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Abstract
This study examines the economic performance of rainfed cropping systems endemic to the Southern
Great Plains under weed competition. Cropping systems include tilled and no-till wheat-fallow, wheat-
soybean, and wheat-sorghum rotations. Net returns from systems are compared under different levels of
weed pressure. Producers operating over longer planning horizons would choose to double-crop regardless
of the tillage method used and weed pressure level. Producers operating under shorter planning horizons
would implement wheat-fallow systems when weed pressure is high and double crop when weed pressure
is low.
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Introduction
The Southern Great Plains (SGP) includes portions of Texas, Oklahoma, and New Mexico
(Kumar et al., 2020) (Appendix Figure A1). SGP producers contend with hot summers, cold and
dry winters, and uncertain rainfall (Hansen et al., 2012; Poland et al., 2021). Approximately 80
percent of the SGP’s crop production is rainfed, with more than half of the currently irrigated
farmland expected to transition to dryland production over the next few decades (USGS, 2016).
The region’s agricultural land cover is primarily winter wheat, pasture, native prairie grasses, and
switchgrass (Raz-Yaseef et al., 2015). Corn and cotton are also grown in the area; however, corn
typically requires irrigation, and cotton is not as frequently grown in a rotation with wheat relative
to sorghum and soybean (Kumar et al., 2019). Standard rainfed wheat cropping systems include
winter wheat (Triticum aestivum L.) and summer fallow and winter wheat-summer crop-fallow
systems. Summer crops used in rotation with wheat include soybean (Glycine max L. Merr.) and
grain sorghum (Sorghum bicolor L.).

Weed pressure negatively affects revenue by reducing yield and increasing weed control costs.
On average, over $11 billion (USD) a year is spent controlling weeds in agriculture (Hartfield et al.,
2014). Best weed management practices include scouting, cleaning equipment after harvest, and
changing herbicide chemical mixes (Zhou et al., 2016). Other weed management practices include
manual removal, mechanical tillage, and cover crops, which may increase operating costs
(Garrison et al., 2017; Livingston et al., 2015). Among the practices mentioned, controlling weeds
with herbicides is comparatively cost-effective and has relatively lower labor requirements (Clay,
2021; Green, 2011; Jha et al., 2017; Shaw et al., 2009).
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No-till (NT) rainfed systems are familiar to some parts of the SGP. NT adoption on wheat acres
has expanded in the SGP, increasing from 20 to 45 percent of planted wheat acres between 2000
and 2017 (Claassen et al., 2018). NT soybean acres have increased from 35 to 40 percent of planted
acres during the same period (Claassen et al., 2018). NT and minimum tillage systems require
more intensive and frequent herbicide use than conventional ones (Friedrich, 2005). Double-crop
systems may also have higher herbicide requirements (Kapusta, 1979). Tilling is a short-term
solution for controlling weeds. However, over the long term, there may be little difference in the
effectiveness of conventional till or NT systems for managing weed populations (Friedrich, 2005).
For continuously seeded wheat, reduced tillage can increase weed control costs (Epplin et al., 1994;
Błȧzewicz-Wozniak et al., 2016).

Wheat producers in the SGP contend with weed species such as kochia (Kochia scoparia (L.)
A.J. Scott), Italian ryegrass [Lolium multiflorum ssp. Multiforum (Lam) Husnot], and horseweed
(Conyza canadensis L.) (Heap, 2020). Horseweed was not previously considered problematic in
the SGP because it could be managed with tilling. Recently, horseweed has become a nuisance
weed in this region due to the increased use of reduced tillage and NT (Crose et al., 2020). SGP
soybean and sorghum growers struggle with herbicide-resistant waterhemp [Amaranthus
tuberculatus (Moq.) J.D. Sauer] and Palmer amaranth (Amaranthus palmeri S. Watson). Palmer
amaranth is among the most problematic annual broadleaf species in the United States (US),
affecting soybean, sorghum, corn, cotton, sunflower, wheat, and fallow acres (Kumar et al., 2019).
Palmer amaranth is particularly difficult to manage due to its fecundity, rapid growth, and
adaptability. Once established, Palmer amaranth can decrease soybean yield between 19 and 80
percent and sorghum yield between 13 and 50 percent, depending on weed density (Korres et al.,
2020; Ward and Webster, 2013).

This research compares the economic performance of rainfed wheat-fallow (WF) and wheat-
double crop systems under varying intensities of competition with horseweed and Palmer
amaranth. Economic performance is measured as per hectare net returns to WF and wheat-double
crop systems under conventional till or NT cultivation. Net returns are compared over medium-
(five years) and long-term (>5 years) planning horizons. The effects of weed competition on the
net returns of each system evaluated were generated by the Agricultural Land Management
Alternatives with Numerical Assessment Criteria (ALMANAC) plant biomass simulator because
there are no previous agronomic studies on SGP rainfed cropping system-weed interactions.
ALMANAC also includes modules for simulating crop-weed pressure interactions. Wheat,
soybean, and sorghum yields are benchmarked to yield trial data from double-crop and fallow
agronomic experiments conducted in 2020 near El Reno, Oklahoma. Net returns are calculated for
each system using historical crop prices and budgets representative of SGP rainfed operations.
Stochastic dominance is used to identify which systems would be preferred by profit-maximizing
or risk-averse producers. A sensitivity analysis uses a dynamic programming (DP) procedure to
evaluate the performance of each system over medium- and long-term planning horizons because
cropping system choices affect the distribution of weed populations. A Monte Carlo analysis
extends the DP results by examining the effects of yield uncertainty on net returns over medium-
and long-term horizons.

Methods and procedures
The interaction between crop growth and weed pressure was simulated with ALMANAC (Kiniry
et al., 1992). ALMANAC operates on a daily time step to simulate the effects of crop management
practices on plant and soil characteristics (Kiniry et al., 2008). ALMANAC simulates plant biomass
growth on a m−2 basis. Previous studies analyzing the growth dynamics of mixed plant communities
using ALMANAC include Kiniry et al., (1992, 1997), McDonald and Riha (1999a, b), Stockle and
Kiniry (1990), and He et al. (2012). This study extends the methods used in these previous studies to
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conventional till and NT rainfed wheat-fallow and wheat-double crop systems for SGP growing
conditions.

Biological parameters regulating wheat, sorghum, and soybean plant growth are fromWilliams
et al. (1989). Crop parameters were developed using data from various US locations. These
parameters reflect differences in soil, weather, and other growing conditions. Parameters are
specific to crop species and unadjusted for specific locations, except those determining potential
heat units from planting to maturity (PHU) (Williams et al., 1989). United States Department of
Agriculture-Agricultural Research Service experts who program and manage ALMANAC
provided the weed growth parameters for Palmer amaranth and horseweed and PHU values for
crops and weeds (Appendix Table A1) (Kiniry, 2021; Williams, 2021).

Cropping system yields simulated with ALMANAC were benchmarked to yields from
agronomic trials conducted in El Reno, Canadian County, Oklahoma, in 2020 (35.6028 N,
−97.9317 W). The agronomic trials included the cropping systems evaluated in this study.
However, the experiments did not collect data on cropping system performance under different
levels of weed pressure.

Soil files for Canadian County are from the Soil Survey Geographic database (SSURGO, 2020)
and were loaded into ALMANAC to calibrate yields. The dominant soil type in the El Reno area is
a Lovedale-Wisby complex, with 5 to 12 percent slopes. Crop yields simulated with ALMANAC
are comparable to the El Reno agronomic trial yields.

Cropping system yields were generated for 20 periods using historical Mesonet weather data
(2000 to 2020) (Brock et al., 1995; McPherson et al., 2007), physical soil conditions, and
experimental yields. Oklahoma Mesonet places environmental monitoring stations in each county
of Oklahoma. Daily values for maximum and minimum temperature, solar radiation, and
precipitation from the El Reno Oklahoma Mesonet station were used as weather data in
ALMANAC. Yields from each cropping system were simulated under three levels of weed pressure
(measured as weed plants m−2, Table 1) and two tillage systems (NT and conventional till).

