THE GEOMETRY OF FINITE MARKOV CHAINS

N. Pullman

(received March 30, 1963)

The purpose of this paper is to present a geometric theorem which provides a proof of a fundamental theorem of finite Markov chains.

The theorem, stated in matrix theoretic terms, concerns the asymptotic behaviour of the powers of an n by n stochastic matrix, that is, a matrix of non-negative entries each of whose row sums is 1. The matrix might arise from a repeated physical process which goes from one of n possible states to another at each iteration and whose probability of going to a state depends only on the state it is in at present and not on its more distant history. The entry a_{ij} of the matrix A (called the one step transition matrix) is the probability that the process goes from state i to state j in one step. The ij-th entry in A^{m} , which is denoted by $a_{ij}^{(m)}$, is the probability of going from i to j in m steps. For example the process might consist of shuffling a deck of n cards by means of a machine which puts the i-th card from the top into the j-th from the top with probability a_{ij} . Then $a_{ij}^{(m)}$ is the probability of finding the i-th card in the j-th position at the m-th shuffle.

For each m > 0, we say that <u>i leads to j in m steps</u> iff $a_{ij}^{(m)} > 0$. We write i $\sim j$ iff i leads to j in m steps for some m.

Canad. Math. Bull. vol. 8, no. 3, April 1965

It is easy to see that \sim is an equivalence relation on the set of those states on which \sim is symmetric, i.e. on $E = \bigcap_{j=1}^{n} \{i : i \sim j \text{ implies } j \sim i\}$. E is called the set of ergodic states. E is partitioned by \sim into ν equivalence classes E_1, E_2, \dots, E_{ν} called <u>ergodic</u> classes. The states not in E are called transient.

Theorems I and II below are respectively probabilistic and matrix theoretic statements of the fundamental theorem of finite Markov chains. We shall provide a geometric proof at the conclusion of the paper. For probabilistic proofs we refer the reader to [1], [2], [3], and [4]. An algebraic proof can be found in [5].

THEOREM I. If $A = (a_{ij})$ is the one step transition matrix of a Markov chain with n states then:

(Ia) $\lim_{m\to\infty} a_{ij}^{(m)} = 0$ whenever j is transient.

There is a partition of each \sim equivalence class E_r into c_r non-empty subsets (called cyclically moving classes) E_{r0} , E_{r1} , ..., E_{rc_r-1} with the following properties:

(Ib) If $i \in E_{rs}$ and i leads to j in one step then $j \in E_{r, s+1}$ (the second subscript is read modulo c_{r}).

(Ic) To each E_{rs} corresponds an n-tuple k_{rs} of nonnegative numbers whose sum is 1 for which the j-th component, $k_{j}^{(r,s)}$, is zero iff $j \notin E_{rs}$ and such that:

 $\lim_{\substack{r \to \infty}} a_{ij} = k_{j}^{(r,s')} \quad \text{for all } j$

and all $t = 0, 1, \ldots, c_r - 1$ whenever $i \in E_{rs}$ and s' $\equiv s + t \pmod{c_r}$.

THEOREM II. If $A = (a_{ij})$ is an n by n stochastic matrix then there is a permutation matrix P (i.e. a matrix of zeroes and ones which has only one non-zero entry in each row and each column) such that:

$$PAP^{-1} = \begin{vmatrix} A_{1} & 0 & A_{2} & A_{0} & A_{0} & A_{0,\nu-1} & A_{0} \\ 0 & A_{1} & 0 & A_{0} & A_{0,\nu-1} & A_{0} \\ 0 & A_{1} & 0 & A_{1} & 0 & A_{1} & A_{1} & A_{1} \\ 0 & 0 & 0 & A_{1} & A_{1} & A_{2} & A_{1} & A_{1} & A_{1} \\ 0 & 0 & 0 & A_{1} & A_{1} & A_{2} & A_{2} & A_{2} & A_{2} \\ 0 & A_{2} & A_{1} & A_{2} & A_{2} & A_{2} & A_{2} & A_{2} \\ 0 & A_{2} \\ 0 & A_{2} \\ 0 & A_{2} &$$

$$A_{r} = \begin{vmatrix} 0 & A_{r1} & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & A_{r2} & 0 & \dots & 0 & 0 \\ \vdots & & & & & & \\ 0 & 0 & 0 & 0 & \dots & A_{rs} & \dots & 0 \\ \vdots & & & & & & \\ 0 & 0 & 0 & 0 & \dots & 0 & A_{rc_{r}-1} \\ A_{r0} & 0 & 0 & 0 & \dots & 0 & 0 \end{vmatrix}$$

where the A_{r} and A_{00} are square matrices and:

