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( i ) I N T R O D U C T I O N 

The most immediate purpose of the study of stellar stability is to discover 
the sources of incipient instability which must be responsible for the ob­
served variability of a great number of stars. 

I will only discuss here the stability of the star as a whole. Local insta­
bilities such as buoyancy due to a super-adiabatic gradient or peculiar 
magnetic fields [l] will be considered (only) in so far as they might have an 
influence on the general stability of the star. 

Compared to the classical, mainly mechanical questions of stability, 
a significant difference is that the thermodynamical factors are here of 
primary importance. Up to now, two lines of attack have been considered. 
One which has not received a great deal of attention [2] endeavours to 
formulate a principle of minimum in analogy to the principle of the 
minimum of potential energy for mechanical systems. In this connexion, 
and since all considered systems are open, one may wonder whether the 
principle of the minimum rate of entropy production and the considerable 
amount of work done in that field during the last few years [3] might not 
find interesting applications in some aspects of the problem. 

The other method more fully worked out by Jeans, Eddington, 
Rosseland, Cowling and others is based on the theory of infinitesimal 
perturbations and has led to the recognition of three main types of 
instability: 

(a) Secular stability, which has been studied mainly for special types of 
perturbations corresponding to homologous transformations [4] and which 
is of interest for very slow changes such as have been usually associated with 
the notion of stellar evolution. 

(b) Dynamical stability, which is realized if the star, subjected to a small 
adiabatic perturbation varying with time as ei(T\ can oscillate with a 
finite real frequency cr. Instability here is connected with the occurrence 
of imaginary frequencies leading to 'explosions'. 
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(c) Vibrational stability, which characterizes the variation with time of 
the amplitude of the oscillation when deviations from isentropic motion 
are taken into account. 

Here, we are primarily interested in the last two types of instability. 
Do the observations provide any clue as to the type of instability present in 
different classes of non-stable stars? Table i contains, for some of these 
stars, three of the characteristics which seem most fundamental in that 
respect: the period or time separation r o b s in days between similar phases 
(when the phenomenon repeats itself), reduced by the homology factor 
^PlP® where p is the mean density; the ratio AL/Z, where AZ, is the maximum 
deviation from the average (or normal) luminosity L ; and the ratio 
^ / ( A N I N . x r o b s ) , where E is the total energy emitted during the outburst. 

Nearly all figures given are subject to considerable uncertainties. In 
particular, the computation of p rests upon the use of the mass-luminosity 
relation and the relation between radius, luminosity and spectral type, both 
of which might show systematic effects when going from population I to 
population II. However, they are probably sufficient for a qualitative 
discussion. 

Table i. Some Fundamental Characteristics of Non-Stable Stars [5] 

Class 

Classical cepheids 
Red semi-regular variables 
Long period variables 
R R Lyrae 
W Virginis stars 
Short period variables (in clusters) 
R V Tauri stars 
S X Herculis stars 
/? Canis Majoris stars 
S X Phoenicis 
Flare stars 
T Tauri stars 
R W Aurigae stars 
Z Camelopardalis stars 
U Geminorum stars 
Recurrent novae 
Classical novae 
Super-novae 

0-04 
~0*04 
~o*o7 

0*06 
0*07-0-15 

- 0 - 1 5 
~ 0-15-0-30 
~ 0*30-0-40 

0-04-0-09 
0-08 
I O 

p 
J > 

Large 
500 
I O 4 - I O 5 

Very large 
0 0 or extremely 
large 

AL/L 

Small 

5-100 
10-20 

30-50 } 
j - Very large 

Extremely large 

•̂ mln. x TobB. 

i to £ 

1 to i 

Smalls o-o 1 

3 to 5 
1 to J 
1 to i? 

The figures in the second column of Table 1 should be compared to the 
theoretical periods of oscillation. As very complicated modes are unlikely, 
we can use for this purpose the periods of the fundamental mode of radial 
pulsation which are given for different models in Table 2. 
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On this basis, one would be tempted to consider roughly two main 
groups. In the first one (regular variables and some semi-regular or irregu­
lar variables), theoretical and observed periods are of the same order of 
magnitude and AL/L is of the order of unity. The problem here is essentially 
that of explaining the appearance and the maintenance of the oscillations: 
that is, it is a problem of vibrational instability. 

