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ABSTRACT 
This paper presents an EEG (Electroencephalography) study that explores the correlation between the 
EEG variation across design stages and the quality of the design outcomes. The brain activations of 33 
volunteers with engineering backgrounds were recorded while performing a design task using a 
morphological table to develop an amphibious bike. The EEG variations from the analysing/selecting 
stage to the illustrating stage were analysed based on the EEG frequency band and channel sets. A 
significant correlation between the detail level of the design outcome and the power variation mode was 
observed in theta, alpha and gamma bands, each involving different channel sets. Compared to the 
assessment results from two evaluators, using EEG variations as a proxy of the detail level of the design 
outcome could reach a maximum accuracy of 0.727, precision of 0.765, and recall of 0.889. These results 
also provide suggestions on the selection of the frequency bands and channel sets to achieve better 
prediction performance according to each metric. 
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1 INTRODUCTION 

The estimation of the goodness of an ideation or conceptual design process or its outcomes typically 

is an a posteriori process. Once the generative session is over, evaluators apply specific metrics to 

determine the outcome quality for, e.g. level of detail, feasibility, or quantity of ideas/fluency. This, 

indeed, cannot take place during the design process as it would be intrusive to the designers’ 

activities or, even if carried out through non-intrusive observations, this would require the 

involvement of multiple evaluators to ensure the reliability of the different subjective estimations 

(again a-posteriori). Then, it is difficult to provide real-time feedback during the design process to 

improve the quality of the results and the overall process is time-consuming for both the designers 

and the evaluators (Adolphy et al., 2009). 

However, deepening the understanding of cognition is primary to finding possible signatures, 

precursors or determinants during the design process, such as stimuli, of effective thinking (moves) to 

shorten the design process and improve the quality of its outcomes. Within design cognition studies, 

neuroimaging is an emerging technology trend to collect valuable objective data during the design 

process. Among the available neuroimaging signal acquisition techniques, electroencephalography 

(EEG) shows promising features as it collects data about brain activity with a high temporal 

resolution, especially compared to observation-based data collection. EEG-data-based exploration of 

cognition, with an impact on design, has advanced from simple divergent thinking tests to more 

complex design tasks (Fink and Neubauer, 2006; Hu et al., 2022; Lukacevic et al., 2022). Plenty of 

protocol analyses have already reported the potential of using such technology to objectively describe 

the behaviour of the designer (Jia and Zeng, 2021; Vieira et al., 2022), while the link between the 

measurements and the final design outcome quality is yet to be discussed.  

EEG produces wave-like data whose characteristics emerge in the frequency, in the time domain or 

both. Several fundamental features, such as the amplitude range and the distinction of frequency 

bands which normally occurs in human brain activations, have been defined by clinical studies 

(Stern, 2013). It is also well studied during motor behaviour and in cognitive tasks, the event/task-

related change in response to a variety of different stimulus or task-related factors (Pfurtscheller et 

al., 1993). And it is already been revealed the correspondence between the changing mode to the 

function depends on the frequency components and brain area (Lopes da Silva, 2006). Experiments 

on divergent thinking tests correlating creativity or originality to EEG rhythm variations are aligned 

with these findings (Benedek et al., 2011). Design tasks, however, include both divergent thinking 

(e.g. concept exploration) and convergent thinking (e.g. concept selection and integration). Whether 

and how the design outcome quality is correlated to the EEG variation mode across different design 

stages is not yet studied.  

This paper describes a study from a larger research project whose goal is to understand how EEG 

data can inform the analysis of the design cognition process (Li et al., 2021). This used an 

experimental protocol that included different tasks entailing different thinking styles and activities 

to explore the cognitive behaviour from basic creativity tests to the real design task. The study 

reported in this paper specifically focuses on a design task which uses the morphological table as a 

tool that requires concept exploration, selection and integration. The assessment of the quality of the 

design outcome is based on the clarity/level of detail of the related sketches and annotations to 

address these research questions: 

• Can we use EEG (de-)synchronisation (EEG power variation) to predict the clarity/level of detail 

of the design outcome? 