(IIa) $\lim_{m \to \infty} A_{00}^m = 0$,

(IIb) the entries of A_r which are in no A_r are zero, rs

(IIc) for each $r = 1, 2, ..., \nu$ there are stochastic matrices $\Pi_{r0}, \Pi_{r1}, ..., \Pi_{rs}, ..., \Pi_{r,c_r-1}$ such that for each $t = 0, 1, ..., c_r-1$:

The entries in this matrix are zero if and only if they are in no Π_{rs} , there are as many rows in Π_{rs} as there are rows in $\Lambda_{r,s-t+1}$ (second subscript modulo c_r), and all of the rows of Π_{rs} are the same vector $\pi^{(r,s)}$.

The method we shall use to prove the fundamental theorem and related theorems is briefly this: we identify the n by n stochastic matrix A with a linear operator f on the simplex, S, spanned by the basis vectors of Euclidean n-space. The intersection, K, of all the images $f^{m}(S)$ is a simplex whose vertices are permuted by f. The position of K in S and this permutation determine the behaviour of the $a_{ij}^{(m)}$ for large m and also locate the vertices of the simplex of its stochastic eigenvectors.

Before going further we shall state a few definitions and preliminary remarks for the reader's convenience.

A convex polytope P is the convex hull of finitely many points t_1, t_2, \ldots, t_m in some Euclidean n-space. The point t_i is a vertex of P iff the convex hull of the others doesn't contain it. The convex hull of any subset of the vertices of P is called a <u>sub-polytope</u> of P. A linear function f mapping P into P is called a linear operator on P. A convex polytope P is a <u>simplex</u> iff none of its vertices is in the flat determined by the remaining vertices. If S is a simplex, each subpolytope is called a <u>subsimplex</u>. The subsimplices of S are themselves simplices. If A is a subset of the convex polytope P, <u>a car-</u> rier of A in P is a subpolytope with fewest vertices, containing A. If P is a simplex then each non empty subset has a unique carrier in P.

Three direct consequences of these definitions which we shall refer to in the sequel are:

(1) subsimplices without vertices in common are disjoint;

(2) if the carriers of m points in a simplex S are disjoint then the convex hull of these points is a simplex;

(3) if f is a linear operator on a simplex S, then the image of the carrier of a subset X of S is contained in the carrier of f(X).

The method we use is based on a lemma which we couldn't find in the literature:

LEMMA 1. The intersection K, of a nested sequence of convex polytopes $\{P_{\alpha}\}$ each of which has n vertices is a convex polytope.

<u>Proof.</u> It is possible to choose a subsequence, $\{P_{\alpha\beta}\}$ and a vertex v_{β} of $Q_{\beta} = P_{\alpha\beta}$ such that $\{v_{\beta}\}$ converges, to k_{1} say. Next choose a subsequence $\{Q_{\beta\gamma}\}$ of $\{Q_{\beta}\}$ and a sequence of vertices w_{γ} of $R_{\gamma} = Q_{\beta\gamma}$ with $w_{\gamma} \neq v_{\beta\gamma}$ such that

w converges, to k_2 say. And so on, getting k_1, k_2, \ldots, k_n . This process must halt in n steps because the P_{α} have only n vertices apiece. Let T be the convex hull of the k_i . Clearly TCK. Suppose $x \in K \sim T$. Let h be a hyperplane separating x from T. Let ε be the distance from h to T. For each i there are infinitely many α for which a vertex of P_{α} is in the sphere of radius $\varepsilon/2$ about k_i . There is therefore a member of $\{P_{\alpha}\}$ on the side of h opposite x hence $\bigcap P_{\alpha}$ and $\{x\}$ are disjoint. Thus $K \sim T = \emptyset$ and hence K = T.

LEMMA 2. If f is a continuous function mapping the compact set P into P and $K = \bigcap_{m>1} f^{m}(P)$ then f(K) = K.