Table 2. Theoretical Periods Tih\Jp/p® for Different Models 

Poly trope Modified [7] Epstein 
n=i*5 Original[6] model (with large 

Homogeneous (convective Standard Epstein external convection 
model model) model model zone) 

pjp = i 6 54 2 X I O 6 i-2 x i o 6 

Tux-Jp/P® = 0-1156 0-075 0-039 0-03 1 0-056 

In the second group, the length of the cycle increases extremely rapidly 
as compared to the theoretical periods which, probably, have no signifi­
cance for the observed phenomena. At the same time, ALjL becomes very 
large. It would seem that in those cases, the stars are on the verge of some 
kind of dynamical instability which manifests itself from time to time. On 
the other hand, if we exclude the flare stars, the last column of Table 1 
(which reproduces values quoted by Schatzman[8] in discussing an 
extension of the Kukarkin-Parenago relation) would rather suggest some 
kind of underlying unity between all these phenomena. A detailed investi­
gation of this point would be interesting, but we should note that, in these 
considerations, the phase of minimum luminosity plays a privileged role 
and this is perhaps not at all justified, especially for the regular variables. 

Before discussing the theory, let us recall that the discovery of an'insta­
bility by the perturbation method does not necessarily mean that the whole 
star will cease to exist, since the increase of the amplitudes to finite values 
might very well remove the cause of instability or call in stabilizing factors. 

(2) D Y N A M I C A L I N S T A B I L I T Y 

There is a rather significant difference between radial and non-radial 
perturbations and we shall discuss them separately. 

(a) Radial perturbation 

It is well known that in this case the formulation of the problem leads to 
a linear equation of the Sturm-Liouville type where the square of the 
frequency cr2 plays the role of the parameter. 

The eigenvalues <r\ (1 = 0, 1, 2 , . . . ) ordered by increasing values corre­
spond to eigenfunctions ^ defining the relative displacements (Srjr)i for 
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successive modes with o, i, 2 , . . . i nodes between the centre and the surface. 
Thus any instability (cr2<o) will manifest itself first through the funda­
mental mode (<r0, £0), and it is then sufficient to discuss this case. Its 
frequency is given by [9] 

£ 0 47Tyor4 dr J %npr* dr 

where £0 and — (8p/p)0 are everywhere positive and I \ is a generalized 
ratio of specific heats for a mixture of radiation and ionized gas, the nuclei 
of which might be taking part in thermo-nuclear reactions or might even 
have reached a state of nuclear equilibrium. If I \ is constant, one finds 
immediately the well-known result that the condition for instability is 

i \ < f . (2) 

Of course, strictly speaking, Tt will never be a constant, as the ionization 
of an electronic shell of an abundant element can lower its value appre­
ciably and even render it smaller than f in the region of the star where it 
takes place. 

However, with the accepted predominance of H and He and for normal 
stars, these layers of low T x are rather narrow and only occur fairly close to 
the surface of the star, where the product P(8p/p)0 is small so that they 
affect very little the appropriate mean r \ (cf. equation (1)), which in this 
case should replace I \ in equation (2) . 

A negligible abundance of He and H would be more favourable especially 
for large masses, where the pressure of radiation would tend to decrease 
I \ everywhere. However, a detailed discussion of the standard model [io] 
has failed to reveal any physically significant case of instability for normal 
dimensions. 

Of course, the model chosen might influence the result somewhat since 
the region of greater weight for ( 3 ^ — 4) will displace itself according to 
the central condensation. However, a rapid comparison between Epstein's 
model and the standard model did not disclose any important differences. 
One may then conclude that the chances of dynamical instability towards 
purely radial perturbations of any aggregate of ordinary matter of stellar 
dimensions are extremely small. 

