point (that is, another intersection point of them).

(3) Tetrahedral, octahedral, and icosahedral singularities of type (3,2): a
cuspidal curve of degree 3 (resp., of bidegree (2,2)) in CP 2 (resp., CP 1 ×
CP 1).

(4) Tetrahedral, octahedral, and icosahedral singularities of type (3,1). Two
kinds of configurations appear:
(i) a union of CP 1 × {pt}, {pt} × CP 1 and a cuspidal curve of bidegree

(2,2), which meet at the cusp point;
(ii) a union of CP 1 × {pt}, {pt} × CP 1, a cuspidal curve of bidegree

(2,2), which meet at the cusp point, and another rational curve
homologous to CP 1 × {pt}.

To recover the symplectic filling X , we first sequentially blow up the
manifold at points on the total transform of the divisor in the above list and
blow down, if necessary, to get a closed symplectic 4-manifold Z containing
the compactifying divisor K. Then we get X as the complement of a regular
neighborhood of K in Z. To see that X is indeed a symplectic filling of the
relevant quotient singularity link, we argue as follows.

First, observe that K contains a “central divisor” (often of self-intersection
number b − 3, but in the cyclic case it has self-intersection number 1, and
in the dihedral case −1). Collapse, repeatedly, all (−1)-curves away from
the central divisor in the cyclic quotient and dihedral case. Then the com-
pactifying divisor will consist of a central divisor and one or three strings
of rational curves of negative self-intersection, which are exceptional divi-
sors of some cyclic quotient singularities. Blow down these strings to obtain
orbifold singularities. Here we take the weighted blowdown in the orbifold
category (according to Godinho [5]) to get symplectic cyclic orbifold sin-
gularities. Then the central divisor becomes an orbifold curve of positive
self-intersection number (which may be a rational number). So the tubu-
lar neighborhood is a disk bundle in an orbifold complex line bundle with
positive Chern number. Consequently, it has concave boundary. To prove
the latter, one can proceed as follows. Since we have the notion of the dif-
ferential forms and de Rham theory in the orbifold setting, the theory of
connections and curvature for orbibundles is developed in the same way as
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for bundles on manifolds. Hence, McDuff’s [16] argument can be applied to
show that the boundary of a (sufficiently small) disk bundle in the orbifold
complex line bundle with positive Chern number is concave.

For classification up to symplectic deformation equivalence, we need
uniqueness of symplectic deformation types of the standard configurations,
which we can prove as in [20].

It is not difficult to see that for cyclic quotient singularities and dihe-
dral singularities, we can find links with arbitrarily many nondiffeomorphic
symplectic fillings. (For cyclic quotient singularities, this fact was noted by
Lisca [11].) However, for tetrahedral, octahedral, and icosahedral singulari-
ties, the number of symplectic fillings for each class of singularities in Tables
1–3 is bounded above by a number independent of b. We give a list of all
symplectic fillings in these cases. To aid this, for case (4ii) above, we note
the following constraints:

(a) if i > 1, then ci �= 2,
(b) if j < k, then cj �= 2,
(c) b ≤ max{5, cb−2},

where i is as in Figure 8 and j is as in the proof of Proposition 4.10. In
particular, since cb−2 ≤ 6 for quotient singularities, there are only a finite
number of symplectic filling which fall into case (4ii) above.

The list we give below is the list of compactifications Z and compactify-
ing divisors K of minimal symplectic fillings. There may be symplectically
deformation equivalent fillings in the list. To get a list of minimal symplectic
fillings, we should describe the contactomorphisms up to contact isotopies.
We leave this as a topic for future research.