• How many and what are the essential channels, and in which frequency band could we enable the 

observation of the correlation between EEG variation and the quality of the design outcome? 

• How much could we rely on the EEG (de-)synchronisation model to indicate the quality of the 

design outcome? 

To answer these questions, this paper first briefly introduces the background of the field by 

presenting how the criteria adopted in the current paper got employed by previous studies and their 

achievements. Then, it illustrates the experimental protocol of the design task, the data acquisition 

and processing pipeline together with the criteria to statistically verify results. Afterwards, it shows 

and discusses the preliminary results. The conclusion presents a summary and insights for future 

development. 
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2 RELEVANT BACKGROUND 

2.1 The EEG variation  

The EEG rhythm, which describes brain neurons' voltage fluctuations within specific frequency bands 

(Delta [0-4 Hz], Theta [4-7 Hz], Alpha [7-13 Hz], Beta [13-30 Hz] and Gamma [above 30 Hz], has 

already shown to correlate basic brain functions and with the localisation of brain areas. (Stern, 2013) 

The power changes at each rhythm were quantified via task-related power (TRP) by comparing the 

activation between reference and activation phases (Pfurtscheller and Lopes Da Silva, 1999). Depending 

on the time length of the phenomenon to observe, different estimators should be used to describe the 

power variation. For the analysis focusing on changes related to a task within a steady-state process in a 

time range of 100 ms to seconds, as reported by Hummel and Gerloff (2006), the task-related power 

increase/decrease (TRPI/TRPD, or task-related (de) synchronisation) is more suitable. On the contrary, 

studies addressing shorter time frames should investigate event-related (de) synchronisation (ERS/ERD).  

2.2 EEG-based performance estimation 

As aforementioned, different researchers have reported EEG variation associated with performing 

divergent thinking or several different types of design activities, generally assessing the outcomes 

using creativity metrics. A period of relaxation by gazing at a fixed point commonly served as the 

baseline for reference. An EEG TRPI from the baseline, especially in the alpha band, is observed as a 

proxy of brain activation in most experiments mentioned in previous literature contributions. 

However, concerning the EEG variation through different stages of the design process, the variation is 

expected to be more dynamic. Also, the inhibitory state can play an active (inhibitory) role in gating 

the transfer of information in specific neuronal pathways (Lopes da Silva, 1991).  

As creativity is a crucial skill of a designer, its understanding and empowerment via EEG metrics 

already gathered interest in the field (Jaarsveld et al., 2015; Liu et al., 2018) despite it being still at a 

preliminary stage. EEG variation, especially the model based on ERS/ERD, already provides different 

possibilities in clinical diagnosis (Pfurtscheller and Silva, 2017), decision-making prediction (Ratcliff 

et al., 2009), emotion detection (Lan et al., 2016) and other human-machine interface applications 

(Foldes and Taylor, 2013).  

The performance of any prediction model depends on the accuracy of the prediction. However, 

imbalanced datasets require other metrics to be considered for such prediction potential and the 

confusion matrix might be helpful to provide a more comprehensive analysis (Kulkarni et al., 2020). 

As such, the potential of using EEG variation to predict the quality of the design outcome for 

achieving different predictive metrics’ performances, can be more properly estimated. 

2.3 The goal of the current research work  

Overall, the study aims at investigating the links between EEG variations and the quality of the design 

outcome, thus highlighting the characteristics of EEG variation usable as a proxy of a design outcome 

quality. EEG variations are observed during the stage of analysing the contents of a morphological 

table and selecting partial solutions to combine and the stage of illustrating the final design concept 

through sketches and annotations. The association between frequency bands and channels to 

discriminate the quality of the outcome based on the EEG variation mode and to build a predictive 

model is statistically checked. The confusion matrix for the predictive model describes its performance 

as accuracy, precision and recall.  