However, Biermann and Cowling have pointed out [2] that if one goes 
to a larger and larger radius for a given mass, a configuration devoid of 
H and He will finally reach a state of dynamical instability for sufficiently 
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large dimensions. A slight admixture of H and He will increase the critical 
radius and it would be worth while to extend their discussion to the case of 
large H and He abundances, as it might have interesting cosmological 
applications in problems such as the formation of stars by condensation of 
interstellar clouds. 

Up to now, we have only considered the effects of ionization on I \ , but, 
of course, the influence of nuclear reactions on these problems could also 
be discussed through their effects on I \ . In fact, thermo-nuclear reactions 
which lead to a rate of generation of energy e, directly proportional to some 
powers of the temperature T and density p, would add an imaginary part 
to r x that would affect the vibrational stability of the star, so that this type 
of reaction is of no interest here. 

On the other hand, in the case of a real nuclear equilibrium, e is pro­
portional to the time derivative of T and p, and nuclear reactions contri­
bute a real term to Tv If T and p are large enough so that an equilibrium 
is established between nuclei and elementary particles such that any 
further increase in T or p leads to further dissociation of complex nuclei, 
I \ could be reduced to a value close to i in a large part of the star and this 
could lead to a violent instability. 

For instance, in Hoyle's theory [ii] of the formation of heavy elements in 
stars, the phase of collapse under gravity and the reversal of this into a 
phase of explosive expansion by means of the centrifugal force is a manifes­
tation of dynamical instability due to this cause. 

According to Hoyle, this could explain the origin of super-novae. This 
very interesting case should be studied anew carefully from the point of 
view of dynamical instability using quantitative arguments. 

(b) Non-radial perturbation 

The problem of non-radial perturbations is more complicated, but it 
presents an interesting possibility of interaction between what we call here 
dynamical stability and the stability towards convection, which is insured 
by Schwarzschild's criterion: 

. i dp i dP . N 

A=--j- 5 - y - < ° - (3) 
pdr yP dr KOJ 

If equation (3) is violated, it can be shown [12] that non-radial perturba­
tions of sufficiently small wave-lengths will be unstable. On the other 
hand, the stability of purely radial oscillations (infinite horizontal wave­
length) is not affected by the sign of A . What does happen in the interesting 
case of intermediate wave-lengths? The problem is difficult, but there are a 
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few cases where it can be discussed more or less completely. Let us con­
sider first the case of the homogeneous compressible model which, as 
Pekeris has shown [13], is amenable to a complete analytical treatment and 
which is highly unstable towards convection: 

Considering non-radial perturbations represented by series of terms of the 
form 

f(r) (cos 6) e

± i m h i ( r t , (5) 

s and m being integers, and — s<m<s, Pekeris has shown that as soon 
as one departs from purely radial perturbations (s = o), unstable modes 
appear. Table 3 summarizes the numerical results obtained by Mme Sau-
venier-Goffin [14] for the first few modes. In this Table, s refers to the degree 
of the spherical harmonics and k to the number of modes of Sp along the 
radius. 

Table 3. Values °ffi = -^^for r i = 5/3 

O / 

'{J 

o / 

k = o k=i k = 2 £->oo 

1 1 2 - 6 6 6 31 - > 0 0 
8-39 2 6 - 2 3 5 1 - 1 2 - > 0 0 

- 0 7 3 - 0 - 2 2 5 — 0*117 ->o 
1 2 - 0 33*03 6 1 - 2 0 - > 0 0 

— I ' O - 0 - 3 6 3 - 0 - 1 9 6 - > O 

I5 - 6 l 39-84 7 1 - 2 8 - > 0 0 

- I - 2 8 I - 0 - 5 0 2 — 0 - 2 8 0 6 - > O 

I 1 2 - 6 6 6 31 - > 0 0 

One notices that for each value of s (s^o) and k there are two modes, 
one with an important vertical displacement 8r corresponding to the 
largest value of er2 and another for which the displacement is mainly 
horizontal; these were called p - and ^-oscillations by Cowling. It is 
through the £-modes that the instability manifests itself, and it increases 
with s and decreases when k increases: in other words, the most unstable 