Symplectic fillings of links of tetrahedral, octahedral, and icosa-
hedral singularities of type (3,2)
We use the notation (m;D · D, −c1, . . . , −ck;a1 × i1, . . . , al × il) to denote

the symplectic filling of the link of Tm,Om, or Im given as the complement of
a regular neighborhood of the compactifying divisor K = D ∪ C1 ∪ · · · ∪ Ck

given in Figure 4. Here −c1, . . . , −ck denote the self-intersections of the
curves C1, . . . ,Ck, and aj × ij denotes the existence of aj distinct (−1)-
curves intersecting Cij in Z; if there are no such (−1)-curves, then we put
∅. We abbreviate 1 × ij = ij . In each case we indicate whether the pair
(Z,K) is given by blowing up (CP 2, cuspidal cubic curve of degree 3) or
(CP 1 × CP 1, cuspidal curve of bidegree (2,2)). Note that when we blow
down the compactification Z of a symplectic filling of the link of a singularity
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of type (3,2), we can always guarantee that we end up with CP 2 unless the
image of D under the blowing-down map has self-intersection number 8. In
that case we may also end up with CP 1 × CP 1. There are 16 cases where
this occurs.

Tetrahedral, Tm

1. E6

2. (6(3 − 2) + 1; 5, −4; 3 × 1),CP 2

3. (6(4 − 2) + 1; 5, −2, −4; 3 × 2),CP 2

4. (6(4 − 2) + 1; 5, −2, −4; 1,2 × 2),CP 2

5. (6(5 − 2) + 1; 5, −2, −2, −4; 3 × 3),CP 2

6. (6(5 − 2) + 1; 5, −2, −2, −4; 1,2 × 3),CP 2

7. (6(5 − 2) + 1; 5, −2, −2, −4; 1,2 × 3),CP 1 × CP 1

8. (6(5 − 2) + 1; 5, −2, −2, −4; 2,3),CP 2

9. (6(6 − 2) + 1; 5, −2, −2, −2, −4; 3 × 4),CP 2

10. (6(6 − 2) + 1; 5, −2, −2, −2, −4; 1,2 × 4),CP 2

11. (6(6 − 2) + 1; 5, −2, −2, −2, −4; 3),CP 2

12. (6(b − 2) + 1, b ≥ 7; 5, −2, . . . , −2︸ ︷︷ ︸
b−3

, −4; 3 × k), k = b − 2,CP 2

13. (6(2 − 2) + 3; 4, −2; 1),CP 2

14. (6(3 − 2) + 3; 5, −3, −2; 1,2),CP 2

15. (6(3 − 2) + 3; 5, −3, −2; 2 × 1),CP 2

16. (6(4 − 2) + 3; 5, −2, −3, −2; 2,3),CP 2

17. (6(4 − 2) + 3; 5, −2, −3, −2; 1,3),CP 2

18. (6(4 − 2) + 3; 5, −2, −3, −2; 1,2),CP 2

19. (6(4 − 2) + 3; 5, −2, −3, −2; 1,2),CP 1 × CP 1

20. (6(5 − 2) + 3; 5, −2, −2, −3, −2; 3,4),CP 2

21. (6(5 − 2) + 3; 5, −2, −2, −3, −2; 1,4),CP 2

22. (6(5 − 2) + 3; 5, −2, −2, −3, −2; 1,4),CP 1 × CP 1

23. (6(5 − 2) + 3; 5, −2, −2, −3, −2; 1,3),CP 2

24. (6(5 − 2) + 3; 5, −2, −2, −3, −2; 2),CP 2

25. (6(5 − 2) + 3; 5, −2, −2, −3, −2; 2),CP 1 × CP 1

26. (6(6 − 2) + 3; 5, −2, −2, −2, −3, −2; 4,5),CP 2

27. (6(6 − 2) + 3; 5, −2, −2, −2, −3, −2; 1,5),CP 2

28. (6(b − 2) + 3, b ≥ 7; 5, −2, . . . , −2︸ ︷︷ ︸
b−3

, −3, −2;k − 1, k), k = b − 1,CP 2
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Octahedral, Om