WF and wheat-double crop management schedules followed Decker et al. (2009). ALMANAC
Management files were modified to reflect different weed management strategies for conventional
till and NT systems. Weeds were removed in conventional till systems using a chisel plow. The
chisel plow was programmed to reach a depth of 20.34 cm. Tillage operations were assumed to be
90 percent effective in removing weeds (Cahoon, Curran, and Sandy, 2019). It was also assumed
that some weed seeds previously buried at depths where germination was impossible could emerge
after tilling (Ball, 1992). Specific management tools (chisel plow, disk) were selected and
programmed in ALMANAC according to management specifications outlined in Decker et al.
(2009). A moldboard plow was used to bury annual weed seeds and to control established annuals
and seedlings (Cahoon et al., 2019). A chisel plow is a good option for controlling seedlings and
established annuals but a less effective method for burying annual weed seeds (Cahoon et al.,
2019). ALMANAC tillage depths were preprogrammed by ALMANAC staff according to the
implement.

Weeds were controlled with herbicides only under NT systems. Herbicide applications were
assumed to be 90 percent effective at eliminating weeds, assuming application error and based
on estimated weed susceptibility to modes of action (Neve et al., 2003), and for managing weeds
on planted sorghum, atrazine and s-metolachlor had ratings of E (“excellent control”; at least 90
percent of Palmer amaranth were controlled) and G (“good control”; between 80 to 90 percent
of Palmer amaranth controlled), respectively (Marshall, 2017). Glyphosate and atrazine+s-
metolachlor had ratings of E and G-E for managing weeds on planted soybeans, indicating
control of at least 80 percent (Hartzler, 2021). Chlorsulfuron+metsulfuron methyl and
pinoxaden had ratings of G and P (“poor control”) for weeds on planted wheat (Neely
et al., 2016).
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Table 1. Means of simulated cropping system yields (N = 20 for soybean and sorghum yields, N = 19 for wheat yields)

Crop Rotation Tillage

Weed Pressurec

Low Medium High

Mean Yield (Mt ha−1)a Std. Dev. CVb Mean Yield (Mt ha−1) Std. Dev. CV Mean Yield (Mt ha−1) Std. Dev. CV

Wheat-Fallow No-Till (Wheat) 3.16 0.26 8.23 2.12 1.08 50.94 1.74 0.83 47.70

Conventional Till (Wheat) 3.02 0.25 8.28 2.06 1.11 53.88 1.85 0.85 45.95

Wheat-Soybean No-Till (Wheat) 2.82 1.22 43.26 2.42 1.12 46.28 2.32 1.18 50.86

Conventional Till (Wheat) 2.12 1.19 56.13 2.33 1.19 51.07 2.07 0.91 43.96

No-Till (Soybean) 1.81 1.21 66.85 0.66 0.48 72.73 0.35 0.40 114.29

Conventional Till (Soybean) 1.75 1.26 72.00 0.87 0.63 72.41 0.32 0.46 143.75

Wheat-Sorghum No-Till (Wheat) 2.76 1.09 39.49 2.15 1.01 46.98 1.91 0.79 41.36

Conventional Till (Wheat) 2.72 1.19 43.75 2.34 1.19 50.85 1.50 0.74 49.33

No-Till (Sorghum) 2.91 1.22 41.92 1.23 0.75 60.98 0.28 0.49 175.00

Conventional Till (Sorghum) 2.98 1.65 55.37 1.28 1.01 78.91 0.91 0.43 47.25

Notes: Cropping system yields were simulated using ALMANAC (Kiniry et al., 1992).
aOne metric ton per hectare is equivalent to approximately 14.87 bushels per acre of wheat and soybean, assuming a 60-pound bushel (Johanns, 2013; North Dakota Wheat Commission, 2022). One metric ton of
sorghum per hectare is approximately 15.93 bushels per acre, assuming a 56-pound bushel (Johanns, 2013).
bCV, coefficient of variation.
cLow = 10–20 Palmer amaranth and 5–10 horseweed plants m−2; Medium = 21–30 Palmer amaranth and 11–20 horseweed plants m−2; High = 31–40 Palmer amaranth and 21–30 horseweed plants m−2.
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Wheat-fallow system (WF)

Wheat was planted on November 10 and harvested June 15. Diammonium phosphate (18-46-0)
and anhydrous ammonia (82-0-0) were applied on October 15 at 109.77 and 30.24 kg ha−1. Top-
dress nitrogen (UAN 28%) was applied at 264.36 kg ha−1 on February 10. The seeding rate was
67.21 kilograms of seeds ha−1. Seeds were planted with a seed drill to a soil depth of 40 mm.

Herbicides were applied four times during the NT wheat-fallow rotation, once in June, August,
October, and November. Herbicides applied were Axial XL® (wild oat/ryegrass control, 700.25 g
ha−1), Finesse® (broadleaf weed control, 17.51 g ha−1), and glyphosate (broadleaf control; applied
during the summer as a burndown application on fallow at 1080 g ha−1). Dimethoate was applied
to manage insects (876.23 mL ha−1). For conventional till systems, the field was plowed and disked
after harvest in June, a second till was performed in August and September, and a final till was
performed in October before planting (Decker et al., 2009; Epplin, 2007).

Wheat-soybean double crop system (WS)

Soybeans were planted on July 10 and harvested on October 20 at a seeding rate of 48.54 kg ha−1.
Wheat was planted with a seed drill at a soil depth of 40 mm. Soybeans were planted with a
planter, also at a depth of 40 mm. No fertilizer was applied during the soybean cycle. Herbicides
were applied four times per year under the wheat-summer crop no-till systems. Bicep Lite II
Magnum® (for annual weeds and grasses, 1400.49 g ha−1) and glyphosate (for broadleaf weeds and
grasses, 2240.78 g ha−1) were used on soybeans and Axial XL® and Finesse® were used on wheat
(the same rate as the WF system). Wheat management followed the same procedures as the WF
rotation, except that no summer herbicides or tillage operations were used in the wheat-summer
crop management schedules. The field was disked prior to planting soybeans.

Wheat-sorghum double crop (WSrgh)

Sorghum was planted on July 10 and harvested on October 20. Anhydrous ammonia was applied
to sorghum on July 1 at 58.61 kg ha−1. The seeding rate was 3.73 kg ha−1. Seeds were planted with a
planter at a depth of 40 mm.

Bicep Lite II Magnum® (for broadleaf species and grasses, 2240.78 g ha−1) and Atrazine
(broadleaf species, 840.29 g ha−1) were applied to sorghum to control weeds. Sivanto 200 SL®
(385.13 g ha−1) was used to protect the crop from insect damage.

Wheat management followed the previous WF rotation management specification, except for
summer herbicide applications and tillage. One pre-emergent herbicide and one post-emergent
herbicide were applied to double-crop wheat. The field was disked prior to planting sorghum.

Net returns

Yields, crop prices, and input costs were used to calculate each system’s per-hectare net returns
(NR). Output prices are from 2020 to match production cost data from the United States
Department of Agriculture National Agricultural Statistics Service (USDA-NASS, 2021).
Production costs for each cropping system are from the 2020 Oklahoma State University
Extension Service Enterprise Budgets (Sahs, 2021). Holding output prices and production costs
constant is a simplifying assumption and a limitation of this research. Because prices and costs are
constant, producers are assumed to decide on cropping systems based on current price and cost
information. While it is likely that price changes and historical prices factor into a producer’s
decision-making process, this simplifying assumption isolates the effects of a cropping system on
yield while holding prices and costs constant. Net returns for the WF system in period t were
calculated as
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NRWF�t� � PW � YW t� � � CW � CF� � � RC (1)

where PW is the price of wheat ($ Mt−1), YW(t) is the wheat yield (Mt ha−1), CW is the cost of wheat
production ($ ha−1), CF is the cost of field management during the fallow period ($ ha−1), and RC is
the per-hectare cropland rental rate for Canadian County, Oklahoma (USDA-NASS, 2021). The
cropland rental rate is subtracted from revenue because it is the opportunity cost of not planting a
summer crop or renting out the land.

