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Abstract This paper describes two anisotropic area-preserving flows for plane curves, both
of which are considered to deform one convex curve into another. Different monotonic entropy
functions are identified under these flows, which can be utilized to derive two significant entropy
inequalities: the log-Minkowski inequality and the curvature entropy inequality, as well as the
Brunn-Minkowski inequality.
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1 Introduction

Curve evolution problems serve as a framework for simulating a variety of phenomena [9], such as

crystal growth, phase interface dynamics, and flame propagation. For an embedded curve γ, its

evolution problem can be expressed by

∂γ

∂t
= βN, (1.1)

where N is the unit inward normal vector of γ, and β is some geometric quantity related to γ.

By [15, (1.3) and (1.4)] or [12, (1.18) and (1.19)], the evolution equations for the length and

enclosed area of the evolving curve γ are given by

dl

dt
= −

∫
γ

βκds, (1.2)

dA

dt
= −

∫
γ

βds, (1.3)

where s is the arclength parameter. The most famous model in (1.1) is the curve shortening flow

for β = κ. According to (1.2) and (1.3), this flow acts as a gradient flow for the length of the

evolving curve, and both the length and enclosed area of the curve are non-increasing. It was

systematically studied by Gage and Hamilton [17] and Grayson [23], and the well-known Gage-

Hamilton-Grayson theorem (cf. [2, 12]) states that any embedded plane curve evolves into a convex

curve and eventually shrinks to a round point under the curve shortening flow.

Professor S.T. Yau proposed an interesting problem concerning curve evolution, specifically

whether one can find a parabolic curvature flow that evolves a curve into another one in finite time
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or infinite time. To research this problem, Lin and Tsai [42] introduced an impressive length-

preserving flow, which states that a convex curve (i.e., a closed, embedded, and smooth curve

with positive curvature everywhere) can be deformed into another curve if the two curves have

the same length and the curvature of the evolving curve has a uniform upper bound. Inspired

by the “Curvature Difference Flow” suggested by Yau, Gao and Zhang [21] utilized an area-

preserving flow, which is a revised version of the “Curvature Difference Flow”, and it evolves a

convex curve into another one without extra conditions. For the centro-affine case, Ivaki [34] showed

a centro-affine curvature flow that deforms a convex curve into an ellipse. In higher dimensions,

Stancu [56] studied a similar question of evolving a smooth closed convex hypersurface into another

hypersurface with the same centro-affine curvature. Further recent developments addressing Yau’s

problem are available in [19] and [43].

Another notable category in curve evolution problems is anisotropic curvature flow, which

concerns the planar Lp Minkowski problem; some work on this topic can be found in [18, 33,

54, 55, 67], among others. For insightful discussions on the Lp Minkowski problem [44] and its

generalizations from the perspective of curvature flows, it is highly recommended to refer to [6,

8, 11, 13, 27, 39, 40], and the literature therein. The logarithmic Minkowski problem [5] (p = 0)

is a significant one which is related to the cone-volume measure. For an n-dimensional convex

body L, its cone-volume measure is defined by dVL = 1
nhLdSL, where hL and dSL are the support

function and the surface area measure of L, respectively. The log-Minkowski inequality is pivotal

in establishing the uniqueness of the logarithmic Minkowski problem, which remains unsolved.

Böröczky et al. [4] conjectured that the log-Minkowski inequality∫
Sn−1

log
hK

hL
dV̄L ≥ 1

n
log

V (K)

V (L)
(1.4)

holds for two origin symmetric convex bodies K and L, where dV̄L is the cone-volume probability

measure of L. They also showed that this is equivalent to the log-Brunn-Minkowski inequality

V
(
λ ·K +◦ (1− λ) · L

)
≥ V (K)λV (L)1−λ (1.5)

holds for λ ∈ [0, 1], where the log Minkowski addition λ ·K +o (1− λ) · L is defined as

λ ·K +o (1− λ) · L =
⋂

u∈Sn−1

{
x ∈ Rn | x · u ≤ hK(u)λhL(u)

1−λ
}
.

Böröczky et al. [4] researched the planar case for (1.4) and (1.5) and showed that the equalities

hold in (1.4) and (1.5) if and only if K and L are dilates or K and L are parallelograms with parallel

sides. Xi and Leng [61] introduced the conception of dilation position, and extended the log-Brunn-

Minkowski and log-Minkowski inequalities to the nonsymmetric case. They solved Dar’s conjecture

in the plane and established the relationship between the log-Brunn-Minkowksi inequality and Dar’s

conjecture in the plane when convex bodies are at a dilation position. Saroglou [52] established

the inequality (1.5) with its equality cases for pairs of convex bodies that are both unconditional

with respect to some orthonormal basis. Kolesnikov and Livshyts [35] made significant progress

towards the Lp Brunn-Minkowski inequality by establishing a local version of this inequality for

p ∈ [1− c
n3/2 , 1), where c is a constant independent of n. They also obtained the local uniqueness
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of the associated Lp Minkowski problem. Chen et al. [10] extended the local uniqueness of the Lp

Minkowski problem in [35] to the global uniqueness for p ∈ (p0, 1) and p0 < 1 by PDE methods.

Recently, a more comprehensive account of various aspects of the Lp Brunn-Minkowski and Lp

Minkowski inequalities can be found in [3, 28, 29, 30, 36, 45, 47, 49, 50, 57, 64, 66, 68], and the

literature therein.

Before delving into the models of this paper, we first introduce the correlation between concepts

in convex geometry and anisotropic curvature flows.

Let K be a planar convex body and γ be its boundary curve with the support function h. If

K is smooth, then it can be characterized by the curvature and the support function, with respect

to the tangent angle θ of the curve γ.

Meanwhile, the curvature κ of γ can be expressed in terms of its support function h, that is,

κ =
1

hθθ + h
. (1.6)

Let L denote another planar convex body, γ̃ the boundary curve of L with support function h̃ and

curvature κ̃. The areas of K and L, as well as the mixed area of K with respect to L, are given

by (cf. [24])

V (K) =
1

2

∫ 2π

0

h

κ
dθ =

1

2

∫ 2π

0

(
h2 − h2

θ

)
dθ, (1.7)

V (L) =
1

2

∫ 2π

0

h̃

κ̃
dθ =

1

2

∫ 2π

0

(
h̃2 − h̃2

θ

)
dθ, (1.8)

V (K,L) =

∫ 2π

0

h

κ̃
dθ =

∫ 2π

0

h̃

κ
dθ =

∫ 2π

0

(
hh̃− hθh̃θ

)
dθ. (1.9)

When L is origin symmetric and is an isoperimetrix, we adopt the following notation appearing in

Gage’s anisotropic curvature flow [16, p.454], that is,

A = 2V (K),

α = 2V (L),

L = V (K,L).

Clearly, A and α represent twice the areas of K and L, respectively, and L is called the Minkowski

length of γ with respect to γ̃.