<u>Proof.</u> It is sufficient to show that $K \subseteq f(K)$. If $x \in K$ then $x \in f^{m}(P)$ for all m > 0 and hence $x = f(x_{m-1})$ for some $x_{m-1} \in f^{m-1}(P)$. The x_{m} have a convergent subsequence $\{x_{m}\}$ converging to a point y of P. If we can show that $y \in K$ then we are through because $x = \lim_{i \to \infty} f(x_{i}) = f(y)$. $i \to \infty$

If y were not in K then, for some N, y would not be in $f^{N}(P)$. The complement of $f^{N}(P)$ contains no x for m_{i} is minimized by $m_{i} > N$. But the complement of $f^{N}(P)$ is an open neighborhood of y. Therefore $y \in K$.

THEOREM 1. If f is a linear operator on a simplex S then

(i) the intersection, K, of the iterates $f^{m}(S)$ is a simplex, and

(ii) the vertices of K are permuted by f and hence fall into ν disjoint classes on each of which f is a cyclic permuta-

tion so that for $r = 1, 2, ..., \nu$ and $s = 0, 1, ..., c_r - 1$, (where c_r is the number of elements in the r-th class) we have

(iii) $f(k_{rs}) = k_{r, s+1}$ (the second subscript is read modulo c_r).

If C_{rs} is the carrier of k_{rs} in S then

(iv) the C are disjoint,

(v)
$$f^{t}(C_{rs}) \subseteq C_{r,s+1}$$
, and

(vi) $\bigcap_{m \equiv t} f^m (C_{rs}) = k_{rs'}$ when $s' \equiv t + s \pmod{c_r}$.

If K is the subsimplex of K whose vertices are r_{r0}^{k} , k_{r1}^{k} , \ldots , $k_{r,c_{r}-1}^{k}$ then

(vii) the K are disjoint and

(viii) the set of all f-fixed points in S is a simplex whose vertices are the barycenters of the K_{r} .

Proof.

(a) Lemmas 1 and 2 establish that K is a convex polytope and that f(K) = K.

(b) f permutes the vertices of K.

Let k be a vertex of K, $X_k = [f^{-1}(k)] \cap K$ and $C_K(X_k)$ denote a carrier of X_k in K. Then $f(C_K(X_k)) = \{k\}$ by remark (3) and hence $C_K(X_k) = X_k$. Therefore there are as many $C_K(X_k)$ as there are vertices of K, since the X_k are pairwise disjoint and hence each carrier $C_{K}(X_{k})$ has only one vertex. Thus f^{-1} and hence f permute the vertices of K.

The family of sets, $\{\bigcup_{\substack{m \ge 0}} \{f^m(k)\}: k \text{ is a vertex of } K\}$, partition the vertices of K into ν disjoint classes on each of which f is a cyclic permutation. Denote the convex hulls of these partitioning sets by $K_1, K_2, \ldots, K_{\nu}$. Let k_{r0} be any vertex of K_r ; let $k_{rs} = f^s(k_{r0})$ for $r = 1, 2, \ldots, \nu$ and $s = 0, 1, 2, \ldots, c_r^{-1}$. Let C_{rs} denote the carrier in S of k_{rs}^s .

(c) Each C_{rs} meets K in only one point, namely k_{rs} , and hence $C_{rs} = C_{r's'}$ iff (r,s) = (r',s'). If not C_{rs} would contain two distinct points k_{rs} and k' of K. The line they determine would meet C_{rs} in a line segment contained in K neither of whose endpoints is k_{rs} , contradicting the assumption that k_{rs} is a vertex.

(d) $f(C_{rs}) \subseteq C_{r,s+1}$ and hence $f^{t}(C_{rs}) \subseteq C_{rs'}$ if s' $\equiv t + s \pmod{c_r}$; because, by remark (3), $f(C_{rs})$ is contained in the carrier in S of $f(k_{rs})$ which is $C_{r,s+1}$ by definition.

(e)
$$\bigcap_{m \equiv t} f^{m}(C_{rs}) = \{k_{rs'}\} \text{ if } s' \equiv t + s \pmod{c_{r}}.$$

To see why this is so we observe first that if $m \equiv t \pmod{c_r}$, then $k_{rs'} \in f^m(C_{rs})$ because $f^m(k_{rs}) = k_{r,s+m} = k_{rs'}$; and secondly that $(\bigcap_{m \equiv t} f^m(C_{rs})) \subseteq K$ so that $\{k_{rs'}\} \subseteq \bigcap_{m \equiv t} f^m(C_{rs})$ $= K \cap \bigcap_{m \equiv t} f^m(C_{rs}) \subseteq \bigcap_{m \equiv t} K \cap f^m(C_{rs}) \subseteq \bigcap_{m \equiv t} K \cap C_{rs'}$.

