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1. Introduction
1.1. The flexibility program. Important attributes of smooth dynamical systems such
as entropies and Lyapunov characteristic exponents with respect to a relevant invariant
measure (that is, a volume, a Sinai–Ruelle–Bowen (SRB) measure, or a measure of
maximal entropy) reflect the asymptotic behavior of orbits and, with rare exceptions,
cannot be calculated in a closed form. Exceptions are systems of algebraic origin, such
as translations on homogeneous spaces and affine maps on compact abelian groups and, in
the case of topological entropy, structurally stable discrete time hyperbolic systems where
topological entropy can be calculated using an algebraic or symbolic model. Beyond that,
there are few general relations for various classes of systems, in the form of equalities or
inequalities, either involving only dynamical characteristics themselves or relating those
with other quantities coming from geometry, topology, or analysis. Let us list some of
those relations. Those marked with an asterisk are valid for topological dynamical systems
on compact spaces; others require some smoothness assumptions. We refer to original
sources only if no standard monograph or textbook exposition is available.

*Katok passed away in April, 2018, when this paper was in the final stages of preparation.
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• Variational principles for entropy* [28, Theorem 4.5.3] and pressure* [28, Theorem
20.2.4].

• Ruelle inequality for C1 systems [28, Theorem S.2.13].
• Pesin entropy formula for C1+ε systems preserving an absolutely continuous measure

[6, Theorem 10.4.1].
• Inequality between fundamental group growth and topological entropy* [28, Theorem

8.1.1].
• Yomdin–Newhouse solution of the Shub entropy conjecture for C∞ systems [35, 44].
• For Anosov systems on infranilmanifolds, Shub entropy inequality becomes equality

(for the torus case, see [28, Theorem 18.6.1]).
• Conformal inequality for entropies for geodesic flows on manifolds of negative

curvature [27].
At a more basic level, preservation of a geometric structure imposes restrictions on

dynamical invariants. For example, for a volume-preserving system, the sum of Lyapunov
characteristic exponents is zero; for a holomorphic system, all exponents have even
multiplicity; and for a symplectic map, exponents come in pairs ±λ.

The general paradigm of flexibility can be rather vaguely formulated as follows:

(F) Under properly understood general restrictions (like those listed or mentioned
above), within a fixed class of smooth dynamical systems, dynamical invariants take
arbitrary values.

In the context of smooth ergodic theory, one of the most natural flexibility problems
concerns Lyapunov exponents for volume-preserving systems with respect to the volume
measure. We mostly restrict our discussion to classical discrete-time invertible dynamical
systems, that is, the actions of Z. The continuous time case, in some key situations, follows
directly from the discrete one via the suspension construction; in the others, this can be
treated in a parallel way and, in certain respects, is easier since the homotopy restrictions
(see below) do not appear.

The case of multidimensional time is very different. There, the phenomenon of rigidity
that, in a sense, is complementary to flexibility is prevalent: see e.g. [29].

Previous to the appearance of this paper, some instances of flexibility have been
investigated by Hu, M. Jiang, and Y. Jiang [24, 25], Erchenko [19], Erchenko and Katok
[20], and Barthelmé and Erchenko [7, 8].

1.2. General conservative diffeomorphisms. Let M be a smooth compact connected
manifold of dimension d ≥ 2, with or without boundary, f : M → M be a diffeomor-
phism of M, and μ an f -invariant ergodic Borel probability measure. By the Oseledets
multiplicative ergodic theorem, the limits

lim
n→±∞

1
n

log(ith singular value of Df n(x)) (1.1)

exist and hence are constant μ-almost everywhere (a.e.). They are called Lyapunov
characteristic exponents, or often simply Lyapunov exponents, of f with respect to μ
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and are denoted by λ1,μ(f ) ≥ · · · ≥ λd,μ(f ). For the full Oseledets theorem (which also
describes the growth of tangent vectors), see e.g. [3, 6]. The Lyapunov spectrum is defined
as the vector

λμ(f ) := (λ1,μ(f ), . . . , λd,μ(f )). (1.2)

We say that this spectrum is simple if none of these numbers is repeated.
Let m be a smooth volume measure, normalized so that m(M) = 1. The particular

choice is not important, because for any pair of such measures, there exists a diffeo-
morphism taking one to the other [34], [28, Theorem 5.1.27]. Given r ∈ {1, 2, . . . , ∞},
let Diffrm(M) denote the set of m-preserving (also called conservative) diffeomorphisms
f : M → M of class Cr . We will discuss the case when f is ergodic with respect to m; for
simplicity, we write λi (f ) = λi,m(f ), λ(f ) = λm(f ). We always have

∑d
i=1λi (f ) = 0.