The first aim of this paper is to investigate Yau’s problem through the “Curvature Ratio Flow”

inspired by Stancu’s centro-affine flow in [56]. Let γ and γ̃ be two origin symmetric planar curves,

with γ̃ being fixed. We consider the following two evolution problems:

∂γ

∂t
=
(κ
κ̃
− Λ1(t)

)
hN, (1.10a)

∂γ

∂t
=
(κ
κ̃
− Λ2(t)

)
h̃N, (1.10b)

for Λ1(t) =
L
A and Λ2(t) =

α
L , where N is the unit inward normal vector of γ, and h and h̃ are the

support functions of γ and γ̃, respectively. From (1.3), we have known that both of these flows are
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area-preserving. The area-preserving flow was first introduced by Gage [15] to better understand

the curve shrinking flow, and other recent impressive work on area-preserving flows can be found

in [14, 20, 21, 22, 60], among others.

The main theorem regarding the evolution problem is as follows.

Theorem 1.1. Let γ0 be an origin symmetric convex curve, and γ̃ be a fixed origin symmetric

convex curve. Then the flow (1.10a) or (1.10b) exists in [0,∞). Under this flow, the evolving

curve remains symmetric and convex, and keeps its enclosed area. Finally, it converges smoothly

to a fixed curve γ∞ (congruent to
√

A
α γ̃) in the C∞ sense as time goes to infinity.

The second aim of this paper is to investigate some entropy inequalities using area-preserving

flows (1.10a) and (1.10b). Entropy plays an important role in both physics and information theory.

In physics, entropy is a measure of the degree of disorder in a system, while in information theory,

it quantifies the uncertainty of information or the uncertainty of a random variable. Different types

of entropy, such as Shannon entropy and relative entropy, establish a direct connection to optimal

transportation, Monge-Ampère equations, and geometric inequalities in convex geometry [59].

As applications of the flows (1.10a) and (1.10b), we will show the log-Minkowski inequality and

the curvature entropy inequality, which are proven respectively in references [5] and [45], under

the appropriate entropy associated with the flows. The Brunn-Minkowski inequality can also be

obtained from the flows (1.10a) and (1.10b). The “Gauss Curvature Ration” flow, similar to

(1.10a), may be a beneficial attempt to address the unsolved log-Minkowski inequality in higher

dimensions, which is also a problem that we are considering.

Theorem 1.2 (Log-Minkowski inequality). Let K and L be two origin symmetric, smooth planar

convex bodies. Then ∫
S1

log
hK

hL
dVL ≥ V (L)

2
log

V (K)

V (L)
, (1.11)

where the equality holds in (1.11) if and only if K and L are homothetic.

Remark 1.3. From the equivalence of the log-Minkowski inequality (1.4) and the log-Brunn-

Minkowski inequality (1.5), we can derive the log-Brunn-Minkowski inequality in the plane. Equal-

ity also holds in the inequalities (1.4) and (1.5) when K and L are parallelograms with parallel

sides in the discrete case.

Theorem 1.4 (Curvature entropy inequality). Let K and L be two origin symmetric, smooth

planar convex bodies. Then ∫
S1

log
κK

κL
dVL ≥ V (L)

2
log

V (L)

V (K)
, (1.12)

where the equality holds in (1.12) if and only if K and L are homothetic.

Remark 1.5. The curvature entropy inequality (1.12) still holds without any symmetry condition

but with a dilation position condition for K and L (see [65]). This case can also be proved by flow

(1.10b) when γ̃ is a convex curve with positive support function, the necessary illustration can be

found in Remark 2.14 and Remark 3.3, in which the key step is inspired by impressive work in

Li-Wang [41].
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By the log-Minkowski inequality (1.11) or the curvature entropy inequality (1.12), we can

discuss the uniqueness for the cone-volume measure in the smooth setting for origin symmetric

planar convex bodies, which is viewed as the uniqueness for the logarithmic Minkowski problem

in the smooth setting for origin symmetric planar convex bodies. Specifically, when K and L are

origin symmetric, smooth planar convex bodies with same cone-volume measures, then from (1.11),

we have∫
S1

log hKdVK =

∫
S1

log hKdVL ≥
∫
S1

log hLdVL =

∫
S1

log hLdVK ≥
∫
S1

log hKdVK ,

and by (1.12),∫
S1

log κKdVK =

∫
S1

log κKdVL ≥
∫
S1

log κLdVL =

∫
S1

log κLdVK ≥
∫
S1

log κKdVK .

From the equality case in (1.11) or (1.12), it yields K = L.

Since the speed of flow (1.10a) contains the support function of the evolving curve, it is a

locally constrained flow, which has proven to be a powerful tool for exploring geometric inequal-

ities in recent years, especially for Alexandrov-Fenchel inequalities. Notably, recent research has

increasingly focused on locally constrained inverse curvature flows, as evidenced by works such as

[7, 25, 26, 31, 32, 38, 46, 51, 53, 62, 63], among others.

The paper is structured as follows. In Section 2, we investigate two anisotropic area-preserving

flows (1.10a) and (1.10b) for convex curves and establish short time existence, long-term existence,

and convergence. In Section 3, by examining the monotonicity of exact monotonic geometric

quantities under flows (1.10a) and (1.10b), we derive some entropy inequalities and the Brunn-

Minkowski inequality applicable to convex curves.

2 Anisotropic area-preserving flows

In this section, we first show the short time existence for flows (1.10a) and (1.10b) by linearization

of the evolution equations for the support function of the evolving curve. In order to demonstrate

the long-term existence and convergence for flows (1.10a) and (1.10b), we prove that the support

function, curvature, and the higher derivatives of both the support function and curvature are

uniformly bounded. Finally, we obtain the final shape for flows (1.10a) and (1.10b) through two

monotonic geometric quantities.

2.1 Short time existence

To study the flows (1.10a) and (1.10b), we provide some basic evolution equations based on some

basic computations [12] or [17].

Lemma 2.1. For flow (1.10a), the evolution equations for the support function h and the curvature

κ are

ht = −
(κ
κ̃
− Λ1(t)

)
h, (2.1a)
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κt = κ2

((κ
κ̃
h
)
θθ

+
(κ
κ̃
h
)
− Λ1(t)

κ

)
, (2.1b)

and that for flow (1.10b) are

ht = −
(κ
κ̃
− Λ2(t)

)
h̃, (2.2a)

κt = κ2

((κ
κ̃
h̃
)
θθ

+
(κ
κ̃
h̃
)
− Λ2(t)

κ̃

)
. (2.2b)

In order to show the short time existences for the flows (1.10a) and (1.10b), we need to consider

the linearization for equations (2.1a) and (2.2a). Actually, we first claim that the support function

h is periodic with period 2π. Since the initial curve γ0 and γ̃ are convex, they satisfy the closing

condition ∫ 2π

0

eiθ

κ0
dθ = 0 and

∫ 2π

0

eiθ

κ̃
dθ = 0.