Net returns for a wheat-summer double-crop system in period t were calculated as

NRWD�t� � PS � YS t� � � PW � YW�t� � CS � CW� 	� � � (2)

where PS is the price of the summer crop ($ Mt−1), YS(t) is the summer crop yield (Mt ha−1), and CS

are production costs for the summer crop ($ ha−1). The rental rate (ha−1) was subtracted from
wheat-fallow systems to incorporate the opportunity cost of forgoing summer crop production by
the landowner or a renting entity. The rental rate (ha−1) was not included in wheat-double crop
systems because the field was used to produce a summer crop.

Equipment cost calculations include the use of two tractors. The 95-horsepower tractor was
used to fertilize, plant, and apply herbicides and pesticides. The 160-horsepower tractor was used
for conventional till operations. The certified wheat seed cost was $0.42 kg−1 ($28.40 ha−1) for
wheat production in all systems. Certified seeds are more expensive than uncertified seeds due to
the extra costs of cleaning seeds.

Manufacturer-recommended rates were programmed into ALMANAC’s management files to
control weeds. Herbicides and pesticides included in wheat budgets were Axial XL® ($0.04 g−1)
($29.39 ha−1), Finesse® ($0.58 g−1) ($10.18 ha−1), and dimethoate ($0.009 mL−1) ($8.12 ha−1).
Anhydrous ammonia (82-0-0) ($0.53 kg−1) ($16.00 ha−1), diammonium phosphate (18-46-0)
($0.42 kg−1) ($45.98 ha−1), and 28% urea ammonium nitrate ($0.26 kg−1) ($69.94 ha−1) were used
to fertilize wheat. Total fuel, lubrication, and repair costs for conventional till and NT wheat were
$140.42 and $78.10 ha−1, respectively.

Soybean and sorghum seed were $2.25 and $8.06 kg−1, respectively ($109.06 ha−1 for soybean
seed, $30.10 ha−1 for sorghum seed). Sorghum seed was treated with Gaucho® to protect against
chinch bugs. Anhydrous ammonia (82-0-0) was used to fertilize sorghum at $0.53 per kilogram
($31.01 ha−1). Bicep Lite II Magnum® ($0.03 g−1) ($37.94 ha−1), Atrazine ($0.004 g−1) ($3.56 ha
−1), and Sivanto 200 SL® ($0.09 g−1) ($34.37 ha−1) were used on sorghum to control for weeds and
insects, respectively. Bicep Lite II Magnum® ($0.03 g−1) ($47.86 ha−1) and glyphosate ($0.005 g−1)
($5.33 ha−1) were used on soybeans to control weeds. Total fuel, lubrication, and repair costs were
$61.90 ha−1 for NT soybean and $102.53 ha−1 for NT sorghum. Total fuel, lubrication, and repair
costs for conventional till soybean and sorghum were $97.52 and $133.65 ha−1, respectively.

Comparison of cropping system yield performance and net returns

Net returns and yield performance of cropping systems are analyzed graphically and empirically.
A two-sample Kolmogorov-Smirnov (KS) test is used to determine if each production system’s
yields and net return distributions were different (Kolmogorov, 1933; Smirnov, 1939). The null
hypothesis is that the two distributions are indistinguishable. The p-value associated with each
pairwise comparison is used to determine if the null hypothesis is rejected. KS tests were
performed using the ks.test function of the stats package in Rstudio (v. 2.1.461) (RStudio
Team, 2020).

Stochastic dominance (SD, Anderson, 1974; Mas-Colell et al., 1995) was used to determine if
risk preferences affected the decision to use a particular cropping system. SD analysis uses two
criteria to compare challenger and defender technologies: (1) First-degree stochastic dominance
(FDSD) and (2) second-degree stochastic dominance (SDSD). The first criterion assumes that
producers generally prefer higher to lower returns. The second criterion assumes that risk-averse
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producers prefer to avoid low-valued outcomes but tolerate upside variability in net returns
(Lambert and Lowenberg-DeBoer, 2003). In the generic case of any generic expected utility (EU)
function, FDSD implies that the utility function is monotonically increasing (u 0(x)> 0) in net
returns, meaning that individuals prefer more to less. SDSD implies that the second derivative of a
generic EU function is decreasing (u 00(x)<0) and monotonically increasing implies risk aversion
(Dillon and Anderson, 1990).

Graphically, FDSD occurs when a challenger’s empirical cumulative density function (ECDF)
of net returns is always to the right of a defender technology. The second assumption – that people
prefer to avoid variability in low net returns but tolerate upside variability – characterizes SDSD.
Graphically, the empirical distributions of net returns from competing technologies cross at least
once. A challenger with the lowest net return can never FDSD- or SDSD-dominate a defender.
However, suppose the total area of the crossover areas for a challenger with a larger minimum net
return exceeds the total area of crossover areas favoring a defender. In that case, the challenger
dominates the defender by the second-degree criterion. The stochastic dominance analysis was
conducted using a spreadsheet created by Lowenberg-DeBoer et al. (1990) and Hien (1997). In
FDSD and SDSD, a prevailing practice consistently yields a higher average return.

The stochastic dominance (SD) framework was used in this analysis because, unlike the
stochastic efficiency (SE) framework (Hardaker et al., 2015), SD requires fewer assumptions about
risk preferences; namely, choosing an expected utility function and risk aversion parameter is not
required. The rankings identified by SD are driven by the data and not necessarily by the expected
utility function selected. SD ranks a set of actions or technologies by progressively comparing one
alternative to the next until all comparisons are completed (Anderson, 1974). An ordering of
FDSD or SDSD technologies remains, including indeterminate cases where neither FDSD nor
SDSD can be established.

Sensitivity: cropping systems and weed pressure

A cost-to-go dynamic programming (DP) procedure (Bertsekas, 2000) is used to determine which
cropping system maximizes net returns over a planning horizon. Earlier applications of cost-to-go
programming include Burt and Allison (1963)’s study of rainfed WF systems in Kansas. Similar
DP applications have examined state-contingent optimal cropping strategies (El-Nazer and
McCarl, 1986; Farquharson et al., 2008; Jones et al., 2006; Livingston et al., 2015; Patino et al.,
2004; Periera et al., 2013; Tongtiegang et al., 2017; Van Kooten et al., 1990). Optimal policies are
determined by choosing a cropping system that maximizes the sum of discounted net returns over
each weed density state, measured as plants m−2.

A producer maximizes the expected present value of net returns ha−1 by choosing a cropping
system conditional on some level of observed weed pressure and on the tillage method employed.
The system used by the producer impacts weed pressure. For example, some practices may be
more effective in controlling weed seed banks over multiple periods than others. The producer’s
control variable is the cropping system j= WF, WS, or WSrgh. These systems are evaluated
separately for conventional till and NT systems, assuming that a producer would unlikely switch
back and forth between either tillage method from one season to the next. Some NT farmers might
switch to conventional tillage to manage weeds. Zhou et al. (2016) found this to be the case for a
limited number of cotton producers. Tillage methods are indexed by k = NT, conventional till.
Stages, or periods, are years and denoted as t = 1, 2, : : :T. The state variable is the level of weed
pressure and indexed as i = low (“L”), medium (“M”), and high (“H”). Details explaining these
categories and the likelihood of their occurrence follow in the “Weed Pressure Transition
Probabilities” section (below).