perturbation is that with the smallest horizontal wave-length ^ " j ? ^ u t 

the largest vertical wave-length ^ o c ^ - O n e may expect that this will 

remain true generally [12] and a recent paper by Skumanich[i5] has con­
firmed it again in the particular case of a polytropic atmosphere. Of 
course, viscosity and heat conduction might decrease the instability of some 
of the higher modes or even make them stable [16]. 
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The next simplest case is that of the polytropes discussed by Cowling [17] 
in neglecting the perturbation of the gravitational potential. Cowling's 
reasoning can be extended [18] easily to the general case, starting from the 
basic equations: 

d6 i dP ^ \sls+i) r2p] s(s+i)U' ,~ 

where 0 = r28r, y = P'jp, P' and U' being the eulerian perturbations of P 
i dP 

and U, and e = =-. The elimination of U' is difficult, however, and leads 
b p dr 

to a fourth order differential equation with very complicated coefficients. 
If, following Cowling, one neglects U', and introduces variables 

v = r2SrP1'ri and w=ypP^v^P'P-^, 

then equations (6) and (7) can be written: 

do 
dr - { cr2 VxP)pr ' W 

dr 

Eliminating w and v successively, one finds 
pP-Wi dv 

d - £ = k<r2 + AS>P~2irV- (9) 

A 
dr s(s+i) r2p dr 

~*^~T\P J 

^ + Ag)pP-"rlv, (10) 

d \ dw] \s(s+t) r2p]w 
dr[(<T* + Ag)pdr\ [ a2 i y l p ' K 1 

Kcr2 becomes large (/(-modes), and one neglects s(s+ i)/<r2 in comparison 
to r2plYxP and Ag in comparison to cr2, equation (10) becomes 

d /ripi-vridv\ cr 2 _ 2 / r , , 

which is of the Sturm-Liouville type and admits a spectrum of positive 
eigenvalues o% increasing with the order of the mode considered. 

In the same way, if cr2 becomes small (g-modes), equation (n) reduces 
to 

dr\ Agp dr) 
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which is again of the Sturm-Liouville type. If A is everywhere negative 
(condition (3) for thermal stability satisfied everywhere), (13) admits a 
spectrum of positive eigenvalues cr2, decreasing with the order of the 
mode considered. In that case, the g-modes as well as the />-modes are all 
stable. 

If A is positive everywhere (condition (3) for thermal stability violated 
everywhere), the eigenvalues cr2 of (13) will all be negative, and this time, 
all the g-modes will be unstable. 

Multiplying (13) by w and integrating the first term by parts and noting 
that the integrated part is zero, one gets 

(*R 

s(s+i) P^p-^wHr 

J o Agp \dr) 

confirming the fact that if A is of one sign everywhere, a2 is of the opposite 
sign. If A changes sign, one sees that it is the sign of an appropriate mean 
value of A which determines the stability of the star. 

However, the results obtained from these approximate considerations 
can only be considered as indications. In particular, the passage from (10) 
and (11) to (12) and (13) involves some delicate points since, close enough 
to the centre or the surface, the terms neglected become of the same order 
as the terms kept. 

For instance, one could integrate directly (10) multiplied by v and 
obtain ^ R 

(dv\2

J rrl dr 
\dr) 

/s(s+i) pr2\ I <r2 YXP) 

= 0, 

dr = o. 

J o r 2 ^ . + J 0 r 2/> 2/ r. + 

or using (8), 

Ho ^ d r + ) o w ^ v d r + h r^—vf) 

If cr2 is large, one then gets 

which shows that even for the />-modes, the values of A play a certain role. 
For the g-modes (cr2 small), one would get in the same way, 

0-2Jo v ' 9 J o ^ P p J 0 r 2 P 2 / r i 
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which again shows that even for the g-modes, A alone does not really 
determine the sign of cr2. 

One can easily imagine also that in cases close to instability (<rg->±o), 
the neglected terms in U' could have important effects. 

Any general progress in this problem would certainly be very useful, but 
even the detailed study of a few special cases would already be very 
interesting. 