3 METHOD 

3.1 Experimental protocol 

This contribution exploits EEG data acquired from a larger research protocol, consisting of five 

different tasks to enable multi-dimensional analysis across different perspectives of design activities. 

As the first task, all the participants faced a warm-up task. The order of the remaining four ones, 

including the Design with Morphological Table task (DwMT), is random to avoid fatigue biases. 

At the beginning of the experiment, two relaxation sessions are scheduled and recorded: each subject 

is instructed to first relax and maintain, for 30 seconds, an open-eyed gaze on the central cross that is 

displayed on the screen. Then, they are asked to relax with their eyes closed for additional 30 seconds. 

The initial period of observation with open eyes is exclusively employed as the baseline for further 
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data processing. Both sessions are necessary to validate data acquisition, as the transition from open to 

closed eyes, without any other cognitive activity, should be coherent with Stern (2013). 

To make each participant capable of carrying out the task in an expected manner, the on-screen example 

of designing a vegetable collection system (Figure 1, left) complemented the instructor’s further 

clarification previously provided. The final solution of the example is not given to avoid potential design 

fixation (Jansson and Smith, 1991). Upon confirmation of the participant’s comprehension of the design 

process, one could proceed with additional task instructions. These instructions specify that audible 

notifications will beep twice: at halftime and when it remains 1 minute (Figure 1, centre). As soon as the 

task begins, the participant can check for the remaining time on screen (Figure 1, right). Participants are 

provided with a printed A4-pager design brief for developing an amphibious bike (Figure 2). To shift 

from the examples to the instructions and to the task itself, the subject should press the space button on 

the keyboard to proceed. The task naturally consists of chronological stages of reading the requirements 

(stage 1), analysing and selecting the partial solutions (stage 2), and then sketching (stage 3). No time 

limitation constrains the execution of the task.  

All the experiment sessions are audio/video recorded to facilitate body movement detection that triggers 

EEG artefacts and stage recognition. Since the whole experimental process is programmed with Psychopy 

3 (Peirce et al., 2022), the application’s log file enables the synchronisation of the different datasets.  

 
 Figure 1. Instruction of Design with Morphological table on screen 

 
Figure 2. The morphological table for designing an amphibious bike & design stage division 

3.2 Criteria for the assessment of design outcomes and clustering 

The DwMT task returns a sketch with annotations of the final design of the amphibious bike. Two 

independent evaluators rated them with 4-level Likert scale metrics for the level of detail/clarity of the 

sketched solutions, as this presents a positive correlation with their overall quality (Linsey et al., 

2011). As shown in Linsey's work, the quality of the product solution increases as details are added. 

The choice of a 4-level scale enables rating the sketches with a sufficient degree of granularity, 

distinguishing from those barely understandable (lowest rating) to those perfectly clear and detailed 

(highest). The other two intermediate levels distinguish sketches that are somehow understandable but 
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not fully clear (low-intermediate) and those which are clear and enriched with few descriptions 

(intermediate-high). This even-level scale of evaluation, different from the 3-level scale by Linsey, 

makes it possible to group the results into two big clusters without any need of disambiguating the 

ones rated at an intermediate level. The two experts reached an agreement above 80% after the 

independent rating. The complete agreement was achieved through a meeting to reach a consensus.  

3.3 EEG data processing 

To study the EEG characteristics across different bands, coherently with the Nyquist-Shannon sampling 

theorem, the sampling frequency of a minimum of 128 Hz enables the analysis of data bands up to the 

lower gamma-band [30-45] Hz. Among the frequency bands lower than the gamma-band, filtered from the 

data acquired using the commercial EEG headset, it is noticeable that the delta-band [0.1- 4] Hz gets highly 

contaminated and is hence no longer considered in the current research.  