According to (c), $K \cap C_{rs'} = \{k_{rs'}\}$ and hence $\bigcap_{m \equiv t} f^m(C_{rs})$ = $\{k_{rs'}\}$. An immediate consequence of this is:

(f) The C are pairwise disjoint. Applying remarks
(2) and (1) we have:

(g) K is a simplex and the K are disjoint.

Evidently the set F of all fixed points is a convex subset of K. By linearity, the barycenter $b_r = \frac{1}{c_r} \sum_{r=0}^{r-1} k_{rs}$ of K is fixed by f and hence F contains the convex hull of these barycenters. Conversely, if x is fixed, then, since $x \in K$, $v = c_r^{-1}$ $x = \sum \sum x k_r$ (where $x \ge 0$ and $\sum x r = 1$) r = 1 = s = 0 $v = c_r^{-1}$ and hence $f(x) = \sum \sum x k_r$, s + 1 = x. Therefore r = 1 = s = 0 $x_{rs} = x_{rs}$, where $s' \equiv s + 1 \pmod{c_r}$ and hence, given r, either $x_{rs} = 0$ for each $0 \le s < c_r$ or for all $0 \le s < c_r : x_r = \frac{4}{c_r}$. Consequently x is in the convex hull of the barycenters. Therefore F is a convex polytope spanned by the v barycenters of the K. The barycenters of the K are the vertices of F because the K are distinct. By applying remark (2) and (g)

we obtain:

(h) The set F of all f-fixed points is a simplex whose vertices are the barycenters of the K_{μ} .

This completes the proof of the theorem.

We shall present a proof of the probabilistic form of the fundamental theorem (theorem I) after a few preliminary remarks showing the correspondence between the pertinant geometric and probabilistic ideas. Each state i = 1, 2, ..., n of the Markov chain whose one step transition matrix is $A = (a_{ij})$ corresponds to the n-tuple v_i whose only non-zero component, 1, is its i-th component. Let f(x) = xA (i.e. the j-th component of f(x) is $\sum_{i=1}^{n} \sum_{i=1}^{\infty} x_i a_{ij}$ for each x in the convex hull S, of the v_i . S is i=1a simplex and f is a linear operator on S. If $X \subseteq S$ let C(X) denote the carrier of X in S. We then have:

(4) $i \sim j$ iff $v_j \in \bigcup_{m>0} C(f^m(v_i))$ because of the definitions of \sim and C.

We shall show that

(5) i is ergodic iff v_i is a vertex of C(K)

after we have established (5a) and (5b) below.

(5a) If $E(K) = \{i : v \in C(K)\}$ then for each j there is an $i \in E(K)$ such that $j \sim i$.

Proof of (5a). Let $D = C(\{f^{m}(v_{j}):m > 0\})$ then, using (3), we have $f(D) \subseteq D$ and hence $\bigcap_{m>0} f^{m}(D)$ is a non-empty subset of both K and D. There is, therefore, a vertex v_{i} of C(K) which is also a vertex of D. But the vertices of D are also those of $\bigcup_{m>0} C(f^{m}(v_{i}))$. Consequently $j \sim i \in E(K)$.

(5b) If $i \in E(K)$ and $i \sim j$ then $j \in E(K)$ and $j \sim i$.

Proof of (5b). $i \in E(K)$ and $i \sim j$ imply that v_i is a vertex of some C_{rs} and v_j is a vertex of some $C(f^t(v_i))$ by (4). Therefore $f^t(v_i) \in f^t(C_{rs})$. But $f^t(C_{rs}) \subseteq C_{rs}$, when $s' \equiv s + t \pmod{c_s}$ according to Theorem 1 part (v) and hence

v_j is a vertex of $C_{rs'}$. Consequently $j \in E(K)$. $C(f^{m}(v_{j})) = C_{rs}$ for a sufficiently large $m \equiv s - s' \pmod{c_{r}}$ by parts (v) and (vi) of theorem 1, but $v_{i} \in C_{rs}$ and hence $j \sim i$ by (4).