Now we formulate and discuss several representative questions concerning the flexibil-
ity of Lyapunov exponents for general conservative diffeomorphisms.

Conjecture 1.1. (Weak flexibility—general) Given any list of numbers ξ1 ≥ · · · ≥ ξd with∑d
i=1ξi = 0, there exists an ergodic diffeomorphism f ∈ Diff∞m (M) such that λ(f ) =

(ξ1, . . . , ξd).

Conjecture 1.2. (Strong flexibility—general) Given a connected component C ⊆
Diff∞m (M) and any list of numbers ξ1 ≥ · · · ≥ ξd with

∑d
i=1ξi = 0, there exists an ergodic

diffeomorphism f ∈ C such that λ(f ) = (ξ1, . . . , ξd).

If all exponents are equal to zero, then Conjecture 1.1 is known; this has been proved
long ago [1, 2]. In this case, Conjecture 1.2 holds for the identity component provided that
the dimension is at least 3. The existence of ergodic diffeomorphisms with zero exponents
on any manifold with a non-trivial action of the circle S1 including the two-disc D

2,
two-sphere S

2, the annulus, and the Klein bottle, has been established in the paper [2],
which can be viewed as the earliest work on flexibility. However, in the case of D2 in those
examples, the action on the boundary is an irrational rotation with a Liouvillean rotation
number. The existence of zero entropy ergodic examples that are identity or have a rational
rotation number on the boundary is an open and probably very difficult question.

On an opposite direction, the existence of conservative ergodic (actually Bernoulli)
smooth diffeomorphisms without zero Lyapunov exponents on any manifold was estab-
lished by Dolgopyat and Pesin [18] (the two-dimensional case was settled earlier [26]).
These examples are homotopic to the identity.

In this paper, we will not attack Conjectures 1.1 and 1.2 directly. Instead, we will
establish flexibility results for a particular and more tractable class of systems, namely
Anosov diffeomorphisms admitting simple dominated splitting. Nevertheless, we believe
that our methods (combined with techniques from the aforementioned works) should
provide the basis for an approach on the conjectures, at least under some restrictions.

1.3. The Anosov case. Anosov systems represent a natural class for the flexibility
analysis. We work with conservative Anosov diffeomophisms which are at least C2; then,
by a classical theorem of Anosov and Sinai, the volume measure m is ergodic.

https://doi.org/10.1017/etds.2021.78 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.78


Flexibility of Lyapunov exponents 557

All known Anosov diffeomorphisms are topologically conjugate to automorphisms
of infranilmanifolds that include tori and nilmanifolds as special cases. Hence, the
metric entropy with respect to invariant volume (equal to the sum of positive Lyapunov
exponents) does not exceed the sum of positive Lyapunov exponents for the corresponding
automorphism that is determined by induced automorphism of the fundamental group. The
main flexibility question is whether this is the only restriction.

To simplify the notation, we restrict our discussion to the torus case. Let L ∈ GL(d, Z)
and assume that L is hyperbolic, that is, the absolute values of all of its eigenvalues are
different from one. The matrix L determines the automorphism FL of the torus T

d :=
R
d/Zd , which is a conservative Anosov diffeomorphism.
Every Anosov diffeomorphism f of T

d (conservative or not) is homotopic and,
moreover, topologically conjugate via a homeomorphism isotopic to identity, to an
automorphism FL, where L is a hyperbolic matrix [28, Theorem 18.6.1]. In fact, L is
the matrix of the automorphism induced by f on the fundamental group of T

d , which
is naturally isomorphic to Z

d (however, for large enough d, it is not always true that there
is an homotopy between f and FL consisting of Anosov diffeomorphisms: see [21]).