Figure 3 shows the signal processing pipeline adopted in the present paper. The efficacy of prevalent 

component analysis algorithms, namely ICA, PCA, and CCA, in extracting power is contingent upon the 

nature and quantity of artefacts present in a given dataset. Due to the uneven distribution and unbalanced 

quantity of artefacts in the design stages of the present study, these data treatment algorithms are no longer 

suitable. Thus, the present pipeline solely incorporates the preliminary band-pass filters and the logical 

distinction of artefacts referenced individually. 

The EEG data were recorded throughout the entire experimental activity for each participant, segmented 

based on the duration of each task/stage. For this experiment, the task is DwMT and the stages are as in 

section 3.1. The Infinite Impulse Response (IIR) filter processes each segment of the raw data to remove 

the DC offset, typical of the headset used for the experiment. Then, a band-pass filter cuts off frequencies 

outside 4-45 Hz, coherent with what has been stated above. The data are further filtered into sub-frequency 

bands (theta, alpha, beta, gamma). Artefacts in the data are typically one order of magnitude -or more- 

bigger than brainwave data; their removal is necessary to generate a clean task dataset for the analysis. A 

subject-based threshold to exclude such outliers is defined by means of their baseline. The analysis of the 

EEG tracks enabled the visual association of artefacts to body movements video-recorded as for the 

protocol and the threshold is set accordingly. Its value corresponds to 16 times the task power (POW), 

which reflects 4 times the amplitude of the EEG signal. It is estimated twice in order to remove stronger 

artefacts first, then wipe out less intense ones. After the first round (dashed line in Fig.3), the baseline data 

is cleaned for the first time with a moving window (length: 0.25s; shift: 25%) to remove windows whose 

median POW exceeds the threshold. The threshold is again calculated (two dots-dashed lines) using this 

partially cleaned baseline. The new threshold aims at excluding outliers from stage-based data and 

generating band-based EED data by subject. Eventually, the median POW of each dataset was calculated to 

obtain the Task Related Power (TRP) according to the following formula. 

𝑇𝑅𝑃𝑖𝑗  =  
𝑃𝑂𝑊𝑖𝑗(𝑡𝑎𝑠𝑘𝑛)

𝑃𝑂𝑊𝑖𝑗(𝑡𝑎𝑠𝑘𝑚)
 (1) 

The task-based formula can also be used for stage-based analysis. The POW calculated through the 

pipeline for each participant j has one data value for each electrode i at each stage. Setting the 

denominator from the stage earlier than the stage in the numerator, the value of the TRP would 

facilitate the visualisation of brain activation dynamics. From stage m to stage n, a TRP above 1 

indicates a task-related power increase (TRPI), while a TRP below 1 implies a decrease (TRPD). The 

two clusters of participants are thereout formulated for the following analysis. 

The whole data processing pipeline leverages an original Matlab script and the EEGLab toolbox 

(Delorme and Makeig, 2004) 

Figure 3. The signal-processing pipeline 
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3.4 Criteria for group clustering the statistical review and the performance estimation 

Carrying the goal of seeking all the relevant frequency bands and brain areas (channels) for 

distinguishing performance quality using EEG variation, the statistical tests are arrayed, as shown in 

Figure 4. Initially, the pipeline takes one specific sub-frequency band X and one stage comparison 

between stage n against stage m, and tabulates the TRP values of all the channels from all N 

participants. Then, it generates the full set of possible channel combinations, calculates the average 

TRP of the combined channels and associates the two values, for all N subjects. Each subject's dataset 

is also associated with the estimation of its design performance, as for the categorical metrics of 

Section 3.2. After that, two groups, TRPI and TRPD, are formulated accordingly.  

After defining the two groups, a 2-sample t-test is used to confirm/reject the null hypothesis, which 

assumes the TRP values in two groups come from independent random samples from the normal 

distributions with equal means and equal but unknown variance. Bonferroni correction was applied 

using the total number of tests to keep the overall statistical significance below 0.05. The 

combinations of channels that result in rejecting the null hypothesis are further processed with the 

Kruskal-Wallis test on data about design performance. This checks whether the null hypothesis that 

the scores of the clarity assigned to subjects belonging to TRPI or TRPD come from the same 

distribution. The rejection of the null hypothesis indicates that the TRP measured with that channel 

combination within the specific frequency band allows the distinction of design performance quality. 