Together with the evolution equations of the curvature (2.1b) and (2.2b), one can deduce that∫ 2π

0

eiθ

κ
dθ = 0,

which implies that the evolving curve is periodic with period 2π. Then, by (1.6), we can get that

the support function h is also periodic with period 2π.

Next, we deal with the linearization for equations (2.1a) and (2.2a). For (2.1a), by (1.6), (1.7)

and (1.9), the functional

F1(h) = ht +
h

(hθθ + h)κ̃
−

∫ 2π

0
h
κ̃dθ∫ 2π

0
(h2 − h2

θ)dθ
h (2.3)

is considered. In fact, F1 is an operator from C2,β(S1× [0, ω)) to Cα(S1× [0, ω)) for 0 < α < β ≤ 1.

This deduces that the Fréchet derivative of F1 at some point h0 > 0 is

DF1(h0)[h] =ht −
h0

((h0)θθ + h0)2κ̃
hθθ +

(
(h0)θθ

((h0)θθ + h0)2κ̃
− L (0)

A (0)

)
h

+
h0

A (0)2

(
2L (0)

∫ 2π

0

h0hdθ − 2L (0)

∫ 2π

0

(h0)θhθdθ − A (0)

∫ 2π

0

h

κ̃
dθ

)
Thus, the linearization of the evolution equation of the support function h for (2.1a) at h0 is

ht =
h0

((h0)θθ + h0)2κ̃
hθθ −

(
(h0)θθ

((h0)θθ + h0)2κ̃
− L (0)

A (0)

)
h

− h0

A (0)2

(
2L (0)

∫ 2π

0

h0hdθ − 2L (0)

∫ 2π

0

(h0)θhθdθ − A (0)

∫ 2π

0

h

κ̃
dθ

)
(2.4)

Similarly, for (2.2a), we consider the functional

F2(h) = ht +
h̃

(hθθ + h)κ̃
−
∫ 2π

0
(h̃2 − h̃2

θ)dθ∫ 2π

0
h
κ̃dθ

h̃.

The linearization of the evolution equation of the support function h for (2.2a) at h0 is

ht =
h̃

((h0)θθ + h0)2κ̃
hθθ +

h̃

((h0)θθ + h0)2κ̃
h− h̃α

L (0)2

∫ 2π

0

h

κ̃
dθ (2.5)
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The equations (2.4) and (2.5) are uniformly parabolic with smooth coefficients. It follows from the

implicit function theorem of Banach spaces that equations (2.1a) and (2.2a) both have a unique

smooth solution over some small time interval (cf. Chou-Zhu [12, Sec.1.2]). This implies the short

time existence of the flows (1.10a) and (1.10b).

Theorem 2.2. The flows (1.10a) and (1.10b) have a unique smooth solution on S1 × [0, T ) for

some T > 0.

2.2 Long-term existence

Proposition 2.3. The curvature κ(·, t) of the evolving curve has a uniform upper bound as long

as the flow (1.10a) or (1.10b) exists.

To do this proposition, some necessary lemmas are given.

Lemma 2.4. If an initial curve γ0 evolves under flow (1.10a) or (1.10b), its Minkowski length

L (t) is decreasing.

Proof. For flow (1.10a), from (1.7), (1.9) and (2.1a), it has

dL

dt
=

∫ 2π

0

ht

κ̃
dθ

=−
∫ 2π

0

(κ
κ̃
− Λ1(t)

) h

κ̃
dθ

=−
∫
γ̃

κh

κ̃
ds̃+

(∫
γ̃
hds̃
)2

∫
γ̃

hκ̃
κ ds̃

,

where ds̃ = 1
κ̃dθ. Due to the Cauchy-Schwarz inequality, dL

dt ≤ 0 and its equality holds if and only

if the quantity κ
κ̃ is a positive constant.

Similarly, for flow (1.10b), we have

dL

dt
=

∫ 2π

0

ht

κ̃
dθ

=−
∫ 2π

0

(κ
κ̃
− Λ2(t)

) h̃

κ̃
dθ

=−
∫ 2π

0

κh̃

κ̃2
dθ +

α2

L

=−
∫ 2π

0

κh̃

κ̃2
dθ +

(∫ 2π

0
h̃
κ̃dθ

)2
∫ 2π

0
h̃
κdθ

.

From the Cauchy-Schwarz inequality, dL
dt ≤ 0 with equality holds if and only if the quantity κ

κ̃ is

a positive constant.

Lemma 2.5. Suppose that γ0 is an origin symmetric convex curve. Then the evolving curve γ(·, t)
keeps symmetry as long as the flow (1.10a) or (1.10b) exists.
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Proof. Because γ0 is an origin symmetric convex curve, γ(· + π, 0) = γ(·, 0). As we know, γ(·, t)
satisfies (1.10a) (or (1.10b)) with initial γ(·, 0), and γ(· + π, t) satisfies (1.10a) (or (1.10b)) with

initial γ(·+ π, 0). Due to Theorem 2.2, γ(·+ π, t) = γ(·, t) as long as the flow (1.10a) (or (1.10b))

exists.

Theorem 2.6. Let γ0 be an origin symmetric convex curve. If γ0 evolves according to the flow

(1.10a) or (1.10b), then it is always convex.

Proof. Suppose that the flow exists in the time interval [0, ω), and t0 = inf{t | κ(θ, t) = 0, θ ∈
S1} < ω. Recall that flow (1.10a) and (1.10b) are area-preserving. Then, by Lemma 2.5, the

support function of the evolving curve h(θ, t) > 0 for (θ, t) ∈ S1× [0, t0]. Otherwise, if the evolving

curve had a point where its support function vanishes, the symmetry would imply the existence of

nearby points with both positive and negative curvature.

For flow (1.10a), set f1 = κ
κ̃he

µ1t, where µ1 is large enough. From (2.1b), it yields that

(f1)t =

(
κ2

κ̃
h

)
(f1)θθ +Q1(κ)f1. (2.6)

where Q1(κ) = κ2

κ̃ h − κ
κ̃ + µ1. The quadratic polynomial Q1(κ) is positive when µ1 is large

enough. Let (f1)min(t) = min{f(θ, t) | θ ∈ S1}. We claim that (f1)min(t) is non-decreasing. If not,

there exists an η, where 0 < η < (f1)min(0), such that at some time t > 0, (f1)min(t) = η. Set

t∗1 = inf{t | (f1)min(t) = η}. The continuity of f1 ensures that this minimum η is achieved for the

first time at point (θ∗1 , t
∗
1). Then, at this point, we have

(f1)t ≤ 0, (f1)θθ ≥ 0, f1 = η > 0.

This contradicts the fact that f1 satisfies (2.6), and thus (f1)min(t) ≥ (f1)min(0), which implies

that κ ≥ κ̃
h (f1)min(0)e

−µ1t > 0 for all t ∈ [0, t0]. It contradicts the hypothesis of t0.