Net returns for wheat-double-crop systems in period t are the sum of the winter wheat and
summer crop net returns. For the WF system, period net returns are from winter wheat less the
costs of managing the field during the summer months (e.g., chiseling and herbicide applications)
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and the opportunity cost of renting the land ($ ha−1). Expected (average) net returns from a
system are used for comparisons, which means we assume that a producer makes decisions based
on expected yields and prices. The expected net return associated with each crop decision (j),
tillage type (k), and state i is πj

ik (Table 2).
An optimal policy determines which cropping system maximizes the sum of expected net

present values of returns, conditional on a weed pressure state. Bellman (1957)’s return function is
maximized to determine the sum of expected net returns over a T-period planning horizon. Let
vt(i) denote the discounted expected return for a t-period decision sequence under state i. The
return function is

vT�i; k� � maxj2�WF;WS;WSrgh�fπik
j � δ �PM

i0�1 p
jk
ii0 � vT�1�i�g, subject to

vT�1 i; k� � � 0 (3)

where t = 0, : : : , T; i = low, medium, high, i 0 aliases i, indexes weed pressure states; and [pjkii0] is a
matrix of transition probabilities governing the likelihood that weed pressure will increase or

Table 2. Net returns, simulated cropping system and weed pressure ($ ha−1)

Cropping System Lowa Medium High

Statistic Conventional Till No-Till Conventional Till No-Till Conventional Till No-Till

Wheat-Sorghum

Mean $77.88 $244.79 −$312.84 −$253.76 −$483.12 −$417.96

Minimum −$401.22 −$259.86 −$666.73 −$726.42 −$793.50 −$698.77

Maximum $442.67 $550.20 $8.42 $183.57 −$312.27 −$170.45

Std. Dev. 183.23 159.22 138.45 193.78 116.47 120.02

CV 235 65 44 76 24 28

Nb 19 19 19 19 19 19

Wheat-Soybean

Mean $318.19 $591.24 −$60.0221 $121.45 −$273.72 −$30.34

Minimum −$171.73 −$3.970 −$646.829 −$600.49 −$672.01 −$706.95

Maximum $745.63 $1031.68 $421.979 $507.68 $270.64 $466.35

Std. Dev. 212.85 273.38 245.8389 239.05 232.26 236.93

CV 66.89 46.23 409.581 196.82 84.85 780.73

N 19 19 19 19 19 19

Wheat-Fallow

Mean $75.05 $83.15 −$43.67 −$43.033 −$193.887 −$184.08

Minimum −$63.66 −$124.22 −$316.68 −$194.85 −$403.30 −$377.66

Maximum $151.67 $220.98 $71.57 $78.507 −$36.33 −$11.18

Std. Dev. 43.52 79.40 87.35 62.63 104.8588 108.44

CV 57 95 200 145 54 58

N 19 19 19 19 19 19

Notes: Yields used to generate net returns were simulated using ALMANAC (Kiniry et al., 1992). CV, coefficient of variation; Std. Dev., standard
deviation.
aLow = 10–20 Palmer amaranth and 5–10 horseweed plants m−2; Medium = 21–30 Palmer amaranth and 11–20 horseweed plants m−2;
High = 31–40 Palmer amaranth and 21–30 horseweed plants m−2.
bN = simulated periods.
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decrease from one period to the next (discussed below). The discount factor is δ and is calculated
as one divided by one plus the interest rate. The interest rate is 1.44 percent, the 2020 average long-
term US bond interest rate (OECD, 2022). The discount factor represents the producer’s
preference to enjoy net returns sooner rather than later. The constraint is a terminal condition and
implies that the value function is zero in the final period (that is, returns are zero once farming the
field ends). Equation 1 was solved using Miranda and Fackler (2004)’s ddpsolve package (Miranda
and Fackler, 2004) in MATLAB (R2020a, Update 7; MathWorks Inc., 2020).

Weed pressure transition probabilities

Transition probabilities govern the evolution of weed pressure from state i to i 0 between periods,
given the implementation of the (j, k)th cropping system. Each cropping system and
conventional till-NT tillage method has a unique transition probability matrix (six matrices).
Weed density is observed at the beginning of a planting cycle (fall) in state i = low (“L”),
medium (“M”), and high (“H”). Weed density levels were discretized by calculating the number
of weeds m−2 from ALAMANAC output and then categorizing the counts into discrete groups
based on classifications reported in the literature (Crose et al., 2020; Mahoney et al., 2021;
Shyam et al., 2020; Swanton et al., 2002; Van De Stroet and Clay, 2019). Under the low weed
pressure state, the number of horseweed and Palmer amaranth plants m−2 were five to 10 and
10 to 20, respectively. Weed counts m−2 for the medium density state was 11 to 20 and 21 to 30
plants m−2 for horseweed and Palmer amaranth, respectively. High weed pressure counts were
21 to 30 and 31 to 40 plants m−2, respectively, for horseweed and Palmer amaranth.

Weed biomass at wheat planting was used to benchmark the weed pressure categories.
Cumulative horseweed and Palmer amaranth biomass were recorded at wheat harvest and
converted to plants m−2. Palmer amaranth biomass was assumed to be 35 g plant−1 (Mahoney et al.,
2021). Horseweed biomass was assumed to be 4.3 g plant−1 (Nandula et al., 2015). Weeds m−2

counts were then assigned to L, M, or H states. Each system had 20 weed biomass measurements,
one for each simulation year.

Transition probabilities were estimated using a maximum likelihood procedure (Amemiya,
1985), which yields a closed-form solution for each probability:

pjkii0 �
mii0P
3
i0�1 mii0

(4)

where mii 0 is the number of times over the 20 periods that weed pressure was observed in state i,
period t, and was followed by the weed pressure moving to state i 0 in time t+ 1. Transition
probabilities were estimated using the markovchain package (Spedicato, 2017) in RStudio
(v.1.4.1106; RStudio Team, 2020).

As the number of periods increases, the transition probabilities converge to a stationary
distribution (Isaacson and Madsen, 1976). In other words, in the long term and no matter what
the beginning state is, steady-state transition probabilities proxy the proportion of time the system
will be observed in state i as πi. The stationary distribution of transition probability matrix P is
some vector π such that P0π � π. The vector π is constant for all states and implies that, over
the longer term, no matter what state of weed pressure the cropping area started in, the proportion
of time the cropping area spends in weed pressure state i is approximately πi for all i. Steady-state
transition probabilities were solved as a system of linear equations using Miranda and Fackler
(2004)’s procedure.

A drawback of using the transition probabilities in Eq. 4 is that weed pressure transitions are
assumed to be constant over time. This is a simplifying assumption. Weed populations have
variable lifecycles. The transition probabilities could differ between older weed populations with a
higher probability of natural die-offs and newly established populations (Torell et al., 1992).
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Information regarding the age of the weed population at the time of biomass measurement was
unavailable, and this simplifying assumption is a caveat.

Medium- and long-term net returns

Net returns from each system are calculated for medium- and long-term planning horizons. The
medium-term evaluation is a five-year planning horizon. There is no terminal value for the long-
term planning horizon (e.g., equation 2 is omitted), and land used to produce crops is assumed to
continue indefinitely. Burt and Allison (1963) and Kennedy (1986) show that, as the number of
periods in a planning horizon increases, the recurrence relation of Eq. 1 converges to an invariant
decision rule according to the properties of Markov systems. In the long term, an optimal policy
corresponding with a specific weed pressure state is invariant no matter the period. Thus, for a
long-term planning horizon, whenever a producer observes weed pressure state i before planting
wheat, the optimal decision rule is to implement cropping system j.

Backward induction cannot be used to solve infinite-horizon weed management scenarios. An
approximation method is required to find an optimal policy that maximizes discounted net
returns. A policy iteration procedure is used here, which solves optimal cropping systems, given a
prevailing state of weed pressure (Miranda and Fackler, 2004).