29. E7

30. (12(3 − 2) + 1; 5, −5; 4 × 1),CP 2

31. (12(4 − 2) + 1; 5, −2, −5; 4 × 2),CP 2

32. (12(4 − 2) + 1; 5, −2, −5; 1,3 × 2),CP 2

33. (12(5 − 2) + 1; 5, −2, −2, −5; 4 × 3),CP 2

34. (12(5 − 2) + 1; 5, −2, −2, −5; 1,3 × 3),CP 2

35. (12(5 − 2) + 1; 5, −2, −2, −5; 1,3 × 3),CP 1 × CP 1

36. (12(5 − 2) + 1; 5, −2, −2, −5; 2,2 × 3),CP 2

37. (12(6 − 2) + 1; 5, −2, −2, −2, −5; 4 × 4),CP 2

38. (12(6 − 2) + 1; 5, −2, −2, −2, −5; 1,3 × 4),CP 2

39. (12(6 − 2) + 1; 5, −2, −2, −2, −5; 3,4),CP 2

40. (12(7 − 2) + 1; 5, −2, −2, −2, −2, −5; 4 × 5),CP 2

41. (12(7 − 2) + 1; 5, −2, −2, −2, −2, −5; 4),CP 2

42. (12(b − 2) + 1, b ≥ 8; 5, −2, . . . , −2︸ ︷︷ ︸
b−3

, −5; 4 × k), k = b − 2,CP 2

43. (12(2 − 2) + 7; 4, −2, −2; 2),CP 2

44. (12(2 − 2) + 7; 4, −2, −2; 1),CP 2

45. (12(3 − 2) + 7; 5, −3, −2, −2; 1,3),CP 2

46. (12(3 − 2) + 7; 5, −3, −2, −2; 2 × 1),CP 2

47. (12(3 − 2) + 7; 5, −3, −2, −2; 2 × 1),CP 1 × CP 1

48. (12(3 − 2) + 7; 5, −3, −2, −2; 2),CP 2

49. (12(4 − 2) + 7; 5, −2, −3, −2, −2; 2,4),CP 2

50. (12(4 − 2) + 7; 5, −2, −3, −2, −2; 1,2),CP 2

51. (12(4 − 2) + 7; 5, −2, −3, −2, −2; 1,4),CP 2

52. (12(4 − 2) + 7; 5, −2, −3, −2, −2; 3),CP 2

53. (12(5 − 2) + 7; 5, −2, −2, −3, −2, −2; 3,5),CP 2

54. (12(5 − 2) + 7; 5, −2, −2, −3, −2, −2; 1,5),CP 2

55. (12(5 − 2) + 7; 5, −2, −2, −3, −2, −2; 1,5),CP 1 × CP 1

56. (12(5 − 2) + 7; 5, −2, −2, −3, −2, −2; 4),CP 2

57. (12(5 − 2) + 7; 5, −2, −2, −3, −2, −2; 2),CP 2

58. (12(6 − 2) + 7; 5, −2, −2, −2, −3, −2, −2; 4,6),CP 2

59. (12(6 − 2) + 7; 5, −2, −2, −2, −3, −2, −2; 1,6),CP 2

60. (12(6 − 2) + 7; 5, −2, −2, −2, −3, −2, −2; 5),CP 2

61. (12(b − 2) + 7, b ≥ 7; 5, −2, . . . , −2︸ ︷︷ ︸
b−3

, −3, −2, −2;k − 2, k), k = b,CP 2
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62. (12(b − 2) + 7, b ≥ 7; 5, −2, . . . , −2︸ ︷︷ ︸
b−3