For flow (1.10b), set f2 = κ
κ̃ h̃e

µ2t, where µ2 is large enough. By (2.2b), we have

(f2)t =

(
κ2

κ̃
h̃

)
(f2)θθ +Q2(κ)f2,

where Q2(κ) = κ2

κ̃ h̃ − κ
κ̃Λ2 + µ2. It follows from the Minkowski inequality L 2 ≥ A α (see [16])

and Lemma 2.4 that α
L0

≤ Λ2 ≤ L0

A . Hence, the quadratic polynomial Q2(κ) is positive when µ2

is large enough. For f2, by a similar discussion as for f1, we can achieve κ ≥ κ̃
h̃
(f2)min(0)e

−µ2t > 0

for all t ∈ [0, t0]. This contradicts the hypothesis of t0.

Hence, the evolving curve under flow (1.10a) or (1.10b) is always convex.

To get the upper and lower bounds for support function h, we set

hmax(t) = max
θ∈S1

h(θ, t) and hmin(t) = min
θ∈S1

h(θ, t).

Lemma 2.7. If γ(·, t) is an origin symmetric convex solution to flow (1.10a) or (1.10b), then its

support function h has uniform upper and lower bounds.
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Proof. Let ρ(·, t) be the radial function of γ(·, t) and ρmax(t) = max
η∈S1

ρ(η, t). The radial function

ρ(·, t) and the support function h(·, t) have the relation

ρ(·, t) =
√
h(·, t)2 + hθ(·, t)2. (2.7)

If h(θ, t) reaches its maximum with respect to θ at the point (θ1, t), then hθ(θ1, t) = 0. It follows

from (2.7) that

hmax(t) ≤ ρmax(t).

Similarly, hmin(t) ≥ ρmin(t), where ρmin(t) = min
η∈S1

ρ(η, t). If ηmax ∈ S1 is a value satisfying

ρ(ηmax, t) = ρmax(t), then

h(θ, t) ≥ ρmax(t)| cos(θ − ηmax)|,

derived from the definition of support function and Lemma 2.5. This together with Lemma 2.4

shows that

L (0) ≥ L (t) =

∫ 2π

0

h(θ, t)

κ̃(θ)
dθ ≥ ρmax(t)

∫ 2π

0

| cos(θ − ηmax)|
κ̃(θ)

dθ,

which deduces that

ρmax(t) ≤ C1 =
L (0)∫ 2π

0
| cos(θ−ηmax)|

κ̃(θ) dθ
, (2.8)

here C1 is a constant independent of t. This yields that

h(θ, t) ≤ hmax(t) ≤ ρmax(t) ≤ C1.

By the facts that γ(·, t) is origin symmetric and dA
dt = 0, we have

A (0) = A (t) ≤ 4πρmin(t)ρmax(t) ≤ 4πρmin(t)C1.

This tells us

ρmin(t) ≥ C2 =
A (0)

4πC1
. (2.9)

Hence, h(θ, t) ≥ hmin(t) ≥ ρmin(t) ≥ C2.

Lemma 2.8. Under flow (1.10a) or (1.10b), the derivation of the support function h for the

evolving curve has uniform upper and lower bounds.

Proof. From (2.8) and (2.9), we have known that ρ(·, t) has uniform upper and lower bounds. This

together with (2.7) yields uniform bounds for hθ(·, t).

In order to obtain the upper bound of the curvature κ(·, t), we need to follow Chou’s technique

introduced firstly in [58] by discussing the auxiliary quantities. For flow (1.10a), consider

Φ1(θ, t) =
κ(θ, t)h(θ, t)

(h(θ, t)−m0)κ̃(θ)

and for flow (1.10b), consider

Φ2(θ, t) =
κ(θ, t)h̃(θ)

(h(θ, t)−m0)κ̃(θ)
,

where m0 = C2

2 .
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Proof of Proposition 2.3. Case 1. For flow (1.10a)

Directly dealing with Φ1 leads to complicated calculations since Φ1 contains κ(·, t) and h(·, θ).
To simplify the calculations and make these computation generality, by (2.7), we have the following

equivalent form

Φ1(θ, t) =
κ(θ, t)h(θ, t)

(h(θ, t)−m0)κ̃(θ)
=

h(θ, t)Λ1(t)− ht

h(θ, t)−m0
, (2.10)

where m0 = C2

2 . Let (Φ1)max(t) = max
θ∈S1

Φ1(θ, t) = Φ1(θ2, t). By Lemma 2.7, the upper bound for

κ is clear when Φ1 achieves its maximum at t = 0. If Φ1(θ, t) attains its maximum at point (θ2, t),

where t > 0, then we have

(Φ1)θ = 0 and (Φ1)θθ ≤ 0. (2.11)

By (2.10), the first and the second derivatives for Φ1 with respect to θ are

(Φ1)θ =
hθΛ1 − htθ

h−m0
− (hΛ1 − ht)hθ

(h−m0)2

and

(Φ1)θθ =
hθθΛ1 − htθθ

h−m0
− 2(hθΛ1 − htθ)hθ + (hΛ1 − ht)hθθ

(h−m0)2
+

2(hΛ1 − ht)h
2
θ

(h−m0)3

=
hθθΛ1 − htθθ

h−m0
− 2hθ

h−m0
(Φ1)θ −

(hΛ1 − ht)hθθ

(h−m0)2
.

Combining with (2.11), we can get

hθθΛ1 − htθθ ≤ hΛ1 − ht

h−m0
hθθ = Φ1hθθ. (2.12)

By equality (1.6), it yields

κt = −κ2(ht + htθθ).

This together with (2.1a) deduces that

htt =

(
hΛ1 −

κh

κ̃

)
t

= htΛ1 + h
dΛ1

dt
− 1

κ̃
(κh)t

= htΛ1 + h
dΛ1

dt
− 1

κ̃
(κht + κth)

= htΛ1 + h
dΛ1

dt
− 1

κ̃
(κht − κ2(ht + htθθ)h). (2.13)

Then, at point (θ2, t), from (2.12) and (2.13), we have

(Φ1)t =
htΛ1 + hdΛ1

dt − htt

h−m0
− (hΛ1 − ht)ht

(h−m0)2

=
κht

(h−m0)κ̃
− κ2hht

(h−m0)κ̃
− κ2hhtθθ

(h−m0)κ̃
− ht

h−m0
Φ1

≤ht

h
Φ1 − htκΦ1 + hθθκ(Φ1 − Λ1)Φ1 −

ht

h−m0
Φ1

10
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=
ht

h
Φ1 − htκΦ1 +

(
1

κ
− h

)
κ(Φ1 − Λ1)Φ1 −

ht

h−m0
Φ1

=− Λ1

(
h

h−m0

)
Φ1 +

(
1 +

m0

h

)
Φ2

1 −m0κΦ
2
1.

By (2.10), Φ1

C ≤ κ ≤ CΦ1 holds for a positive constant C. Recall that Λ1(t) = L (t)
A (t) ≤ L (0)

A (0) .