Sensitivity: net returns, weed pressure dynamics, and stochastic yields

Monte Carlo methods were used to evaluate the performance of each system under yield
uncertainty. The Monte Carlo simulation included the following steps form = 1, : : :M iterations.
First, the means and variances of each ALMANAC-simulated crop yield a = W, Soy, Srgh, for
cropping system j= WF, WS, and WSrgh and tillage method k= conventional till and NT under
weed pressure i= L, M, and H were calculated as ûia j� �k and σ̂2

ia j� �k, respectively. Afterward:

1. Yields from each cropping system were randomly drawn from a truncated normal

distribution, Ym
ia j� �k 
 N µ̂ia j� �k; σ̂2

ia j� �k
� �

;Y�
ij a� �k 2 R�.

2. Randomly drawn yields, Ym
ia j� �k, were used to re-calculate net returns for each cropping/

tillage system and weed pressure state (denoted as π̂m
ijk).

3. Equation 1 was re-solved, given π̂m
ijk.

4. Optimal cropping decisions under each weed pressure state were recorded as a (0,1) variable
at each iteration. For example, if NT-WF net returns were optimal under weed pressure state
L, then “1” was recorded for NT-WF, and “0” was assigned to challengers.

5. The probability that a cropping system was profitable under each state is the sum of the (0,1)
outcomes divided byM = 1,000 iterations. For example, suppose NT-WF net returns were
optimal 200 times when the weed pressure state was low. In that case, there is a 0.20
likelihood that this system generated the highest net returns, given stochastic yields and the
weed pressure state.

Results
Cropping system yields

The results section is structured as follows: Cropping system simulations are compared with
observed yields. Following this, net returns and yields are compared across different weed density
levels using both summary statistics and stochastic dominance analysis. Subsequently, transition
probability estimates are discussed, which is followed by the medium- and long-term results of
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dynamic optimization. Finally, results from the medium- and long-term dynamic optimization
with uncertainty are discussed.

Comparing simulated cropping system yields with observed yields is crucial because simulated
yields are derived from mathematical models representing different agricultural processes. This
comparison serves as means to validate the simulated data.

Average yields generated under the low weed density scenario were used to compare system
performance with observed crop yield data (Table 1). Soybean and sorghum did not perform well
during the 2020 El Reno field trials. Experimental data for sorghum and soybean yields averaged
less than 0.001 Mt ha−1. Therefore, sorghum and soybean yields from the National Agricultural
Statistics Service (NASS), 1990 to 2020 in Canadian County, Oklahoma, were used to calculate
soybean and sorghum yields (USDA-NASS, 2021). The average sorghum yield from NASS was
3.08 Mt ha−1. The NASS soybean average yield for the same period was 1.60 Mt ha−1. These values
were used to benchmark ALMANAC’s crop growth modules for these crops. Sorghum and
soybean yields generated by ALMANAC were 2.94 (WSrgh-NT and -conventional till average
yield) and 1.78 (WS-NT and conventional till average yield) Mt ha−1, respectively.

Simulated wheat yields were compared to the experimental trial data and the NASS wheat yield
data for the location and period listed above. The observed wheat yield average from the
experimental plots for WF systems was 3.85 Mt ha−1. The average wheat yield for Canadian
County was 2.30 Mt ha−1 (USDA-NASS, 2023). Simulated WF wheat yields were 3.09 Mt ha−1

(WF-NT and -conventional till average yield). The difference between simulated and observed
wheat yield averages may be attributable to assumptions about tillage and herbicide effectiveness.
The notable difference between the average wheat yield from NASS and the simulated wheat yield
average from ALMANAC may also be due to the management practices recommended for the
region (for example, fertilizer types and rates and seeding rates). In addition, average yields from
NASS may not have been obtainable under the same assumptions used in the crop growth model.
The average yield for wheat followed by a summer crop was 2.83 and 2.53 Mt ha−1 for WS and
WSrgh systems in the trial plots, respectively. Simulated WS and WSrgh wheat yields were 2.47
and 2.74 Mt ha−1, respectively.

Low weed pressure
Average wheat yields ranged from 2.12 to 3.16 Mt ha−1 (WF-NT) (Table 1). Average soybean
yields were higher for NT systems. In comparison, average sorghum yields were higher for
conventional till systems.

Moderate weed pressure
Average wheat yields ranged from 2.06 (WF-conventional till) to 2.42 Mt ha−1 (WS-NT) (Table 1).
Average soybean yield ranged from 0.66 (NT) to 0.87 Mt ha−1 (conventional till). Average
sorghum yields ranged from 1.23 (NT) to 1.28 Mt ha−1 (conventional till) (Table 1).

High weed pressure
Wheat yields ranged from 1.50 (WSrgh-conventional till) to 2.32 Mt ha−1 (WS-NT) (Table 1). The
highest average soybean yield was observed in an NT system. The highest average sorghum yield
occurred in a conventional till system (Table 1).

It is worth noting the variation in yield damage caused by weed pressure across different crops.
Among the cropping systems simulated, summer crops tend to experience more significant
damage from weed pressure compared to wheat crops. According to research by Flessner et al.
(2021), winter wheat typically faces yield losses ranging from 0.3 to 48 percent due to broadleaf
weeds. In contrast, soybeans can suffer yield losses of 17 to 79 percent due to Palmer amaranth,
and sorghummay experience losses of 38 to 63 percent from the same weed species, as reported by
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Ward and Webster (2013). These studies suggest that weed pressure has a comparatively lesser
impact on winter wheat compared to sorghum and soybeans. It is also worth noting that Palmer
amaranth has been observed to overcome cultural weed management practices, including crop
rotation (Crow et al., 2015). However, horseweed can be effectively controlled through tillage and
crop rotations, as indicated by Shaner et al. (2013). Therefore, it is more likely that summer crops
will suffer greater damage from weed pressure compared to wheat crops.

Net returns

All systems’ average net returns were positive when weed pressure was low but were negative at
higher levels of weed pressure (Table 2). Figures 1 and 2 show each system’s ECDFs. The net
return ECDFs indicate the performance of each system under different growing conditions. Lower
yield outcomes presumably occur when growing conditions are unfavorable (e.g., hot, drier
conditions), which decreases net returns.

Low weed pressure
Average net returns ha−1 were highest for WS, WSrgh, and WF systems under NT (Table 2). WF
returns were negative at the 3rd (conventional till) and 16th (NT) percentiles of its empirical
distributions (Table 3). Average net returns ha−1 for NT were more likely to exceed conventional
till net returns as growing conditions improved, as demonstrated by the intersection at the 25th

percentile of NT- and conventional till-WF distributions (Panel C, Fig 1). WSrgh systems had a
greater likelihood of generating higher net returns ha−1 compared to WF systems under moderate
and excellent growing conditions when weed pressure was low (40th percentile (conventional till-
WF/WSrgh), 5th (NT-WF/WSrgh)) (Panels C and D, Fig 2).

A higher percentage of net returns were negative for conventional till/NT-WSrgh systems
compared to WS systems (Table 3). WS systems were likelier to perform better under all growing
conditions when weed pressure was low than WSrgh systems (Panels A and B, Fig 2).

Statistical differences in net returns were observed between conventional till and NT WS
systems (KS test, p< 0.001) (Table 4). The NT-WS system FDSD and SDSD dominated the
conventional till-WS system. Hence, risk-neutral and risk-averse producers would favor NT-WS

Figure 1. Pairwise comparisons of wheat-sorghum (Panel A), wheat-soybean (Panel B), and wheat-fallow (Panel C) net
returns within system and weed pressure by tillage practice.
Notes: CT and NT denote conventional till and no-till, respectively.
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systems over conventional till-WS systems. Additionally, WS systems outperformed WSrgh
systems in both types of tillage when assessed by FDSD and SDSD. These rankings suggest that
risk-neutral and risk-averse producers would choose WS systems over WSrgh systems, regardless
of the tillage practice used. There were statistically significant differences in net returns between
WF and NT/conventional till-WS systems (KS-test, p = 0.001 (NT), 0.001 (conventional till))
and NT/conventional till-WSrgh systems (KS-test, p = 0.009 (CT); p = 0.001 (NT)).