Given a hyperbolic matrix L ∈ GL(d, Z), the Lyapunov spectrum of the automorphism
λ(FL) is the vector λ(L) whose entries λ1(L) ≥ · · · ≥ λd(L) are the logarithms of the
absolute values of the eigenvalues of L, repeated according to multiplicity. The number
u = u(L) of positive elements in this list is called the unstable index of L; so λu(L) >

0 > λu+1(L). The quantity
∑u
i=1λi (L) is equal to both topological entropy htop(FL) and

to the metric entropy hm(FL) with respect to Lebesgue measure m on T
d . Therefore, for

any conservative Anosov C1+ε-diffeomorphism f : Td → T
d homotopic to FL,

u∑
i=1

λi (f ) = hm(f ) ≤ htop(f ) = htop(FL) =
u∑
i=1

λi (L), (1.3)

using Pesin’s formula, the variational principle, and the above-mentioned topological
conjugacy. (In reality, the inequality

∑u
i=1ξi ≤ ∑u

i=1λi (L) also holds when f is only
C1; indeed, it follows from the C1+ε case using C1-continuity of the right-hand side and
Avila’s regularization [4].) Are there other restrictions on the spectrum of f ? We pose the
following problem.

Problem 1.3. (Strong flexibility—Anosov) Let L ∈ GL(d, Z) be a hyperbolic matrix, and
let u be its unstable index. Given any list of numbers ξ1 ≥ · · · ≥ ξu > 0 > ξu+1 ≥ · · · ≥
ξd such that

d∑
i=1

ξi = 0 and
u∑
i=1

ξi ≤
u∑
i=1

λi (L), (1.4)

does there exist a conservative Anosov diffeomorphism f homotopic (and hence topologi-
cally conjugate) to FL such that λ(f ) = (ξ1, . . . , ξd)?

Regularity of f may vary but it does not seem likely that the answer depends on
regularity, at least above C1 (it may be more challenging to make some exponents equal in
regularity above C1).
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For d = 2 (and so u = 1), the problem reduces to the existence of Anosov diffeomor-
phisms on T

2 with any positive value of metric entropy below the topological entropy. Here
the answer is positive. It is not difficult to produce such examples even in the real-analytic
category by a fairly straightforward global twist construction (see [11]). The existence of
C∞ examples also follows from our Theorem 1.5 below.

In its weak version, that is, without considerations about homotopy, the flexibility
problem is likely to have a positive solution.

Conjecture 1.4. (Weak flexibility—Anosov) Given any list of non-zero numbers ξ1 ≥
· · · ≥ ξd such that

∑d
i=1ξi = 0, there exists an Anosov diffeomorphism of Td such that

λ(f ) = (ξ1, . . . , ξd).

The case of this conjecture with strict inequalities easily follows from our main result:
see Corollary 1.6 below.

1.4. Dominated splittings. Given a diffeomorphism f : M → M , a Df -invariant split-
ting TM = E1 ⊕ · · · ⊕ Ek into bundles of constant dimension is called dominated if each
of the bundles dominates the next. This means that given a Riemannian metric, there exists
n0 ≥ 1 such that for every x ∈ M and all unit vectors v1 ∈ E1(x), . . ., vk ∈ Ek(x),

‖Df n0(x)v1‖ > ‖Df n0(x)v2‖ > · · · > ‖Df n0(x)vk‖. (1.5)

It is always possible to find an ‘adapted’ Riemannian metric for which n0 = 1: see
[23]. Dominated splittings are automatically continuous, and their existence is a C1-open
condition; see e.g. [14, §B.1] for these and other properties. We say that a dominated
splitting is simple if all the sub-bundles Ej are one-dimensional (and so k = d). In this
case, the Oseledets splitting coincides with E1 ⊕ · · · ⊕ Ed a.e., the Lyapunov spectrum
is simple, and the Lyapunov exponents with respect to invariant volume m are given by
integrals:

λj (f ) =
∫
M

log ‖Df |Ej ‖ dm. (1.6)

In particular, in the class of diffeomorphisms admitting a simple dominated splitting, the
Lyapunov exponents depend continuously on the dynamics, and therefore, the flexibility
analysis becomes more manageable. However, in the absence of domination, small
perturbations (with respect to the C1 topology) of the dynamics may have a large effect on
the Lyapunov spectrum and even send all Lyapunov exponents to zero [9, 13] (but the C2

norm of such a perturbation generally explodes [31]).
Existence of a dominated splitting also imposes restrictions on the topology of the

manifold.

1.5. Formulation of results. Let us recall the classical notion of majorization, which
has a wide range of applications (see e.g. [32]; also see [12] for another instance where
majorization plays a role in the perturbation of Lyapunov exponents).