Without loss of generality, assume that Φ1 ≫ 1, we finally get the following estimate

(Φ1)t ≤
L (0)

A (0)

(
h

h−m0

)
Φ1 +

(
1 +

m0

h

)
Φ2

1 −m0κΦ
2
1

≤ L (0)

A (0)

(
h

h−m0

)
Φ2

1 +
(
1 +

m0

h

)
Φ2

1 −
m0

C
Φ3

1

≤ C3Φ
2
1 −

m0

C
Φ3

1.

This deduces that there exists a positive constant C4 independent of t such that Φ1(θ2, t) ≤ C4.

From Lemma 2.7, we have

κ(θ, t) =
Φ1(θ, t)(h(θ, t)−m0)κ̃(θ)

h(θ, t)
≤ Φ1(θ2, t)(h(θ, t)−m0)κ̃(θ)

h(θ, t)
≤ C4κ̃max := C5,

for any point (θ, t).

Case 2. For flow (1.10b)

Similarly, due to Lemma 2.7, the upper bound for κ is achieved when Φ2 attains its maximum

at t = 0. If Φ2(θ, t) attains its maximum at point (θ3, t), where t > 0, then it has

(Φ2)θ = 0 and (Φ2)θθ ≤ 0. (2.14)

Set v = κ
κ̃ h̃. Due to (2.2b), the evolution equation for v is

vt =
k̃

h̃
v2vθθ + v2

(
k̃

h̃
v − Λ2

h̃

)
. (2.15)

Then, the first and the second derivatives for Φ2 with respect to θ are

(Φ2)θ =
vθ

h−m0
− vhθ

(h−m0)2

and

(Φ2)θθ =
vθθ

h−m0
− 2hθvθ

(h−m0)2
+

2h2
θv

(h−m0)3
− vhθθ

(h−m0)2

=
vθθ

h−m0
− 2hθ

h−m0
(Φ2)θ −

vhθθ

(h−m0)2
.

Combining with (2.14), it deduces that

vθθ ≤ hθθ

h−m0
v. (2.16)

Thus, at point (θ3, t), we can get

0 ≤ (Φ2)t =
vt

h−m0
− vht

(h−m0)2

11
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≤ κ̃hθθ

(h−m0)2h̃
v3 +

κ̃

(h−m0)h̃
v3 − Λ2

(h−m0)h̃
v2 − (Λ2h̃− v)v

(h−m0)2

≤− Λ2h̃

h−m0
Φ2 + 2Φ2

2 −
m0k̃(h−m0)

h̃
Φ3

2,

derived from (2.15), (2.16) and (1.6). If Φ2 ≫ 1, then

0 ≤ (Φ2)t ≤

(
2 +

2Λ2h̃max

C2
− m0κ̃(h−m0)

h̃
Φ2

)
Φ2

2.

This implies that

Φ2 ≤

(
1 +

Λ2h̃max

C2

)
h̃max

m0κ̃minC2
:= C6.

Hence, by Lemma 2.7, we have

κ(θ, t) =
Φ2(θ, t)(h(θ, t)−m0)κ̃(θ)

h̃(θ)
≤ Φ2(θ2, t)(h(θ, t)−m0)κ̃(θ)

h̃(θ)

≤ C6(C1 −m0)κ̃max

h̃min

:= C7,

which completes the desired result.

Proposition 2.9. The curvature κ(·, t) of the evolving curve has a uniformly lower bound as long

as the flow (1.10a) or (1.10b) exists.

Proof. Case 1. For flow (1.10a)

Consider the auxiliary function

Ψ1 = log
1

κ
−M1 log h+

1

2

(
h2 + h2

θ

)
,

where M1 = max
S1×(0,T )

(h2 + h2
θ) + 1. Assume that Ψ1 achieves its maximum at (θ0, t0), then, at this

point,

0 = (Ψ1)θ = κ

(
1

κ

)
θ

−M1
hθ

h
+ (hhθ + hθhθθ)

= −κθ

κ
−M1

hθ

h
+

hθ

κ
, (2.17)

0 ≥ (Ψ1)θθ = −
(κθ

κ

)
θ
−M1

hθθh− h2
θ

h2
+

hθθκ− hθκθ

κ2

= −κθθκ− κ2
θ

κ2
−M1

hθθh− h2
θ

h2
+

hθθκ− hθκθ

κ2
, (2.18)

and

0 ≤ (Ψ1)t = κ

(
1

κ

)
t

−M1
ht

h
+ (hht + hθhtθ)

= κ(ht + htθθ)−M1
ht

h
+ (hht + hθhtθ).
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Set f = log
(
h
κ̃

)
. From (2.1a), it follows that

log(hΛ1 − ht) = f + log κ.

Differentiating the above equation gives

hθΛ1 − htθ

hΛ1 − ht
= fθ +

κθ

κ

and
hθθΛ1 − htθθ

hΛ1 − ht
− (hθΛ1 − htθ)

2

(hΛ1 − ht)2
= fθθ +

κθθκ− κ2
θ

κ2
.

Then, by (2.17) and (2.18),

(Ψ1)t
hΛ1 − ht

=κ
ht + htθθ

hΛ1 − ht
− M1

h

ht

hΛ1 − ht
+

hht

hΛ1 − ht
+

hθhtθ

hΛ1 − ht

=κ

(
−hθθΛ1 − htθθ

hΛ1 − ht
+

hθθΛ1 + hΛ1 − hΛ1 + ht

hΛ1 − ht

)
− M1

h

hΛ1 − hΛ1 + ht

hΛ1 − ht

+
h(hΛ1 − hΛ1 + ht)

hΛ1 − ht
+

hθhtθ

hΛ1 − ht

=κ

(
− (hθΛ1 − htθ)

2

(hΛ1 − ht)2
− κθθκ− κ2

θ

κ2
− fθθ

)
+

(1 + h2 −M1)Λ1

hΛ1 − ht
− κ+

M1

h
− h+

hθhtθ

hΛ1 − ht

≤κ

(
M1

hθθh− h2
θ

h2
− hθθκ− hθκθ

κ2
− fθθ

)
+

(1 + h2 −M1)Λ1

hΛ1 − ht
− κ+

M1

h
− h+

hθhtθ

hΛ1 − ht

=− κM1
h2
θ

h2
− κfθθ − hθfθ −

1

κ
+

(1 + h2 + h2
θ −M1)Λ1

hΛ1 − ht
− (1 +M1)κ+

2M1

h
.