Moderate weed pressure
NT systems generated higher net returns across all crop rotations (Table 2). In conventional till
and NT systems, the WS system outperformed the WSrgh system. WSrgh systems generated
higher average net returns ha−1 under NT than conventional till (Table 2).

NT-WSrgh net returns turned negative at the 92nd percentile (Table 3). All conventional till-
Wsrgh net returns were negative. Conventional till-WS and NT-WS net returns were negative up to
the 43rd and 16th percentile, respectively. Conventional till-WF and NT-WF net returns were
negative at their respective 62nd and 78th percentile distributions. When weed pressure was
moderate, the WSrgh-conventional till systems were more likely to generate higher net returns ha−1

(than Wsrgh-NT) when growing conditions were extremely poor, as shown by the intersection of
NT- and conventional till-Wsrgh CDFs at the 5th percentile (Panel A, Fig 1). The likelihood of
NT-WS net returns exceeding conventional till-WS returns was consistently higher in all growing
conditions (Panel B, Fig 1).

The NT-WF system dominated NT-WSrgh by the FDSD and SDSD rules, and were also
significantly different (Table 4). The NT system dominated conventional till by the FDSD and
SDSD criteria for the WS rotation (Table 4). Risk-neutral and risk-averse producers would prefer
using NT for a WS system. NT practices dominated conventional till by SDSD in the WF system
(Table 4). Research finds that well-performing herbicides can effectively replace tillage operations,
assuming that targeted weeds are susceptible to the herbicide (Wicks et al., 1988). Therefore, NT’s
dominance over conventional till might change if herbicide resistance was modeled.

Figure 2. Pairwise comparisons of WSrgh and WS (CT– Panel A, NT – Panel B), WSrgh and WF (CT– Panel C, NT – Panel D),
and WS and WF (CT – Panel E, NT – Panel F) net returns by system within tillage practice and weed pressure.
Notes: CT and NT denote conventional till and no-till, respectively. WF, WS, and Wsrgh denote wheat-fallow, wheat-
soybean, and wheat-sorghum systems, respectively.
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High weed pressure
In NT systems, WS net returns were comparatively higher than the other technologies but were
still negative. The WF system performed better than WS and WSrgh under conventional till. The
WSrgh system performed better under NT than conventional till. All WF and WSrgh net returns
were negative (Table 3). NT- and conventional till-WS generated negative net returns at the 43rd

and 81st percentile, respectively (Table 3).
The WF system dominated WSrgh by FDSD and SDSD under NT and conventional till

(Table 4). Conventional till/NT-WF and WSrgh net returns were also statistically different, as
were NT-WF and NT-WS net returns. The WF system generated higher returns under
conventional till and NT practices thanWSrgh systems. For theWS system, NT and conventional-
till net returns were statistically different for the WS system at the 1-percent significance level
(KS-test, p = 0.001, Table 4).

Cropping systems and weed pressure dynamics

Transition probabilities
The rows in Table 5 denote weed density in period t. The columns denote weed density at t + 1.
For example, suppose weed pressure was moderate in period t and the producer used a
WF-conventional till system (Row 2, Table 5). In that case, there is a 0.38 probability that the

Table 3. Cumulative probabilities associated with cropping system net returns by system, tillage, and weed pressure

Tillage System Weed Pressure

Percentagea of Net Returns (ha−1) that are:

≤ − $300 ≤ − $200 ≤ − $100 ≤ $0 ≤ $100 ≤ $200 ≤ $300

NT WS Low 0.00 0.00 0.00 0.00 0.00 0.05 0.11

NT WS Medium 0.05 0.11 0.11 0.16 0.35 0.51 0.70

NT WS High 0.08 0.19 0.30 0.43 0.54 0.81 0.92

CT WS Low 0.00 0.00 0.03 0.05 0.08 0.19 0.30

CT WS Medium 0.16 0.27 0.35 0.43 0.65 0.81 0.92

CT WS High 0.41 0.51 0.70 0.81 0.92 0.95 0.97

NT Wsrgh Low 0.00 0.03 0.03 0.05 0.16 0.35 0.65

NT Wsrgh Medium 0.38 0.57 0.78 0.92 0.95 1.00 1.00

NT Wsrgh High 0.92 0.97 1.00 1.00 1.00 1.00 1.00

CT Wsrgh Low 0.03 0.11 0.14 0.30 0.54 0.76 0.84

CT Wsrgh Medium 0.59 0.84 0.97 1.00 1.00 1.00 1.00

CT Wsrgh High 1.00 1.00 1.00 1.00 1.00 1.00 1.00

NT WF Low 0.00 0.00 0.05 0.16 0.54 0.95 1.00

NT WF Medium 0.00 0.00 0.19 0.78 1.00 1.00 1.00

NT WF High 0.22 0.35 0.81 1.00 1.00 1.00 1.00

CT WF Low 0.00 0.00 0.00 0.03 0.73 1.00 1.00

CT WF Medium 0.03 0.08 0.11 0.62 1.00 1.00 1.00

CT WF High 0.22 0.43 0.76 1.00 1.00 1.00 1.00

aPercentages were calculated from empirical cumulative density functions for system net returns (see Figs 1 and 2).
Notes: WF, WS, and Wsrgh denote wheat-fallow, wheat-soybean, and wheat-sorghum systems, respectively. NT and CT denote no-till and
conventional tillage practices, respectively. There were 19 observations used for wheat-soybean and wheat-sorghum systems and 19
observations used for wheat-fallow systems. Cropping systems were simulated using ALMANAC (Kiniry et al., 1992).

Journal of Agricultural and Applied Economics 59

https://doi.org/10.1017/aae.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2023.40


cropping area will transition to a low weed density state by the next period. If a cropping area is in
a medium weed pressure state, the tendency is that pressure will remain medium. An absorbing
state was identified for conventional till wheat-sorghum and wheat-soybean systems, as evidenced
by the transition probability of “1”. The implications for a farmer are that if a conventional till
wheat-sorghum (conventional till wheat-soybean) system is always used, then within nine years