, −3, −2, −2;k − 1), k = b,CP 2

Icosahedral, Im

63. E8

64. (30(3 − 2) + 1; 5, −6; 5 × 1),CP 2

65. (30(4 − 2) + 1; 5, −2, −6; 5 × 2),CP 2

66. (30(4 − 2) + 1; 5, −2, −6; 1,4 × 2),CP 2

67. (30(5 − 2) + 1; 5, −2, −2, −6; 5 × 3),CP 2

68. (30(5 − 2) + 1; 5, −2, −2, −6; 1,4 × 3),CP 2

69. (30(5 − 2) + 1; 5, −2, −2, −6; 1,4 × 3),CP 1 × CP 1

70. (30(5 − 2) + 1; 5, −2, −2, −6; 2,3 × 3),CP 2

71. (30(6 − 2) + 1; 5, −2, −2, −2, −6; 5 × 4),CP 2

72. (30(6 − 2) + 1; 5, −2, −2, −2, −6; 1,4 × 4),CP 2

73. (30(6 − 2) + 1; 5, −2, −2, −2, −6; 3,2 × 4),CP 2

74. (30(7 − 2) + 1; 5, −2, −2, −2, −2, −6; 5 × 5),CP 2

75. (30(7 − 2) + 1; 5, −2, −2, −2, −2, −6; 4,5),CP 2

76. (30(8 − 2) + 1; 5, −2, −2, −2, −2, −2, −6; 5 × 6),CP 2

77. (30(8 − 2) + 1; 5, −2, −2, −2, −2, −2, −6; 5),CP 2

78. (30(b − 2) + 1, b ≥ 9; 5, −2, . . . , −2︸ ︷︷ ︸
b−3

, −6; 5 × k), k = b − 2,CP 2

79. (30(2 − 2) + 7; 3, −2; 1),CP 2

80. (30(3 − 2) + 7; 5, −4, −2; 2 × 1,2),CP 2

81. (30(3 − 2) + 7; 5, −4, −2; 3 × 1),CP 2

82. (30(4 − 2) + 7; 5, −2, −4, −2; 2 × 2,3),CP 2

83. (30(4 − 2) + 7; 5, −2, −4, −2; 1,2 × 2),CP 2

84. (30(4 − 2) + 7; 5, −2, −4, −2; 1,2 × 2),CP 1 × CP 1

85. (30(4 − 2) + 7; 5, −2, −4, −2; 1,2,3),CP 2

86. (30(5 − 2) + 7; 5, −2, −2, −4, −2; 2 × 3,4),CP 2

87. (30(5 − 2) + 7; 5, −2, −2, −4, −2; 1,2 × 3),CP 2

88. (30(5 − 2) + 7; 5, −2, −2, −4, −2; 2,3),CP 2

89. (30(5 − 2) + 7; 5, −2, −2, −4, −2; 2,3),CP 1 × CP 1

90. (30(5 − 2) + 7; 5, −2, −2, −4, −2; 2,4),CP 2

91. (30(5 − 2) + 7; 5, −2, −2, −4, −2; 1,3,4),CP 2

92. (30(5 − 2) + 7; 5, −2, −2, −4, −2; 1,3,4),CP 1 × CP 1

93. (30(6 − 2) + 7; 5, −2, −2, −2, −4, −2; 2 × 4,5),CP 2

94. (30(6 − 2) + 7; 5, −2, −2, −2, −4, −2; 1,4,5),CP 2

95. (30(6 − 2) + 7; 5, −2, −2, −2, −4, −2; 3),CP 2
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96. (30(6 − 2) + 7; 5, −2, −2, −2, −4, −2; 3),CP 1 × CP 1