By f = log
(
h
κ̃

)
, one has

fθ = − κ̃θ

κ̃
+

hθ

h

and

fθθ =
κ̃2
θ − κ̃θθκ̃

κ̃2
+

hθθh− h2
θ

h2
=

κ̃2
θ − κ̃θθκ̃

κ̃2
− h2

θ

h2
+

1

κh
− 1,

which together with the smoothness of κ̃, Lemma 2.7 and Lemma 2.8 imply that |fθ| ≤ C8,

|κ̃θθ| ≤ C9 and

−κfθθ = −κκ̃2
θ

κ̃2
+

κ̃θθκ

κ̃
+

κh2
θ

h2
− 1

h
+ κ

≤ κ̃2
θθ + κ2

2κ̃
+

κh2
θ

h2
− 1

h
+ κ

≤ C2
7 + C2

9

2κ̃max
+

C5C̃
2
1

C2
2

+ C5 −
1

h
,

where C̃1 is the lower bound for hθ. Then, we have

0 ≤ (Ψ1)t
hΛ1 − ht

≤ C2
7 + C2

9

2κ̃max
+

h2
θ + f2

θ

2
− C10

κ
+

C5C̃
2
1

C2
2

+ C5 +
2M1 − 1

h

≤ C2
7 + C2

9

2
+

C̃2
1 + C2

8

2
+

2M1 − 1

C2
+

C5C̃
2
1

C2
2

+ C5 −
C10

κ
,
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which implies that κ(θ, t) has a positive lower bound independent of t.

Case 2. For flow (1.10b)

For the flow (1.10b), there is the support function associated with a fixed curve denoted by γ̃

in the evolution equation. However, applying the technique from Case 1 to obtain a lower bound

for κ is challenging. So we need find another approach to achieve our goal.

Set w = vθ, then

wt = (vθ)t = (vt)θ

=
κ̃

h̃
v2wθθ +

(
κ̃

h̃
v2
)

θ

wθ +
κ̃

h̃
v2w +

(
κ̃

h̃
v2
)

θ

(
v − Λ2

κ̃

)
+

κ̃θ

κ̃h̃
Λ2v

2. (2.19)

We first show the upper bound for w, and consider the quantity

Ψ2 = w + αv

for α > 0. The first and second derivatives for Ψ2 with respect to θ are

(Ψ2)θ = wθ + αw,

(Ψ2)θθ = wθθ + αwθ.

Combining with (2.19), we can get

(Ψ2)t =wt + αvt

=
κ̃

h̃
v2wθθ +

(
κ̃

h̃
v2
)

θ

wθ +
κ̃

h̃
v2w +

(
κ̃

h̃
v2
)

θ

(
v − Λ2

κ̃

)
+

κ̃θ

κ̃h̃
Λ2v

2

+ α
κ̃

h̃
v2
(
wθ + v − Λ2

κ̃

)
=
κ̃

h̃
v2wθθ +

[(
κ̃

h̃
v2
)

θ

+ α
κ̃

h̃
v2
]
wθ +

κ̃

h̃
v2w +

[(
κ̃

h̃
v2
)

θ

+ α
κ̃

h̃
v2
](

v − Λ2

κ̃

)
+

κ̃θ

κ̃h̃
Λ2v

2

=
κ̃

h̃
v2(Ψ2)θθ +

(
κ̃

h̃
v2
)

θ

(Ψ2)θ + F (θ, t)

and

F (θ, t) =

[(
κ̃

h̃

)
θ

v2 +
2κ̃

h̃
vw

]
(−αw) +

κ̃

h̃
v2w +

[(
κ̃

h̃

)
θ

v2 +
2κ̃

h̃
vw + α

κ̃

h̃
v2
](

v − Λ2

κ̃

)
+

κ̃θ

κ̃h̃
Λ2v

2

=v

[
−2ακ̃

h̃
w2 +

(
−α

(
κ̃

h̃

)
θ

v +
3κ̃

h̃
v − 2Λ2

h̃

)
w +

(
κ̃

h̃

)
θ

v2 + α
κ̃

h̃
v2 − αΛ2

h̃
v +

h̃θ

h̃2
Λ2v

]
.

Because v and Λ2 are bounded, F < 0 holds when w is large enough or equivalently Ψ2 is large

enough. From the maximum principle, we can get the upper bound for Ψ2 and thus for w. Similarly,

we have the upper bound for −w by setting Ψ2 = −w + αv with α > 0. Thus, |w| ≤ C11 as long

as the flow (1.10b) exists.

Next, we can obtain the lower bound for κ by the upper bound for w. For any θ3, θ4 ∈ S1 and

t > 0, we have ∣∣∣∣log v(θ4, t)

v(θ3, t)

∣∣∣∣ =
∣∣∣∣∣
∫ θ4

θ3

w(θ, t)

v(θ, t)
dθ

∣∣∣∣∣ ≤ C11

∫ θ4

θ3

κ̃(θ)

κ(θ, t)h̃(θ)
dθ

14

https://doi.org/10.4153/S0008414X25101533 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101533


= C11

∫ θ4

θ3

h̃(θ)

κ(θ, t)

κ̃(θ)

h̃(θ)2
dθ

≤ C11C̃L (t) ≤ C12,

where C̃ = max{ κ̃(θ)

h̃(θ)2
| θ ∈ S1} and C12 = C11C̃L (0). This implies

vmax(t)

vmin(t)
≤ eC12 .

Notice that
2π

vmax(t)
≤
∫ 2π

0

1

v(θ, t)
dθ ≤ C̃L (0).

This deduces that

v(θ, t) ≥ vmin(t) ≥ vmax(t)e
−C12 ≥ 2πe−C12

C̃L (0)
.

Recall that v = κ
κ̃ h̃, we can get κ(θ, t) ≥ 2πe−C12

C̃C̃′L (0)
, where C̃ ′ = max{ h̃(θ)

κ̃(θ) | θ ∈ S1}.

Then, we have the long-term existence for the flows (1.10a) and (1.10b).

Theorem 2.10. The flows (1.10a) and (1.10b) exist in the time interval [0,∞).

Proof. By Propositions 2.3 and 2.9, we have known that curvature κ has uniformly positive lower

and upper bounds. Since Λ1(t) and Λ2(t) are bounded, (2.1a) or (2.2a) is uniformly parabolic.

From standard regularity theory of uniformly parabolic equations (cf. Krylov [37]), it yields that

|h(i)| ≤ Mi, (2.20)

where h(i) is the i-th derivative of h, and Mi is a positive constant only depending on i and initial

curve γ0, and the i-th derivative of curvature κ, κ(i), has uniformly bound, that is,

|κ(i)| ≤ Ni (2.21)

holds for a positive constant Ni only depending on i and initial curve γ0. This deduces the long-

term existence and uniqueness of the smooth solution to the flow (1.10a) or (1.10b).

To obtain the final shape and the convergence of the flow (1.10a) or (1.10b), we need to show

the boundedness of
∣∣∣d2L

dt2

∣∣∣.
Lemma 2.11. For the flow (1.10a) or (1.10b), there exists a positive constant C13 such that∣∣∣∣d2Ldt2

∣∣∣∣ ≤ C13. (2.22)

Proof. For flow (1.10a), by Lemma 2.4, we have

d2L

dt2
= −

(∫ 2π

0

κh

κ̃2
dθ − Λ1(t)

∫ 2π

0

h

κ̃
dθ

)
t

.