Table 4. Stochastic dominance analysis of cropping system net returns ha−1

Pairwise Comparison Weed Pressure System Tillage FDSDa SDSD P-Valueb

By tillage, and weed pressures

NT vs CT Low WF – . . 0.135

NT vs CT Medium WF – . NT 0.720

NT vs CT High WF – . . 0.723

NT vs CT Low WS – NT NT 0.001

NT vs CT Medium WS – NT NT 0.002

NT vs CT High WS – . . 0.001

NT vs CT Low WSrgh – NT NT 0.001

NT vs CT Medium WSrgh – . . 0.076

NT vs CT High WSrgh – . . 0.226

By system, for tillage and weed pressures

WF vs WS Low – CT . . <0.001

WF vs WS Medium – CT . 0.020

WF vs WS High – CT . . 0.135

WF vs WS Low – NT WS WS <0.001

WF vs WS Medium – NT . . <0.001

WF vs WS High – NT . . <0.001

WF vs Wsrgh Low – CT . . 0.009

WF vs Wsrgh Medium – CT . . <0.001

WF vs Wsrgh High – CT WF WF <0.001

WF vs Wsrgh Low – NT . . <0.001

WF vs Wsrgh Medium – NT WF WF <0.001

WF vs Wsrgh High – NT WF WF <0.001

Wsrgh vs WS Low – CT WS WS <0.001

Wsrgh vs WS Medium – CT WS WS <0.001

Wsrgh vs WS High – CT WS WS <0.001

Wsrgh vs WS Low – NT WS WS <0.001

Wsrgh vs WS Medium – NT WS WS <0.001

Wsrgh vs WS High – NT WS WS <0.001

aA “.” in a column means that neither system was FDSD or SDSD.
bThe P-value is calculated for the Kolmogorov–Smirnov pairwise tests. The null hypothesis is that the distributions are not different.
Notes: Table 4 corresponds to Figures 1 and 2. NT and CT denote no-till and conventional tillage practices. WF, WS, and Wsrgh denote
wheat-fallow, wheat-soybean, and wheat-sorghum systems, respectively. There were 20 observations of wheat-fallow net returns and 19
observations of wheat-soybean and wheat-sorghum. FDSD and SDSD denote first-degree stochastic dominance and second-degree
stochastic dominance, respectively.
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(five years), the producer will end up always managing a medium-density weed population of
horseweed or Palmer amaranth. Intraspecific competition between weeds and continuous crop-
weed competition lowers the probability of weed pressure remaining in a high-pressure state
because of carrying capacity constraints and increased pressure on weed populations through
more intensive management. When weed pressure is low, the most likely outcome is that the
pressure will transition to a high-pressure state. This transition is likely because horseweed and
Palmer amaranth are prolific seed producers. Given the weed control methods considered here,
weed pressure in all cropping systems tended toward a medium pressure state in the longer term.

Steady-state transition probabilities were calculated to determine the frequency at which a
cropping area would be observed in a low, medium, or high state of weed pressure in the longer
term. For example, it would be expected that, on average, the likelihood a producer would observe
a low weed pressure state before planting is 0.21, given that a conventional till-WF system was
implemented (Table 5, Row 1, Column 6). Conventional till-WF and conventional till-WS
reached their steady-state probability distributions after five periods, while the WSrgh system
reached its steady-state distribution in nine periods. NT-WF and NT-WSrgh systems achieved
steady-state distributions in four periods, but the NT-WS systems still required five years. These
differences suggest that NT-WF and NT-WSrgh are relatively more stable (i.e., the steady state is
reached more quickly) regarding weed density and subsequent net returns than the other systems.
NT-WF and NT-WSrgh reach their stationary probability distributions sooner than the other

Table 5. Transition probabilities by cropping system

Tillage and Crop Rotation Transition Probabilities

Conventional Till t / t + 1 Low Medium High Steady State Steps to Steady State

Wheat-Fallow Low 0.25 0.25 0.50 0.21 5

Medium 0.38 0.50 0.12 0.42

High 0.00 0.42 0.58 0.37

Wheat-Sorghum Low 0.25 0.25 0.50 0.21 9

Medium 0.33 0.44 0.22 0.47

High 0.00 1.00 0.00 0.32

Wheat-Soybean Low 0.50 0.17 0.33 0.32 5

Medium 0.33 0.22 0.44 0.47

High 0.00 1.00 0.00 0.21

No-Till

Wheat-Fallow Low 0.25 0.25 0.50 0.21 4

Medium 0.37 0.50 0.13 0.42

High 0.00 0.43 0.57 0.37

Wheat-Sorghum Low 0.50 0.17 0.33 0.32 4

Medium 0.33 0.44 0.22 0.47

High 0.00 0.93 0.07 0.21

Wheat-Soybean Low 0.50 0.17 0.33 0.38 5

Medium 0.33 0.44 0.22 0.40

High 0.25 0.75 0.00 0.22

Notes: Calculated using Eq. 4.
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systems. The similarity of steps required to reach a steady state among NT/conventional till-WF
and NT/conventional till-WS systems suggests that tillage activities are not as impactful on the
stability of weed pressure relative to tillage activities in conventional till/NT-Wsrgh systems. The
similarity between NT and conventional till weed pressure transition probabilities in WF systems
suggests that weed pressure dynamics vary little between practices. Therefore, no single tillage
system appears to control better weed pressure dynamics in WF systems. Weed pressure did not
differ significantly between tillage systems in the longer term; therefore, tillage systems should not
be selected based on weed pressure management ability alone. Because weed pressure tends to a
medium-density level regardless of the tillage system, decisions regarding tillage systems should
include other components such as control costs.

Medium-term optimal cropping systems

Table 6 summarizes optimal cropping systems within a medium-term planning horizon,
employing a combination of current price and average yield optimization alongside a Monte-
Carlo analysis for both conventional-till and NT systems. Columns two to six represent the
findings for conventional-till systems. In contrast, columns seven to eleven illustrate the results for
NT systems. Columns two and seven present optimization outcomes with fixed prices and yields
which resulted in the selection of a single optimal system. Conversely, columns three through five
(conventional till) and eight through ten (NT) include the results from the Monte-Carlo analysis
which are percentages of Monte-Carlo iterations each cropping system was identified as optimal.

A five-year planning horizon was used to determine which system generated the highest net
returns for the medium term. Risk-neutral producers would implement WS systems in the first
four years under all states of weed pressure and conventional till and NT tillage systems (Table 6).
In the final year of the planning horizon, risk-neutral producers using conventional till systems
would switch to a WF system when weed pressure is high. Profit-maximizing producers using NT
would select WF systems in year five’s medium and high weed pressure scenarios. The switch from
WS to WF occurs because the producer makes no returns after the final year due to the terminal
condition of Eq. 2 and because weed control costs for WF systems are lower.

Cumulative discounted net returns ha-1 were positive for the low weed pressure scenario for all
years and highest under NT practices (Table 6). Conventional till systems generated negative but
higher net returns under medium weed pressure, while NT systems generated higher net returns
under high weed pressure. NT yields were generally higher than conventional till yields for nearly
all crops and weed pressure states when weeds are in medium and high, but conventional tillage
systems sometimes better clear the field of weeds before planting.

Sensitivity: medium term
For conventional till practices and low weed pressure, given stochastic yields, WS systems net
returns ha−1 were higher than net returns from the competing systems for 59 conventional till,
years 1–3) and 67 (NT, periods 1–5) percent of the 1,000 Monte Carlo simulations (Table 6). In
years four and five, there was a 0.60 and 0.54 probability that conventional till-WS systems
generated the highest net returns compared to challengers, respectively. WSrgh systems generated
the highest net returns for 31 percent of simulations when weed pressure was low and
conventional till was implemented (31 to 36 percent). When NT practices were implemented, and
weed pressure was low, WSrgh systems generated the highest net returns for 26 percent of
simulations. NT- and conventional till-WF systems had the lowest likelihood of generating the
highest net returns compared to challengers when weed pressure was low (range: 7 to 10 percent).