97. (30(b − 2)+7, b ≥ 7; 5, −2, . . . , −2︸ ︷︷ ︸
b−3

, −4, −2; 2 × (k − 1), k), k = b − 1,CP 2

98. (30(2 − 2) + 13; 4, −3; 2 × 1),CP 2

99. (30(3 − 2) + 13; 5, −3, −3; 1,2 × 2),CP 2

100. (30(3 − 2) + 13; 5, −3, −3; 2 × 1,2),CP 2

101. (30(4 − 2) + 13; 5, −2, −3, −3; 2,2 × 3),CP 2

102. (30(4 − 2) + 13; 5, −2, −3, −3; 1,2,3),CP 2

103. (30(4 − 2) + 13; 5, −2, −3, −3; 1,2,3),CP 1 × CP 1

104. (30(4 − 2) + 13; 5, −2, −3, −3; 1,2 × 3),CP 2

105. (30(4 − 2) + 13; 5, −2, −3, −3; 2 × 2),CP 2

106. (30(5 − 2) + 13; 5, −2, −2, −3, −3; 3,2 × 4),CP 2

107. (30(5 − 2) + 13; 5, −2, −2, −3, −3; 1,2 × 4),CP 2

108. (30(5 − 2) + 13; 5, −2, −2, −3, −3; 1,2 × 4),CP 1 × CP 1

109. (30(5 − 2) + 13; 5, −2, −2, −3, −3; 1,3,4),CP 2

110. (30(5 − 2) + 13; 5, −2, −2, −3, −3; 2,4),CP 2

111. (30(5 − 2) + 13; 5, −2, −2, −3, −3; 2,4),CP 1 × CP 1

112. (30(6 − 2) + 13; 5, −2, −2, −2, −3, −3; 4,2 × 5),CP 2

113. (30(6 − 2) + 13; 5, −2, −2, −2, −3, −3; 1,2 × 5),CP 2

114. (30(b − 2) + 13, b ≥ 7; 5, −2, . . . , −2︸ ︷︷ ︸
b−3

, −3, −3;k − 1,2 × k), k = b − 1,CP 2

115. (30(2 − 2) + 19; 4, −2, −2, −2; 3),CP 2

116. (30(2 − 2) + 19; 4, −2, −2, −2; 1),CP 2

117. (30(3 − 2) + 19; 5, −3, −2, −2, −2; 1,4),CP 2

118. (30(3 − 2) + 19; 5, −3, −2, −2, −2; 2 × 1),CP 2

119. (30(4 − 2) + 19; 5, −2, −3, −2, −2, −2; 2,5),CP 2

120. (30(4 − 2) + 19; 5, −2, −3, −2, −2, −2; 1,5),CP 2

121. (30(5 − 2) + 19; 5, −2, −2, −3, −2, −2, −2; 3,6),CP 2

122. (30(5 − 2) + 19; 5, −2, −2, −3, −2, −2, −2; 1,6),CP 2

123. (30(5 − 2) + 19; 5, −2, −2, −3, −2, −2, −2; 1,6),CP 1 × CP 1

124. (30(6 − 2) + 19; 5, −2, −2, −2, −3, −2, −2, −2; 4,7),CP 2

125. (30(6 − 2) + 19; 5, −2, −2, −2, −3, −2, −2, −2; 1,7),CP 2

126. (30(b − 2) + 19, b ≥ 7; 5, −2, . . . , −2︸ ︷︷ ︸
b−3

, −3, −2, −2, −2;k − 3, k), k = b +

1,CP 2
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Symplectic fillings of links of tetrahedral, octahedral, and icosa-
hedral singularities of type (3,1)
Case I. Here refer we to the final picture in Figure 5. We use the notation

(m;D · D, −c1, . . . , −ck;a1 × i1, . . . , al × il) to denote the Case I symplectic
filling of the link of Tm,Om, or Im given as the complement of a regular
neighborhood of the compactifying divisor K = A ∪ B ∪ D ∪ C1 ∪ · · · ∪ Ck in
Z. The notation is as for symplectic fillings of links of singularities of type
(3,2).

Tetrahedral, Tm

127. (6(2 − 2) + 5; 4, −2; 1)
128. (6(3 − 2) + 5; 5, −3, −2; 1,2)
129. (6(3 − 2) + 5; 5, −3, −2; 2 × 1)
130. (6(4 − 2) + 5; 5, −2, −3, −2; 2,3)
131. (6(4 − 2) + 5; 5, −2, −3, −2; 1,3)
132. (6(4 − 2) + 5; 5, −2, −3, −2; 1,2)
133. (6(5 − 2) + 5; 5, −2, −2, −3, −2; 3,4)
134. (6(5 − 2) + 5; 5, −2, −2, −3, −2; 1,4)
135. (6(5 − 2) + 5; 5, −2, −2, −3, −2; 2)
136. (6(b − 2) + 5, b ≥ 6; 5, −2, . . . , −2︸ ︷︷ ︸