The threshold for significance for both tests is p≤0.05. Both the frequency and the channel 

combinations, in addition to the TRPI/TRPD performance distinction, are stored for further analysis. 

Figure 4. The pipeline for clustering participants and statistical tests 

3.5 Criteria and the quality of performance estimation 

The statistical tests enable filtering the combinations of the channels into the subsets, which could 

distinguish the quality of the outcomes between the two groups based on the EEG variation and the 

confusion matrix assesses how much the TRPI/TRPD model estimates design outcome quality. 

These results help associate EEG variation with the outcome quality as a preliminary step towards the 

establishment of a predictive model. This paper focuses only on the EEG variations from the analysing 

and selecting stage (Stage 2) to the sketching stage (Stage 3). The expected model is meant to correlate 

TRPD to higher quality (TRPD-HQ) of the design outcome with the same qualitative evaluation 

carried out by the evaluators. The confusion matrix is built accordingly (Table 1).  

Table 1. Confusion matrix  

 
Raters - Higher Quality (HQ) Raters - Lower Quality (LQ) 

TRPD – Higher Quality (HQ) TP FP 

TRPI – Lower Quality (LQ) FN TN 

The true positive (TP) derives when the data shows TRPD and therefore it is predicted to be higher 

quality, which is congruent with the evaluator's assessment. Or false positive (FP) when such prediction 

is opposite from the score given by the evaluator. Then when the data shows TRPI, which predicts a 

lower quality is congruent with the evaluator's result, it is a true negative (TN). Or it is a false negative 

(FN) when they are different. Then we selected the most frequently used performance metrics for 

classification based on these values, which are accuracy (2a), precision (2b), and recall (2c).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
;         𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
;         𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2a, 2b, 2c) 
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Accuracy summarises the correct prediction from TRPD to higher quality and TRPI to lower quality. 

The precision denotes the proportion of participants who presented TRPD across the two design stages 

whose outcomes were deemed of higher quality by the evaluators. Last, the recall metric enables 

understanding how many participants the evaluators rated as the ones producing outcomes of higher 

quality also had TRPD across the stages. 

4 PARTICIPANTS AND EEG ACQUISITION DEVICE CHARACTERISTICS  

Overall, 37 volunteers with a background in the engineering field were recruited for the experiment. 

Among these, 4 EEG datasets had to be discarded due to incomplete recording caused by the program 

crash that occurred during the execution of the DwMT task. Eventually, these 33 samples comprise 1 

English speaker (Spanish male, age = 28), 7 Chinese native speakers (6 female, age M=29.33, 

SD=5.01, 1 male, age=30), and 25 Italian speakers (6 females, age M=23.17, SD=4.92, 19 males, age 

M=24.95, SD= 4.94). All the subjects received the task description in a language they can think in. At 

least two native speakers did the translation of the task description for each language. Thirty 

participants claimed to be right-hand dominant, while the other 3 have no side-of-hand dominance but 

wrote with their right hands only. None of them has any neurological deficits. 

The headset used for EEG data collection is Emotiv EPOC X. It has a pre-mounted frame with 14 

electrodes (AF3/4, F7/8, F3/4, FC5/6, T7/8, P7/8, O1/2), sampling at 128Hz. The raw data is 

accessible to run signal processing according to the needs.  