The likelihood that WF systems generated the highest net returns increased as weed pressure
increased. When weed pressure was moderate, WF systems had a 0.35 probability of producing
the highest net returns under conventional till practices in year one. This probability decreased to

62 Chellie H. Maples et al.

https://doi.org/10.1017/aae.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2023.40


Table 6. Optimal cropping systems assuming a 1.44% discount rate and a medium-term planning horizon

Weed Pressure State

Conventional Till NT

Optimal Cropping Systems

Cumulative Net Returns

Optimal Cropping Systems

Cumulative Net Returns
Current Prices,
Average Yields

Monte-Carlo Analysis
Current Prices,
Average Yields

Monte-Carlo
Analysis

WF WS WSrgh WF WS WSrgh

Year 1

Low WS 10% 59% 31% $216.85 WS 7% 67% 26% $354.941

Medium WS 35% 52% 14% −$246.36 WS 46% 41% 13% −$166.45

High WS 20% 70% 10% −$447.82 WS 13% 82% 5% −$362.40

Year 2

Low WS 10% 59% 31% $243.05 WS 7% 67% 26% $357.25

Medium WS 35% 52% 14% −$220.32 WS 46% 41% 13% −$163.98

High WS 21% 69% 10% −$422.39 WS 13% 82% 5% −$359.84

Year 3

Low WS 10% 59% 31% $267.71 WS 7% 67% 26% $360.119

Medium WS 35% 52% 14% −$194.14 WS 46% 41% 13% −$161.47

High WS 25% 67% 9% −$392.75 WS 15% 81% 4% −$358.37

Year 4

Low WS 9% 60% 31% $298.87 WS 7% 67% 26% $378.319

Medium WS 30% 52% 18% −$164.45 WS 43% 42% 15% −$165.56

High WS 38% 56% 7% −$379.29 WS 25% 72% 4% −$374.91

Year 5

Low WS 10% 54% 36% $271.98 WS 8% 67% 25% $323.975

Medium WS 27% 53% 20% −$137.27 WF 41% 44% 15% −$169.81

High WF 59% 39% 2% −$257.61 WF 54% 42% 4% −$235.74

Notes: WS denotes a wheat-soybean system, WSrgh a wheat-sorghum system, and WF a wheat-fallow system. NT denotes no-till operations. 1000 Monte Carlo iterations were performed.
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0.27 probability in year five. For NT-WF systems, the likelihood of the highest returns occurring
under the NT-WF systems decreased from 46 percent in year one to 41 percent in year five. When
weed pressure was moderate, the WS systems were most likely to generate higher net returns than
the alternative systems under conventional till. When weed pressure was high, conventional till-
WS and NT-WS systems were more likely to generate the highest net returns for the first four
years of the planning horizon. In the final year, when weed pressure was high, WF systems were
most likely to generate the highest net returns under conventional till (59 percent) and NT
(54 percent). WSrgh systems had the lowest likelihood of beating challenger systems under both
types of tillage, all years, under medium and high weed pressure.

Long-term optimal cropping systems

A risk-neutral producer would implement WS systems under all weed pressure levels and
conventional till and NT tillage practices over an infinite-planning horizon (Table 7). For all
cropping systems and weed pressure states, cumulative discounted net returns ha−1 were higher for
NT systems than conventional till. The most considerable difference in cumulative net returns
occurred in the high weed pressure state. NT cumulative net returns were approximately $1,500 ha−1

greater than cumulative net returns from conventional till systems. For a long-term planning
horizon, the optimal conventional till and NT systems agree with the system ranking found for the
first four periods of the shorter planning scenario.

Sensitivity: long-term planning horizon
For all weed pressure states, WS systems had the highest likelihood of generating the highest net
returns ha−1 compared to challenger systems under conventional till (Low: 59 percent; Medium:
51 percent; High: 70 percent). Under NT practices, WS was most likely to generate the highest per
hectare net returns under low and high weed pressure (Low: 67 percent; High: 82 percent)
(Table 7). The WF system was most likely to generate the highest net returns ha−1 under NT and
moderate weed pressure (40 percent). WSrgh systems had the lowest likelihood of generating
higher net returns than any alternative system when weed pressure was moderate and high. WF
systems were more likely to generate higher net returns than Wsrgh systems when weed pressure
was medium or highest under conventional till (Medium: 35 percent; High: 20 percent) and NT
systems (Medium: 47 percent; High: 13 percent).

Conclusions
This research identified optimal wheat cropping systems for rainfed SGP producers managing
Palmer amaranth and horseweed. Wheat-fallow, wheat-sorghum, and wheat-soybean conven-
tional tillage and no-till systems were compared under different levels of weed pressure. Findings
suggest that even though WS systems are more expensive to implement than WF systems, WS
systems generate higher monetary benefits over medium and long-term planning horizons,
especially when weed pressure is low. Significant differences existed between wheat-double crop
system costs and summer crop prices. WSrgh systems are more expensive to implement relative to
WS systems. Additionally, soybeans do not require nitrogen fertilizer, keeping soybean production
costs lower than sorghum production costs. If input costs or crop prices were to change by a large
enough margin, WSrgh systems might become a challenger system for managing established weed
populations for rainfed SGP wheat producers. However, it is noteworthy that yield penalties were
higher for sorghum due to weed pressure compared to soybeans. SGP producers should consider
differences in expected yield performance between soybean and sorghum under various levels of
weed pressure when considering a summer crop for double-crop systems. However, it is important
to note that simulated soybean yields were higher than NASS-reported soybean yields, and
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sorghum yields were lower than NASS-reported sorghum yields. Because simulated soybean yields
were higher than NASS-reported yields, WS net return estimates may be higher than if NASS-
reported yields had been used. Conversely, because sorghum yields were lower than NASS-
reported yields, WSrgh returns may be lower than if NASS-reported yields had been used.
However, NASS-reported yields do not include information about the cultivation practices used to
produce crops. Finally, it is important to note that results may differ if prices are not held constant.
Holding prices constant was a simplifying assumption to isolate the effects of cropping systems on
net returns caused by changes in yield. Incorporating annual input costs and output price
variability would be a natural extension of this research.

Producers may be inclined to choose specific systems depending on risk preferences. Between
wheat-double crop systems, risk-neutral and risk-averse producers would choose WS systems over
WSrgh systems, as suggested by the stochastic dominance results. Risk-averse wheat-fallow
producers would likely choose NT systems over conventional till systems under moderate levels of
weed pressure. Regardless of risk preferences, producers would likely choose wheat-fallow systems
over a wheat-sorghum double-crop system when weed pressure is high.

In addition to the previously mentioned caveats, the analysis did not account for intraseasonal
weed control. Producers constantly monitor their fields for new flushes of weeds. Once a flush is
identified, the producer can decide which treatment option to implement. The cropping
simulations conducted in this research follow a predetermined schedule for all weed control
operations. The primary objective of the yield simulation component of the study was to compare
the simulated data with experimental data (for simulation validation purposes), which requires the
execution of planned activities at specified times. Employing a fixed timeline also ensures uniform
field management practices.

The weeds selected for the analysis are highly problematic summer and winter annual weeds
common to the SGP region. Focusing only on these weeds suggests opportunities for future
studies. Other problematic weeds for the region include Russian thistle (Salsola tragus), bindweed
(Convolvulus arvensis L.), cheatgrass (Bromus tectorum L.), and kochia (Kochia scoparia). The
study focused on identifying which cropping systems performed best in terms of expected
profitability under different levels of weed pressure. An extension of this research could examine
the role of crop insurance and the choice of cropping system under various levels of weed pressure.

Table 7. Optimal cropping systems and Monte Carlo analysis results by weed density state, assuming a long-term planning
horizon

Optimal Cropping Systems using Current Prices and Average Yields

Conventional Till NT

Weed Pressure
State

Optimal Cropping
System

Cumulative Net
Returns

Optimal Cropping
System

Cumulative Net
Returns

Low WS −$1,053.74 WS $186.75

Medium WS −$1,998.40 WS −$334.64

High WS −$2,201.30 WS −$530.59

Monte Carlo Analysis Results using Current Prices and Stochastic Yields

WF WS WSrgh WF WS WSrgh

Low 10% 59% 31% 7% 67% 26%

Medium 35% 51% 14% 47% 40% 13%

High 20% 70% 10% 13% 82% 5%

N 1000 1000

Notes: NT denotes no-till. N denotes the number of Monte Carlo iterations.
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The cropping systems simulated in this analysis were selected to align with experimental
cropping systems currently implemented at the El Reno, Oklahoma, USDA-ARS research station.
WS rotations were planted to compare against other rotations. Given the soil and growing
conditions in the area, they may not reflect what producers in the SGP currently prefer to plant.
Finally, the findings apply to regions of the SGP that reflect similar growing conditions that
generated the data used in this study. Findings may not necessarily represent other areas of the
SGP where soil characteristics and growing conditions are different.
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