b−3

, −3, −2;k − 1, k), k = b − 1

Octahedral, Om

137. (12(2 − 2) + 5; 2; ∅)
138. (12(3 − 2) + 5; 5, −5; 4 × 1)
139. (12(4 − 2) + 5; 5, −2, −5; 4 × 2)
140. (12(4 − 2) + 5; 5, −2, −5; 1,3 × 2)
141. (12(5 − 2) + 5; 5, −2, −2, −5; 4 × 3)
142. (12(5 − 2) + 5; 5, −2, −2, −5; 1,3 × 3)
143. (12(5 − 2) + 5; 5, −2, −2, −5; 2,2 × 3)
144. (12(6 − 2) + 5; 5, −2, −2, −2, −5; 4 × 4)
145. (12(6 − 2) + 5; 5, −2, −2, −2, −5; 3,4)
146. (12(7 − 2) + 5; 5, −2, −2, −2, −2, −5; 4 × 5)
147. (12(7 − 2) + 5; 5, −2, −2, −2, −2, −5; 4)
148. (12(b − 2) + 5, b ≥ 8; 5, −2, . . . , −2︸ ︷︷ ︸

b−3

, −5; 4 × k), k = b − 2

149. (12(2 − 2) + 11; 4, −2, −2; 2)
150. (12(2 − 2) + 11; 4, −2, −2; 1)
151. (12(3 − 2) + 11; 5, −3, −2, −2; 1,3)
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152. (12(3 − 2) + 11; 5, −3, −2, −2; 2 × 1)
153. (12(3 − 2) + 11; 5, −3, −2, −2; 2)
154. (12(4 − 2) + 11; 5, −2, −3, −2, −2; 2,4)
155. (12(4 − 2) + 11; 5, −2, −3, −2, −2; 1,4)
156. (12(4 − 2) + 11; 5, −2, −3, −2, −2; 3)
157. (12(5 − 2) + 11; 5, −2, −2, −3, −2, −2; 3,5)
158. (12(5 − 2) + 11; 5, −2, −2, −3, −2, −2; 1,5)
159. (12(5 − 2) + 11; 5, −2, −2, −3, −2, −2; 4)
160. (12(b − 2) + 11, b ≥ 6; 5, −2, . . . , −2︸ ︷︷ ︸

b−3

, −3, −2, −2;k − 2, k), k = b

161. (12(b − 2) + 11, b ≥ 6; 5, −2, . . . , −2︸ ︷︷ ︸
b−3

, −3, −2, −2;k − 1), k = b

Icosahedral, Im

162. (30(2 − 2) + 11; 1; ∅)
163. (30(3 − 2) + 11; 5, −6; 5 × 1)
164. (30(4 − 2) + 11; 5, −2, −6; 5 × 2)
165. (30(4 − 2) + 11; 5, −2, −6; 1,4 × 2)
166. (30(5 − 2) + 11; 5, −2, −2, −6; 5 × 3)
167. (30(5 − 2) + 11; 5, −2, −2, −6; 1,4 × 3)
168. (30(5 − 2) + 11; 5, −2, −2, −6; 2,3 × 3)
169. (30(6 − 2) + 11; 5, −2, −2, −2, −6; 5 × 4)
170. (30(6 − 2) + 11; 5, −2, −2, −2, −6; 3,2 × 4)
171. (30(7 − 2) + 11; 5, −2, −2, −2, −2, −6; 5 × 5)
172. (30(7 − 2) + 11; 5, −2, −2, −2, −2, −6; 4,5)
173. (30(8 − 2) + 11; 5, −2, −2, −2, −2, −2, −6; 5 × 6)
174. (30(8 − 2) + 11; 5, −2, −2, −2, −2, −2, −6; 5)
175. (30(b − 2) + 11, b ≥ 9; 5, −2, . . . , −2︸ ︷︷ ︸