The interest of these possibilities of dynamical instability connected with 
convective instability arises from the fact that the last type of instability 
must be very common. 

Of course, we usually admit that convective equilibrium will replace 
radiative equilibrium as soon as condition (3) is violated and this is in 
reasonable agreement with the result mentioned previously, that the most 
unstable perturbations are those of small horizontal extent. 

However, in a region in convective equilibrium, we know that the actual 
gradient always remains slightly super-adiabatic so that A remains equal 
to a small positive quantity e. If this situation prevails in the whole star, 
it is very likely, from our previous discussion, that there will be unstable 
^-oscillations, and it would be very interesting to compute the lowest 
degree s of the harmonic which can become unstable, let us say, for the 
first mode. 

The same type of problem should also be solved for a star comprising a 
convection zone and a part in radiative equilibrium. It is possible that 
many minor and erratic changes could be traced back to this type of 
instability arising in an external convection zone. 

Of course, the situation would be much more favourable to this type of 
dynamical instability, if A could become large and positive in an important 
external zone as was once proposed by Biermann[i9]. In that case, one 
might expect a violent instability for fairly low harmonics which would 
lead to the ejection of material in the form of a few separated jets. Indeed, 
this seems to occur at least in some novae. 

(3) V I B R A T I O N A L I N S T A B I L I T Y 

Here we want to study the influence of the deviations from isentropic 
motion. We shall neglect friction for the time being and admit that the 
oscillation takes place through a true equilibrium state in which 

1 
e 0 - - d i v F 0 = o, (17) 

Po 

where e0 is the rate of generation of energy at equilibrium and F 0 , the flux. 
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In that case, the theory of perturbations [20] shows that the star will be 
vibrationally unstable towards the k-mode of oscillation if 

where L(r) =4.nr2F(r). 
Since for all nuclear reactions of interest, e increases with p and 7~, 8e 

will be of the same sign as 8T and the first term of the integral in (18) will 
always contribute to the instability. As Eddington was the first to point 
out, however, phase-delays depending on the ratio of the period (277/0*^) to 
the mean lives of the nuclei may occur in the different reactions considered 
and some care must be taken in the evaluation of Se. One can always write 

but /ieit and v e t t may be appreciably different from the exponents in 
e^Cp^Tv at equilibrium[21]. However, in the current models for main 
sequence and giant stars, /iett ~/i=i and vett ^ 20. 

If the heat capacity of the external layers is small, 8L(r) remains every­
where in phase with 8T and for all ordinary opacity laws, the main term 
in d[8L(r)]/dm is proportional to d(8T\T)\dm and in a first approximation 

Thus the second part of the integral in (18) will always be negative and 
contribute to the stability if (8T/T) increases in absolute value with m(r). 
For the fundamental mode of radial oscillations, this is certainly the case 
for all these models. 

Furthermore, the first part of the integral can be limited to the region 
where the generation of energy takes place, that is, close to the centre 
where the amplitudes Spjp, 8TjTare small. The second part gets its main 
contribution from the external layers where the amplitudes are large. As 
Cowling [22] was the first to show, this makes ordinary stars extremely stable. 

With increasing masses, the increasing pressure of radiation lowers the 
value of T1 and T 3 , and this reduces the increase of (Srjr) from the centre 
to the surface and vibrational instability becomes possible if veU ~ 20, for 
masses of the order of 100 m®[23]. 

There has been very little discussion of the vibrational stability towards 
higher modes of radial oscillations but, except in very exceptional cases [23], 
it should even become reinforced since for a given value (8r/r)0 at the 

(20) 
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centre, the value (Sr/r)R at the surface increases with the order of the mode. 
Furthermore, the damping due to friction increases rapidly with the order 
of the mode. 

As far as non-radial oscillations are concerned, Sp/p and 8TJT tend 
towards zero at the centre, and the tendency to instability due to nuclear 
reactions would practically disappear altogether in this case. Since the 
damping due to friction also increases very rapidly here with the degree 
of the harmonics, it is very probable that the vibrational stability would 
again be reinforced. 