Proof of (5). $E(K) \subseteq E$ by (5b) and the definition of E. If $j \notin E(K)$ then $j \sim i \in E(K)$ by (5a) and $i \not \sim j$ by (5b). Consequently $j \notin E$ and hence $E \subseteq E(K)$.

Proof of Theorem I.

(Ia) If i is any state let $x^{(m)}$ be the point of C(K) closest to $f^{m}(v_{i})$. Because of the definition of K the sequence of distances d_{m} between $f^{m}(v_{i})$ and $x^{(m)}$ converges to zero. According to (5) $x_{j}^{(m)} = 0$ for all transient j; therefore $\lim_{m \to \infty} a_{ij}^{(m)} = 0$ because the j-th component of $f^{m}(v_{i})$ is $a_{ij}^{(m)}$.

Let $E_{rs} = \{i : v_i \in C_{rs}\}$; then, evidently, $c_r - 1$ $E_r = \bigcup_{s=0}^{r} E_{rs}$. The E_{rs} are pairwise disjoint and non-empty because of parts (iii) and (iv) of Theorem 1.

(Ib) If $i \in E_{rs}$ and i leads to j in one step then $v_i \in C_{rs}$ and $v_j \in C(f(v_i))$. But according to Theorem 1 part (v): $f(v_i) \in C_{r,s+1}$ and hence $v_j \in C_{r,s+1}$.

Consequently $j \in E_{r, s+1}$.

(Ic) k_{rs} is an n-tuple of non-negative numbers summing to 1 because $k_{rs} \in S$. The j-th component, $k_j^{(r,s)}$ of k_j is 0 iff $j \notin E_{rs}$ because of the definitions of C_{rs} and E_{rs} .

$$\lim_{\substack{n \to \infty}} a_{ij} = k_{j}^{(r,s')} \quad \text{for all } j \text{ and all}$$

 $t = 0, 1, \ldots, c_r - 1$ whenever $i \in E_{rs}$ and $s' \equiv s + t \pmod{c_r}$ by (vi).

This completes the proof of theorem I.

Theorem II can be proven either directly from Theorem I (their statements are equivalent) or from Theorem 1.

To obtain a proof of Theorem II the latter way let c(r, s)be the number of vertices in C and let P be the permutation matrix which performs the change of basis mapping the first c basis vectors (vertices) v_1, v_2, \ldots, v_c onto each of the c vertices not in C(K), mapping the next c(1,1) basis vectors $v_{c+1}, v_{c+2}, \ldots, v_{c+c(1,1)}$ onto the vertices of C 11; and so forth until all the last $c(v, c_v - 1)$ basis vectors are mapped onto the vertices of C $v, c_v - 1$.

(IIa) is proven analogously to (Ia). (IIb) is a result of (v).

To prove (IIc), define $\pi^{(r,s)}$ by letting $\pi_j^{(r,s)}$ be the j-th component of k_{rs} for each j = 1, 2, ..., c(r,s); each $s = 0, 1, ..., c_r - 1$ and each $r = 1, 2, ..., \nu$. (IIc) then follows from (vi).

We have extended the techniques used here to study inhomogeneous chains, that is, to study the asymptotic behaviour of products $A_1 \cdot A_2 \cdot \ldots \cdot A_n \cdot \ldots$ of stochastic matrices A_n which are not necessarily the same matrix and all of which might be infinite. Some of these results are contained in a forthcoming paper on infinite products of substochastic matrices [7].

REFERENCES

- Stochastic Processes, J. Doob, John Wiley and Sons, New York, 1953.
- An Introduction to Probability Theory and its Applications, Volume one, W. Feller, 2nd edition, John Wiley and Sons, New York, 1950.
- Markov Chains with Stationary Transition Probabilities, Kai Lai Chung, Springer, Berlin 1960.
- Finite Markov Chains, J.G. Kemeny and J. Laurie Snell,
 D. van Nostrand Co., New Jersey 1960.
- 5. Applications of the Theory of Matrices, F.R. Gantmacher, Interscience, New York 1959.
- Convexity, H.G. Eggleston, Cambridge Tracts in Mathematics and Mathematical Physics No. 47, Cambridge University Press, 1958.
- 7. N. Pullman, Infinite Products of Substochastic Matrices, Pacific Journal (to appear).

McGill University