b−3

, −6; 5 × k), k = b − 2

176. (30(2 − 2) + 17; 3, −2; 1)
177. (30(3 − 2) + 17; 5, −4, −2; 2 × 1,2)
178. (30(3 − 2) + 17; 5, −4, −2; 3 × 1)
179. (30(4 − 2) + 17; 5, −2, −4, −2; 2 × 2,3)
180. (30(4 − 2) + 17; 5, −2, −4, −2; 1,2 × 2)
181. (30(4 − 2) + 17; 5, −2, −4, −2; 1,2,3)
182. (30(5 − 2) + 17; 5, −2, −2, −4, −2; 2 × 3,4)
183. (30(5 − 2) + 17; 5, −2, −2, −4, −2; 2,3)
184. (30(5 − 2) + 17; 5, −2, −2, −4, −2; 2,4)
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185. (30(5 − 2) + 17; 5, −2, −2, −4, −2; 1,3,4)
186. (30(6 − 2) + 17; 5, −2, −2, −2, −4, −2; 2 × 4,5)
187. (30(6 − 2) + 17; 5, −2, −2, −2, −4, −2; 3)
188. (30(b − 2) + 17, b ≥ 7; 5, −2, . . . , −2︸ ︷︷ ︸

b−3

, −4, −2; 2 × (k − 1), k), k = b − 1

189. (30(2 − 2) + 23; 4, −3; 2 × 1)
190. (30(3 − 2) + 23; 5, −3, −3; 1,2 × 2)
191. (30(3 − 2) + 23; 5, −3, −3; 2 × 1,2)
192. (30(4 − 2) + 23; 5, −2, −3, −3; 2,2 × 3)
193. (30(4 − 2) + 23; 5, −2, −3, −3; 1,2,3)
194. (30(4 − 2) + 23; 5, −2, −3, −3; 1,2 × 3)
195. (30(4 − 2) + 23; 5, −2, −3, −3; 2 × 2)
196. (30(5 − 2) + 23; 5, −2, −2, −3, −3; 3,2 × 4)
197. (30(5 − 2) + 23; 5, −2, −2, −3, −3; 1,2 × 4)
198. (30(5 − 2) + 23; 5, −2, −2, −3, −3; 2,4)
199. (30(b − 2) + 23, b ≥ 6; 5, −2, . . . , −2︸ ︷︷ ︸

b−3

, −3, −3;k − 1,2 × k), k = b − 1

200. (30(2 − 2) + 29; 4, −2, −2, −2; 3)
201. (30(2 − 2) + 29; 4, −2, −2, −2; 1)
202. (30(3 − 2) + 29; 5, −3, −2, −2, −2; 1,4)
203. (30(4 − 2) + 29; 5, −2, −3, −2, −2, −2; 2,5)
204. (30(4 − 2) + 29; 5, −2, −3, −2, −2, −2; 1,5)
205. (30(5 − 2) + 29; 5, −2, −2, −3, −2, −2, −2; 3,6)
206. (30(5 − 2) + 29; 5, −2, −2, −3, −2, −2, −2; 1,6)
207. (30(b − 2) + 29, b ≥ 7; 5, −2, . . . , −2︸ ︷︷ ︸

b−3

, −3, −2, −2, −2;k − 3, k), k = b + 1

Case II. Again we refer to the final picture in Figure 5. We use the
notation (m;D · D, −c1, . . . , −ck; i, j;a1 × i1, . . . , al × il) to denote the Case II
symplectic filling of the link of Tm,Om, or Im given as the complement of
a regular neighborhood of the compactifying divisor K = A ∪ B ∪ D ∪ C1 ∪
· · · ∪ Ck in Z. Here the numbers i and j denote the existence of (−1)-curves
intersecting B and Ci and D and Cj , respectively.

Tetrahedral, Tm

208. (6(2 − 2) + 5; 4, −2; 1,1; ∅)
209. (6(3 − 2) + 5; 5, −3, −2; 1,1; 2)
210. (6(3 − 2) + 5; 5, −3, −2; 1,2; 1)
211. (6(4 − 2) + 5; 5, −2, −3, −2; 1,2; 3)
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212. (6(4 − 2) + 5; 5, −2, −3, −2; 1,3; 2)
213. (6(4 − 2) + 5; 5, −2, −3, −2; 2,3; 1)
214. (6(5 − 2) + 5; 5, −2, −2, −3, −2; 1,3; 4)