Thus, from now on, we will consider only the fundamental mode of radial 
pulsation. However, we have seen that for ordinary models, the prospects 
of vibrational instability are rather poor. 

What kind of changes could bring about vibrational instability? 
Let us assume first that the calorific capacity of the external layers 

remains small to avoid any phase difference between 8T and SL(r). If, 
furthermore, we keep to models with large central condensations and values 
of T x close to f, it would seem that the only possibility consists in displacing 
the zone of generation of energy towards the surface. But we are limited by 
the well-known hydrostatic difficulty of building models with large iso­
thermal cores [23], Furthermore, since e must be sensitive to p and T in 
order to play a role in condition (18), it seems impossible at the same time 
to have an appreciable fraction of the luminosity L generated in the 
external part of gaseous stars. 

Changes in the opacity law do not seem to be very promising either [23 j 
in ordinary stars. 

In cool stars, surface phenomena which have been invoked repeatedly 
such as the formation of 'veils' or clouds could play a role, but although 
they undoubtedly could be responsible at least for light variations, it is 
difficult to find a natural way of adjusting them to the right phases in 
order to give the type of instability we are looking for as well as oscillations 
with a period depending upon the mean density of the star. 

According to Schatzman[2i], at very high densities some nuclear reac­
tions might have large values of ju,ett or vett. But to realize these condi­
tions towards the centre of a normal star, the central condensation would 
have to be so large that the increase of (8rjr) from r = o to r = R would be 
enormous, and it is not sure that even those high values of /iett and vett 

would make such a star unstable. 
Of course, the best way would be to reduce the ratio (oV/OW W r)o- But 

this requires either a change in the model towards smaller central con­
densation or an appreciable lowering of I \ . Both these occur, for instance, 
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in white dwarfs, and there vibrational instability is difficult to avoid [24] 
if nuclear reactions take place. But we know that other considerations 
also tend to exclude them [25]. But for normal gaseous stars, a decrease in 
T± seems unlikely and a decrease in central condensation would create new 
difficulties in explaining the generation of energy at equilibrium. 

One might think also of introducing some kind of very strong viscosity 
in a large external part of the star. Of course this would imply an extra 
damping proportional to r 

dr 
(21) 

where /i is the coefficient of dynamical viscosity, but at the same time it 
would tend to make (Sr/r) a constant in that part. Thus, since the effect of 
viscosity would decrease the variation of (Sr/r), the damping due to 
viscosity itself would decrease as well as that due to the flux, the destabiliz­
ing effects of the generation of energy would increase, and one might pos­
sibly reach a state of balance. 

Of course ordinary viscosity (molecular or radiative) is much too small. 
Even if one corrects Persico's [26] result by taking into account a large 
abundance of hydrogen which gives a value of /i that is 200 to 300 times 
larger, the damping time for the fundamental mode due to viscosity alone 
remains much too large (of the order of io 1 1 to io 1 3 years, depending on the 
model). But turbulent viscosity taken proportional to pel might be io 1 1 to 
io 1 2 times larger than ordinary viscosity, and if it would act in a sufficiently 
large region, a reconsideration of the problem might be worth while. 

Finally, one could try to introduce a phase lag between SL and ST 
through the effects of non-adiabatic processes in the external layers, which 
must now have an appreciable heat capacity. In that case, the contribution 
to the integral in (18) of the term 

d[dL(r)] 

(¥) ' dm 5 

where ST/Tk only the adiabatic part of the temperature variation, can be 
made as small as one wants provided the phase lag between (STjT)^ and 
SL is properly adjusted. 