5 RESULT 

5.1 Evaluation of the design outcome 

The two evaluators made the assessment independently on all 37 collected sketches according to the 

criteria described in section 3.2 and then met for consensus on the 4 sketches on which they did not 

agree. Then, the 4 subjects without EEG datasets were excluded from further analysis. Figure 5 shows 

samples of the rated sketches. Limited by the experience of the participants and the number of 

samples, around half were evaluated as having the lowest clarity by both evaluators, and no one 

received the highest clarity score. Hence the final groups' division differentiates only between the 

lowest level and the level above. Finally, both evaluators agreed and assigned 15 outcomes to the 

lower-quality group, and the rest 18 to the higher-quality group.  

Figure 5. Samples of outcomes  

5.2 Statistical analysis and estimation results 

The statistical tests check for significant group distribution differences through all possible 

combinations of the 14 channels (16383 different combinations) for each of the four sub-frequency 

bands and also for the total bandwidth and then against the group division made by the evaluator. The 

results returned from the tests suggested a significant link between the TRPD and the higher quality of 

the outcome, using the assessment result from the evaluators (245 cases of TRPD-HQ against 6 cases 

of TRPI-HQ). The summarised results of the TRPD-HQ cases in which performance metrics yield 

above 0.7 are presented below in Table 2. 

All the cases returned from the statistical tests show an accuracy value greater than or equal to 0.7, 

among which the maximum accuracy reaches 0.727. While the number of cases was lowered to 35 to 

achieve a precision from 0.7 to 0.765. And 228 cases yield values from 0.7 to 0.889 for the recall.  

The theta band is the most informative for predicting design outcome quality as it returns higher 

values of accuracy and recall in the majority of cases (214 for both precision and recall), while the 

rest are in the alpha band. This means that both theta and alpha bands are relevant. However, to 
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guarantee higher overall correctness of estimation or that fewer results are falsely predicted as LQ by 

observing TRPI, the theta band appears to be the most promising. In order to improve precision by 

reducing false positive cases (TRPD, but assessed as LQ by the evaluator), alpha is the only frequency 

band that the model suggests considering. 

Considering the essential channels to be included in the model, the channels are ranked by the number 

of occurrences to have at least 70% of the significant cases under each metric. At least 5 channels are 

suggested to be included in combination with higher priority to obtain higher accuracy and recall. The 

top 5 used channels are listed for these two metrics. A significant overlapping could be observed at the 

top 4 used channels, namely AF3, F3, FC5, and AF4, all in the frontal area, mainly on the left side. 

Accuracy and recall have also two different channels that might work as a proxy for the quality of the 

solution: O1 and FC6, respectively. This means the left occipital area also plays a significant role in 

the accuracy of the estimation. At least 3 channels should be included to reach higher precision, and 

the three most used channels are O1, F7 and F4. It covers areas from frontal to occipital sites. The 

highest and the lowest percentage of the occurrence are also shown in Table 2. 

Table 2. Summarisation of the significant results, for each metric's value above 0.7, using 
TRPD between stages to predict the higher quality of clarity 

 Metrics  

(>= 0.7) 

Max  

Value 

Frequency  

Band  

No. 

Channels 

Most used Channels 

(ranked by N. occurrence%) 

Accuracy (245 cases) 0.727  θ or α 5 - 8  AF3(87%), F3, FC5, AF4, O1 (64%) 

Precision (35 cases) 0.765 α 3 - 6 O1  (80%), F7, F4(63%) 

Recall   (228 cases) 0.889  θ or α 5 - 8 AF3(89%), F3, FC5, AF4, FC6 (64%) 

6 DISCUSSION 

Our experimental results highlight there is a potential to use EEG (de) synchronisation to predict the 

quality of the design outcome of the specific tested design task across its stages. It appears that from 

the design stage of information perception and analysis to the stage of idea illustration, for the cohort 

unable to detail their ideas, a higher EEG power is more likely to be observed in the latter stage. But 

this correlation depends on the brain area (channel) and the frequency band.  