Octahedral, Om

215. (12(3 − 2) + 5; 5, −5; 1,1; 3 × 1)
216. (12(4 − 2) + 5; 5, −2, −5; 1,2; 3 × 2)
217. (12(4 − 2) + 5; 5, −2, −5; 2,2; 1,2 × 2)
218. (12(5 − 2) + 5; 5, −2, −2, −5; 1,3; 3 × 3)
219. (12(5 − 2) + 5; 5, −2, −2, −5; 3,3; 1,2 × 3)
220. (12(5 − 2) + 5; 5, −2, −2, −5; 3,3; 2,3)
221. (12(6 − 2) + 5; 5, −2, −2, −2, −5; 4,4; 3)
222. (12(2 − 2) + 11; 4, −2, −2; 1,2)
223. (12(3 − 2) + 11; 5, −3, −2, −2; 1,1; 3)
224. (12(3 − 2) + 11; 5, −3, −2, −2; 1,3; 1)
225. (12(4 − 2) + 11; 5, −2, −3, −2, −2; 1,2; 4)
226. (12(5 − 2) + 11; 5, −2, −2, −3, −2, −2; 1,3; 5)

Icosahedral, Im

227. (30(3 − 2) + 11; 5, −6; 1,1; 4 × 1)
228. (30(4 − 2) + 11; 5, −2, −6; 1,2; 4 × 2)
229. (30(4 − 2) + 11; 5, −2, −6; 2,2; 1,3 × 2)
230. (30(5 − 2) + 11; 5, −2, −2, −6; 1,3; 4 × 3)
231. (30(5 − 2) + 11; 5, −2, −2, −6; 3,3; 1,3 × 3)
232. (30(5 − 2) + 11; 5, −2, −2, −6; 3,3; 2,2 × 3)
233. (30(6 − 2) + 11; 5, −2, −2, −2, −6; 4,4; 3,4)
234. (30(7 − 2) + 11; 5, −2, −2, −2, −2, −6; 5,5; 4)
235. (30(2 − 2) + 17; 3, −2; 1,1; ∅)
236. (30(3 − 2) + 17; 5, −4, −2; 1,1; 1,2)
237. (30(3 − 2) + 17; 5, −4, −2; 1,2; 2 × 1)
238. (30(4 − 2) + 17; 5, −2, −4, −2; 1,2; 2,3)
239. (30(4 − 2) + 17; 5, −2, −4, −2; 1,3; 2 × 2)
240. (30(4 − 2) + 17; 5, −2, −4, −2; 2,2; 1,3)
241. (30(4 − 2) + 17; 5, −2, −4, −2; 2,3; 1,2)
242. (30(5 − 2) + 17; 5, −2, −2, −4, −2; 1,3; 3,4)
243. (30(5 − 2) + 17; 5, −2, −2, −4, −2; 3,3; 1,4)
244. (30(5 − 2) + 17; 5, −2, −2, −4, −2; 3,4; 2)
245. (30(2 − 2) + 23; 4, −3; 1,1; 1)
246. (30(3 − 2) + 23; 5, −3, −3; 1,1; 2 × 2)
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247. (30(3 − 2) + 23; 5, −3, −3; 1,2; 1,2)
248. (30(3 − 2) + 23; 5, −3, −3; 2,2; 2 × 1)
249. (30(4 − 2) + 23; 5, −2, −3, −3; 1,2; 2 × 3)
250. (30(4 − 2) + 23; 5, −2, −3, −3; 1,3; 2,3)
251. (30(4 − 2) + 23; 5, −2, −3, −3; 2,3; 1,3)
252. (30(4 − 2) + 23; 5, −2, −3, −3; 3,3; 1,2)
253. (30(5 − 2) + 23; 5, −2, −2, −3, −3; 1,3; 2 × 4)
254. (30(2 − 2) + 29; 4, −2, −2, −2; 1,3)
255. (30(3 − 2) + 29; 5, −3, −2, −2, −2; 1,1; 4)
256. (30(4 − 2) + 29; 5, −2, −3, −2, −2, −2; 1,2; 5)
257. (30(5 − 2) + 29; 5, −2, −2, −3, −2, −2, −2; 1,3; 6)
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