Eddington[27] thought that the convection zone of hydrogen, which is 
capable of storing energy during the contraction and of liberating it during 
the expansion, could provide the necessary heat capacity. This point does 
not seem to have been definitely settled. Recently Zhevakin [28] has con­
sidered the effects of the ionization zone of helium and he believes that this 
effect would raise the capacity sufficiently. 
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In Eddington's theory, the phase of the displacement Sr is affected very 
little so that the wave remains mainly a standing wave. However, the case, 
first considered by Schwarzschild [29], where the wave takes a progressive 
character in the external layers is also very interesting. However, there 
does not seem to be any discussion of vibrational stability for such a case. 
For the simple adiabatic progressive wave discussed by Schwarzschild in 
his first papers on the subject, it is possible to show that the instability with 
respect to the case of a standing wave is not increased. But it would be 
interesting to consider more general types of progressive waves. 

(4) C O N C L U S I O N S 

Our review of the more classical aspects of the theory did not provide us 
with many possibilities for instability dynamical or vibrational, and the 
few cases left open will require probably a good deal of critical study before 
definite conclusions can be reached. 

We have neglected some factors such as rotation or magnetic fields, for 
instance, which might be important at least in some cases [i, 30], but I 
doubt that they could contribute to a general instability for normal stars. 
Schatzman[2i,3i] has introduced an interesting idea, according to which 
a nuclear explosion could be started by an oscillation which becomes 
vibrationally unstable. But apart from difficulties in following the effects 
of this explosion, the main problem is still to discover the source of the 
vibrational instability. It is true, however, that if this idea is used to try to 
explain a nova outburst, the normal state of the star must be rather peculiar, 
approaching the white-dwarf stage where vibrational instability might 
be more common. 

One should note also that the perturbation method used here does not 
necessarily cover all possible cases of instability or periodic variations. In 
this last respect, non-linear oscillations have received little attention, but 
one must admit that up to now, the evidence for physical factors capable of 
maintaining such oscillations seems to be lacking [32], 

On the other hand, the purely hydrostatic approach to the problem of 
the internal structure of stars has revealed that evolutionary sequences of 
models can, for instance, lead to critical situations such as a maximum 
convective or isothermal core or very critical conditions for the existence 
of radiative or convective equilibrium in a part of the star. It would be 
interesting in these cases to replace the hydrostatic approach by a dynami­
cal one taking into account non-linear terms. This might reveal interesting 
new possibilities, such as non-static stellar models oscillating periodically 
around a fictitious position of equilibrium. 

198 

https://doi.org/10.1017/S0074180900018799 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900018799


REFERENCES 

[i] Cf. S. Chandrasekhar, Proc. Roy. Soc. A, 225, 1 7 3 ( 1 9 5 4 ) ; Phil. Mag., ser. 7, 45, 1 1 7 7 
( 1 9 5 4 ) ; E. M. Parker, Ap.J. 121 ,491 ( 1 9 5 5 ) ; E.Jensen, Ann. d9Ap. 1 8 , 1 2 7 ( 1 9 5 5 ) ; 
M. Kruskal and M. Schwarzschild, Proc. Roy. Soc. A, 223, 348 ( 1 9 5 4 ) . 

[2] L. Biermann, Zs.f. Ap. 16, 29 ( 1 9 3 8 ) ; L. Biermann and T. G. Cowling, Zs-f- AP-
19, 1 ( 1 9 3 9 ) ; R- C. Tolman, Ap.J. 90, 5 4 1 , 568 ( 1 9 3 9 ) . 

[3] Cf. I. Prigogine, Etude thermodynamique desphdnomhnes irriversibles, Desoer, Liege, 1947. 
[4] Cf. for a more general attack of this problem: L. H. Thomas, M.N. 9 1 , 1 2 2 (1930 ) , 

and an interesting discussion in: S. Rosseland, The Pulsation Theory of Variable 
Stars, Oxford, 1949, §§5 .12 to 5 . 1 4 . 

[5] Table 1 is based mainly on data taken from C. Payne-Gaposchkin, Variable Stars and 
Galactic Structure, University of London, 1954 . 