This together with (2.1b), (1.7) and (2.1a) can yield

d2L

dt2
= −

∫ 2π

0

κth

κ̃2
dθ −

∫ 2π

0

κht

κ̃2
dθ +

dΛ1(t)

dt

∫ 2π

0

h

κ̃
dθ
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= −
∫ 2π

0

κ2h

κ̃2

(
κh

κ̃

)
θθ

dθ −
∫ 2π

0

κ3h2

κ̃3
dθ +

∫ 2π

0

κ2h

κ̃3
dθ +

L

A

dL

dt

= −
∫ 2π

0

κ2h

κ̃2

(
κh

κ̃

)
θθ

dθ −
∫ 2π

0

κ3h2

κ̃3
dθ +

∫ 2π

0

κ2h

κ̃3
dθ − L

A

∫ 2π

0

κh

κ̃2
dθ +

L 3

A 2
.

From (2.20) and (2.21), it yields that
∣∣∣d2L

dt2

∣∣∣ has a uniform bound.

Similarly, for flow (1.10b), we can get

d2L

dt2
=−

(∫ 2π

0

κh̃

κ̃2
dθ − Λ2(t)

∫ 2π

0

h̃

κ̃
dθ

)
t

=−
∫ 2π

0

κth̃

κ̃2
dθ +

dΛ2(t)

dt

∫ 2π

0

h̃

κ̃
dθ

=−
∫ 2π

0

κ2h̃

κ̃2

(
κh̃

κ̃

)
θθ

dθ −
∫ 2π

0

κ3h̃2

κ̃3
dθ +

α

L

∫ 2π

0

κ2h̃

κ̃3
dθ +

α2

L 2

∫ 2π

0

κh

κ̃2
dθ − α3

L 3
.

By (2.20) and (2.21), the desired result is concluded.

Proposition 2.12. Under the flow (1.10a) or (1.10b), we have

lim
t→∞

κ(θ, t)

κ̃(θ)
=

√
α

A
. (2.23)

Proof. It follows from Theorem 2.10 that the flow (1.10a) or (1.10b) exists on [0,∞). Let κ(θ, ti)

be a convergent subsequence of the curvature, where ti → ∞ as i → ∞. Denote by κ∞ the limit

of κ(θ, ti). Recall that
dL
dt is non-positive. We have∫ ∞

0

dL

dt
dt ≥ −L (0).

Then, by (2.11) and Lemma 2.4, it yields that

lim
t→∞

dL

dt
= 0.

This deduces that κ
κ̃ is equal to a constant m, and so is h̃

h as time t goes to infinity from the

equality case for the Cauchy-Schwarz inequality. In other words, κ∞
κ̃ = m and h̃

h∞
= m. Since

A =

∫ 2π

0

h∞

κ∞
dθ =

1

m2

∫ 2π

0

h̃∞

κ̃∞
dθ =

α

m2
,

one has m =
√

α
A , which is the limit (2.23) for subsequence {κ(θ, ti)}. Since every convergent

subsequence of {κ(·, t)} tends to the same limit, the curvature κ itself converges.

From (2.20) and (2.21), we have the C∞ convergence of the flow (1.10a) or (1.10b).

Corollary 2.13. For the flow (1.10a) or (1.10b), the convergence of the derivatives

lim
t→∞

∂iκ(θ, t)

∂θi
=

√
α

A

∂iκ̃(θ)

∂θi

holds for i = 1, 2, 3, · · · .
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Proof of Theorem 1.1. Theorem 2.2 asserts the short time existence of the flow (1.10a) or (1.10b).

Lemma 2.5, Theorem 2.6 and Theorem 2.10 demonstrate that any origin symmetric convex curve

evolving according to (1.10a) or (1.10b) retains its symmetry, ensuring its long-term existence.

Lemma 2.7 and Proposition 2.12 deduce that the evolving curve γ(·, t) cannot escape to infinity

and converges asymptotically to a fixed curve γ∞ which is congruent to
√

α
A γ̃. Finally, Corollary

2.13 establishes the C∞ convergence of flow (1.10a) or (1.10b) as time t approaches infinity.

Remark 2.14. Motivated by the insightful work in Li-Wang [41], the support function of the

evolving curve has a uniform bound as long as flow (1.10b) exists, even if the initial curve γ0 and

γ̃ are non-symmetric.

Let γ be the evolving curve of length l and enclosed area A. The Bonnesen inequality (cf.[24])

states that

lr −A− πr2 ≥ 0 (2.24)

holds for rin ≤ r ≤ rout, where rin and rout are the inradius and outradius of the domain enclosed

by γ, respectively. Then, we have

0 <
l −

√
l2 − 4πA

2π
≤ rin ≤ rout ≤

l +
√
l2 − 4πA

2π
.

Due to Lemma 2.4, it has

l +
√
l2 − 4πA ≤ 2l ≤ 2

h̃min

L (t) ≤ 2

h̃min

L (0)

and
l −

√
l2 − 4πA

2π
=

A (t)

l +
√
l2 − 4πA

≥ h̃minA (0)

2L (0)
.

Therefore, 2r0 ≤ rin ≤ rout ≤ 2R0, where 2r0 = h̃minA (0)
2L (0) and 2R0 = L (0)

πh̃min
.

For any fixed time T ′ ∈ [0, T ), denote by S(T ′) the circle of radius r(T ′) = 2r0 inscribed in

γ(T ′), with centered P ∈ R2. For t ≥ T ′, let S(T ′) shrink according to flow ∂S
∂t = ΛκN , where

Λ = max
θ∈S1

h̃(θ)
κ̃(θ) . Since each S(t) is a circle as long as it exists, the radius of S(t) is

r(t) =
√
r2(T ′)− 2Λ(t− T ′) for t ∈

[
T ′, T ′ +

r2(T ′)

2Λ

)
.

Comparing the velocity of the flow ∂S
∂t = ΛκN with that of the flow (1.10b), it shows that the circle

S(t) is always enclosed by γ(t) for all t ∈ [T ′,min{T ′ + r2(T ′)
2Λ , T}). Hence, the support function of

the evolving curve (choose P as the origin) satisfies h(θ, t) ≥ r(t) for (θ, t) ∈ [0, 2π]× [T ′,min{T ′+
r2(T ′)
2Λ , T}). Set ∆t = r2(T ′)

4Λ , we have

h(θ, t) ≥ r(t) ≥
√
2r0

for (θ, t) ∈ [0, 2π]× [T ′,min{T ′ +∆t, T}).
Recalling that the Minkowski length L (t) is decreasing along the flow (1.10b), we obtain the

upper bound for the support function, that is, h(θ, t) ≤ κ̃maxL (t) ≤ κ̃maxL (0) holds for (θ, t) ∈
[0, 2π]× [T ′,min{T ′ +∆t, T}). The desired result is obtained.
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The discussion above is primarily based on Li-Wang [41, pp. 359-361]. To study the gradient

flow of an anisoperimetric ratio for convex plane curves without symmetry assumptions, they first

established upper and lower bounds for the evolving curve using Bonnesen’s inequality.