The accuracy reaches higher values using data from theta and alpha bands, channels located primarily on 

the left frontal and left occipital area. These areas are usually associated with the working load during 

retrieval (Klimesch et al., 2006) and complex visual processing, which are embedded activities in both 

stages. The accuracy metric based on the TRPD-HQ model is up to 0.727 (24/33). Unfortunately, in the 

literature, there is no similar TRPI/TRPD-based investigation to compare the prediction model's 

performance. However, similar decision-making models (e.g. based on ERS/ERD) show relatively lower 

values for accuracy (Seeland et al., 2015). The model's performance might suffer from the difficulty that 

occurred when the evaluators tried to reach an agreement on the judgements, but it is also affected by 

unexpected huge behavioural differences across the two stages that happened to several participants. As 

for the design task, the two stages entailed both arm and neck movements. However, the given paper 

space couldn't explicitly restrict the dimension of the final sketch. For those who sketched larger images 

or those with certain sketching habits (i.e., swing the hand to draw lines, hash parts of the component), 

their EEG data are more contaminated by these body movements. The headset, beyond real data and the 

contribution due to myoelectricity, is also sensitive to these movements, as they could also induce sensor 

contact issues, adding artefacts, especially in the lower frequency bands with higher amplitude than the 

sole cognition activity. The result of observing TRPD indicates an effective artefact removal, considering 

that a larger portion of body movements occurred during sketching than during the analysing stage. On 

the contrary, TRPI should be prevalent if the treatment fails. Since, from the outcomes collected in our 

experiment, there is no direct correlation between the dimension of the sketches and their clarity, further 

confirmation regarding the impact of body movements would help us better understand to what extent 

we should limit the interface in future studies. 

The precision metric's value suggests that the alpha band from the left occipital and frontal areas might 

serve as a good proxy for objectively assessing the quality of design outcomes, still within the TRPD 

model. 

https://doi.org/10.1017/pds.2023.154 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.154


ICED23 1543 

The recall for the TRPD model appears to reach the highest value among the three performance metrics. 

The result indicates when the evaluators couldn't reach an agreement in finding higher quality outcomes, 

EEG data acquired from channels in the left frontal area at theta band might assist with suggestions.  

Clinical and psychological studies have already reported that the variations in the alpha band power 

are sensitive to factors such as attentional demands (Ray and Cole, 1985), use of working memory 

(Stipacek et al., 2003), and task difficulty (Fink et al., 2005). Greater subjects' cognitive demands 

correspond to a more significant power decrease. These findings also provide insights into what may 

be the hidden reasons behind the current findings in design neurocognition. The participant's attitude 

towards different design stages could lead to different quality of the design outcome. One might pay 

more attention to the presentation of the final idea than to the careful selection of the elements and 

therefore receive a higher score for clarity. Or one might pay more attention to analysing the problem 

and making choices than to illustrating the idea. In both situations, the EEG variation could prompt the 

designer to balance the effort and rearrange the activities to achieve a better outcome, reducing 

iterations and slowdowns in the design process, thus saving the designer's time and helping the 

transition from ex-post evaluation to real-time (objective) monitoring. 

7 CONCLUSION AND FUTURE DEVELOPMENT 

In conclusion, the current study proves that the quality of the design outcome, in terms of the level of 

detail/clarity of the generated sketches, can be correlated to EEG variations. The model that links EEG 

task-related power desynchronisation to high-quality outcomes showed that some channel 

combinations, in specific frequency bands, have a strong association with the clarity of the generated 

sketches. This might help the assessment of ideas-as-sketches more objectively and, in the future, 

might enable real-time biofeedback to the designer. 

The reported results are based on one specific design task, including only two stages in the whole 

design process. Further verification could include the first reading stage at the same design task to 

complete the understanding of the dynamic of the brain activation across the entire design task with 

the morphological table. The two analysed stages (selecting vs sketching ideas) both involve activities 

that are essential to a general design task. The possibility of extending the current study to other design 

protocols is not restricted. The samples are collected from diverse cultural backgrounds and are 

imbalanced in gender and age. An expansion of the sample is required to confirm this initial evidence 

and for more comprehensive result validation.  
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