[6] L. Epstein, Ap.J. 112, 6 (1950) . 
[7] P. Ledoux, J . Bierlaire and R. Simon, Ann. d'Ap. 18, 65 ( 1 9 5 5 ) . 
[8] E. Schatzman, Les Principes fondamentaux de classification stellaire, C.N.R.S., Paris, 

1 9 5 5 , P- 1 7 6 . 
[9] P. Ledoux, 'Contribution a Petude de la structure interne des etoiles et de leur 

stabilite', Mim. Soc. Roy. Sci. Lihge, 4 0 serie, 9, 2 3 5 (1949) . 
[10] Cf. reference [9] , chapter iv. 
[ 1 1 ] F. Hoyle, M.N. 106, 3 4 3 (1946) . 
[ 1 2 ] For a general discussion of this point cf. reference [9] , the beginning of chapter in. 
[ 1 3 ] C. L. Pekeris, Ap.J. 88, 189 ( 1 9 3 9 ) . 
[ 1 4 ] E. Sauvenier-Goffin, Bull. Soc. Roy. Sci. Lihge, 20, 20 ( 1 9 5 1 ) . 
[ 1 5 ] A. Skumanich, Ap.J. 121, 408 ( 1 9 5 5 ) . 
[ 1 6 ] S. Chandrasekhar, Phil. Mag., ser. 7, 43, 1 3 1 7 ( 1 9 5 2 ) and 44, 2 3 3 ( 1 9 5 3 ) . 
[ 1 7 ] T. G. Cowling, M.N. 101, 367 ( 1 9 4 1 ) . 
[ 1 8 ] P. Ledoux, / / / • Congrhs National des Sciences, Bruxelles, 1950 , 2, p. 1 3 3 . 
[ 1 9 ] L. Biermann, %s.f. Ap. 18, 344 (1939)-
[20] Cf. S. Rosseland: The Pulsation Theory of Variable Stars, Oxford, 1949, chapter v. 
[ 2 1 ] Cf. reference [20] , chapter v, § 5 . 3 : P. Ledoux and E. Sauvenier-Goffin, Ap.J. I l l , 

6 1 1 ( 1 9 5 0 ) ; E. Schatzman, Ann. d'Ap. 14, 305 ( 1 9 5 1 ) and Les processus nucUaires 
dans les astres, Mim. Soc. Roy. Sci. Lihge, 14, 163 ( 1 9 5 4 ) ; D. A. Franck-Kamenetsky, 
Comptes rendus de VAcad. d. Sci. de VU.R.S.S. 77, 3 8 5 ( 1 9 5 1 ) . 

[22] T. G. Cowling, M.N. 96, 42 ( 1 9 3 6 ) . 
[23] P. Ledoux, Ap.J. 94, 5 3 7 ( 1 9 4 1 ) . 
[24] P. Ledoux and E. Sauvenier-Goffin, Ap.J. I l l , 6 1 1 (1949) . 
[25] L. Mestel, M.N. 112, 5 8 3 ( 1 9 5 2 ) . 
[26] E. Persico, M.N. 86, 93 (1926) . 
[27] A. S. Eddington, M.N. 101, 182 ( 1 9 4 1 ) ; 102, 1 5 4 ( 1 9 4 2 ) . 
[28] S. A. Zhevakin, A.J. U.S.S.R. 32, 161 ( 1 9 5 3 ) . 
[29] M. Schwarzschild, Zs-f- Ap. 15, 14 ( 1 9 3 8 ) ; Harv. Circ. Nos. 429 , 4 3 1 (1938 ) . 
[30] S. Chandrasekhar and D. H. Nelson Limber, Ap.J. 119, 10 ( 1 9 5 4 ) . 
[ 3 1 ] E. Schatzman, Ann. d'Ap. 14, 294 ( 1 9 5 1 ) ; 17, 1 5 2 ( 1 9 5 4 ) . . 
[32 ] S. A. Zhevakin, Comptes rendus de VAcad. d. Sci. de VU.R.S.S. 62, 191 ( 1 9 4 8 ) ; 

P. Ledoux, Bull. Ac. Roy. Belgique, classe des Sci., 5°ser., 38, 3 5 2 ( 1 9 5 2 ) ; W. S. 
Krogdahl, Ap.J. 122, 4 3 ( 1 9 5 5 ) . 

199 

https://doi.org/10.1017/S0074180900018799 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900018799