Note that the results appearing in Proposition 2.3 and Proposition 2.9 are independent of the

symmetry. Furthermore, the C∞ convergence for flow (1.10b) is achieved when the initial curve γ0

and γ̃ are without symmetry condition. Although an anisotropic model analogous to (1.10b) when

γ̃ is symmetric was discussed in [48], this work introduces a different method that yields a better

convergence result.

3 Entropy inequalities

In this section, we intend to discuss two entropy inequalities, which are the log-Minkowski inequal-

ity and the curvature entropy inequality. To do this, we first introduce two monotonic entropy

functions under flows (1.10a) and (1.10b).

Lemma 3.1. For the flow (1.10a), the entropy function

E1(t) =

∫ 2π

0

h̃

κ̃
log

h

h̃
dθ

is decreasing as time t goes to infinity.

Proof. By (2.1a), it has

dE1(t)

dt
=

∫ 2π

0

h̃

κ̃

ht

h
dθ

= −
∫ 2π

0

h̃

κ̃

(κ
κ̃
− Λ1(t)

)
dθ

= −
∫ 2π

0

κh̃

κ̃2
dθ +

L α

A
.

It follows from the Wulff Gage inequality [24, Thm.0.7] that dE1(t)
dt ≤ 0 with the equality holds if

and only if γ and γ̃ are homothetic.

Lemma 3.2. For the flow (1.10b), the entropy function

E2(t) =

∫ 2π

0

h̃

κ̃
log

κ

κ̃
dθ

is decreasing as time t goes to infinity.

Proof. From (2.15) and v = κ
κ̃ h̃, it yields

dE2(t)

dt
=

∫ 2π

0

h̃

κ̃

vt
v
dθ

=

∫ 2π

0

v

(
vθθ + v − Λ2(t)

κ̃

)
dθ
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=

∫ 2π

0

v(vθθ + v)dθ − α

L

∫
κh̃

κ̃2
dθ.

To ensure the monotonicity for E2(t), we state an inequality introduced firstly by Andrews in [1,

p.322 (1.6)], which says that for two curves with corresponding support functions s1 and s2,∫ 2π

0

s1τ [s1]dθ

∫ 2π

0

s2τ [s2]dθ ≤
(∫ 2π

0

s1τ [s2]dθ

)2

, (3.1)

where τ [si] =
∂2si
∂θ2 + si, i = 1, 2. Notice that the above inequality still holds if one of the functions

(say s2) has τ strictly positive, and the other is an arbitrary smooth function. Choose s1 = v and

s2 = h, we have ∫ 2π

0

v(vθθ + v)dθ

∫ 2π

0

h(hθθ + h)dθ ≤
(∫ 2π

0

v(hθθ + h)dθ

)2

,

which together with (1.7) and (1.8) leads to∫ 2π

0

v(vθθ + v)dθ ≤ α2

A
.

Combining with the Wulff Gage inequality [24, Thm.0.7], it has

dE2(t)

dt
≤ α2

A
− α

L

Lα

A
= 0,

which implies the desired result.

The quantity dE2(t)
dt is equal to 0 if and only if the equalities hold in both the Andrews inequality

(3.1) and the Wulff Gage inequality. From [1, p.322], we have known that the equality holds in

(3.1) only when s1(z) = ps2(z) + ⟨z, q⟩ for some constant p and some point q ∈ R2. And the

equality holds in the Wulff Gage inequality if and only if γ and γ̃ are homothetic. Thus, dE2(t)
dt = 0

if and only if γ and γ̃ are homothetic.

Proof of Theorem 1.2. Denote by K and L the planar convex bodies with boundary γ and γ̃. To

obtain the log-Minkowski inequality (1.11), we need only to show the following inequality∫ 2π

0

h̃

κ̃
log

h

h̃
dθ ≥ α

2
log

A

α
. (3.2)

From Lemma 3.1, we have known that E1(t) is decreasing under flow (1.10a). Since the flow (1.10a)

exists in [0,∞), ∫ 2π

0

h̃

κ̃
log

h

h̃
dθ = E1(t) ≥ E1(∞) =

∫ 2π

0

h̃

κ̃
log

h∞

h̃
dθ.

From the fact that h̃
h∞

=
√

α
A and (1.8), it yields the inequality (3.2). The equality holds in (3.2)

if and only if E1(t) is a constant, which implies that γ and γ̃ are homothetic. That is, the equality

in the log-Minkowski inequality holds if and only if K and L are homothetic.

Proof of Theorem 1.4. Denote by K and L the planar convex bodies with boundary γ and γ̃. To

show the curvature entropy inequality (1.12), we need only to show the following inequality∫ 2π

0

h̃

κ̃
log

κ

κ̃
dθ ≥ α

2
log

α

A
. (3.3)
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Because E2(t) is decreasing under the flow (1.10b) and this flow exists in [0,∞), we get∫ 2π

0

h̃

κ̃
log

κ

κ̃
dθ = E2(t) ≥ E2(∞) =

∫ 2π

0

h̃

κ̃
log

κ∞

κ̃
dθ.

Again, by κ∞
κ̃ =

√
α
A and (1.8), we have the inequality (3.3). The equality holds in (3.3) if and

only if E2(t) is a constant, which implies that γ and γ̃ are homothetic. This leads to equality in

the curvature entropy inequality if and only if K and L are homothetic.

Remark 3.3. The curvature entropy inequality (1.12) still holds without symmetry condition but

with a dilation position condition for two planar convex bodies.

By Remark 2.14, the symmetry requirements for γ and γ̃ can be omitted in flow (1.10b). Note

that the Wulff Gage inequality holds without symmetry condition but with a dilation position con-

dition for two planar convex bodies (see [65]). Since the entropy E2(t) is origin-independent and

decreases as t → ∞ without symmetry requirements, we conclude that inequality (3.3) remains valid

without symmetry. Consequently, the curvature entropy inequality (1.12) holds under a dilation

position condition.

In conclusion of the article, we also wish to provide the proof of the Brunn-Minkowski inequality

in the planar case using flows (1.10a) and (1.10b). In fact, let K and L be the planar convex bodies

with boundaries γ and γ̃. Then, by the Steiner formula [24, Pro.1.4], we have

V (K + L) =
1

2
(A + 2L + α).

Consider the function

F (t) = V (K + L)
1
2 − V (K)

1
2 − V (L)

1
2 .

It follows from Lemma 2.4 that

dF

dt
=

1

2
V (K + L)−

1
2
dL

dt
≤ 0

with equality holds if and only if γ and γ̃ are homothetic. By Proposition 2.12, it yields that

F (t) ≥ F (∞) = (1 +m)V (L)
1
2 −mV (L)

1
2 − V (L)

1
2 = 0,

which implies the Brunn-Minkowski inequality, that is,

V (K + L)
1
2 ≥ V (K)

1
2 + V (L)

1
2 .
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