Suppose that ξ = (ξ1, . . . , ξd) and η = (η1, . . . , ηd) are ordered vectors in R
d , in the

sense that ξ1 ≥ · · · ≥ ξd and η1 ≥ · · · ≥ ηd . We say that ξ majorizes η (or η is majorized

https://doi.org/10.1017/etds.2021.78 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.78


Flexibility of Lyapunov exponents 559

by ξ ) if the following conditions hold:

ξ1 + · · · + ξj ≥ η1 + · · · + ηj for all j ∈ {1, . . . , d − 1}, and (1.7)

ξ1 + · · · + ξd = η1 + · · · + ηd . (1.8)

This is denoted by ξ � η (or η � ξ ), and defines a partial order among ordered vectors. If
all the inequalities (1.7) are strict (and the equality (1.8) holds), then we say that ξ strictly
majorizes η (or η is strictly majorized by η), and denote this by ξ � η (or η ≺ ξ ).

Intuitively, ξ � η means that the entries of η are obtained from those of ξ by a
process of ‘mixing’. Let us state this precisely: If ξ majorizes η then there exists a
doubly-stochastic d × d matrix P such that η = P ξ ; conversely, given an ordered vector
ξ and a doubly-stochastic matrix P, the vector obtained by reordering the entries of P ξ is
majorized by ξ—see [32, Theorem B.2].

We now state the main result of this paper. Recall that M is a smooth compact connected
manifold of dimension d ≥ 2, and m is a smooth volume measure, normalized so that
m(M) = 1; note that we do not assume that M is a torus (nor even an infranilmanifold).
The unstable index of an Anosov diffeomorphism is the dimension of its unstable bundle.

THEOREM 1.5. Let r ∈ {2, 3, . . . , ∞}, and let f ∈ Diffrm(M) be a conservative Anosov
Cr -diffeomorphism with simple dominated splitting. Let ξ ∈ R

d be such that:
(a) ξ1 > · · · > ξu > 0 > ξu+1 > · · · > ξd , where u is the unstable index of f;
(b) ξ ≺ λ(f ), that is, ξ is strictly majorized by λ(f ).

Then there is a continuous path (ft )t∈[0,1] in Diffrm(M) such that:
• f0 = f ;
• each ft is Anosov with simple dominated splitting;
• λ(f1) = ξ .

COROLLARY 1.6. (Anosov diffeomorphisms display all hyperbolic simple Lyapunov
spectra) Given any list of non-zero numbers ξ1 > · · · > ξd whose sum is equal to 0, there
exists a conservative Anosov C∞ diffeomorphism of Td with simple dominated splitting
such that λ(f ) = (ξ1, . . . , ξd).

Corollary 1.6 is obtained as follows: first, we take an Anosov linear automorphism
whose spectrum is simple and ‘large’ with respect to the majorization partial order;
then, Theorem 1.5 allows us to deform the linear automorphism and obtain a conser-
vative Anosov diffeomorphism with the desired Lyapunov spectrum. (See §7.1 for full
details.)

Note that as a consequence of Corollary 1.6, we obtain a positive solution of the
general weak flexibility Conjecture 1.1 on tori for simple spectra: if the desired spec-
trum contains 0, then we just take the product f = g × Rθ of an appropriate Anosov
map g on T

d−1 and an irrational rotation Rθ on T; this f is ergodic because g is
mixing.

While condition (b) in Theorem 1.5 asks for strict majorization, there are specific
situations where this requirement can be relaxed to ordinary majorization. This is
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demonstrated by the next theorem, which also shows that the majorization condition is
indeed necessary.

THEOREM 1.7. Let FL be an Anosov linear automorphism of T3 with simple Lyapunov
spectrum and unstable index u. For any given ξ = (ξ1, ξ2, ξ3) ∈ R

3, there exists an Anosov
diffeomorphism f ∈ Diff∞m (T3) homotopic (and hence topologically conjugate) to FL and
with simple dominated splitting such that λ(f ) = ξ if and only if

ξ1 > ξ2 > ξ3, ξu > 0 > ξu+1, and ξ � λ(L). (1.9)

Furthermore, one can choose a homotopy between FL and f consisting of conservative
smooth Anosov diffeomorphisms with simple dominated splitting.

In d = 3, the condition ξ � λ(L) is strictly stronger than the ‘entropy condition’ in
equation (1.4). Therefore, if Problem 1.3 has a positive solution, it necessarily involves
Anosov diffeomorphisms without a simple dominated splitting, even in the case of
simple Lyapunov spectra. The existence of a single conservative Anosov diffeomorphism
f : T

3 → T
3 whose spectrum ξ = λ(f ) is not majorized by λ(L) is already a very

interesting question.
Let us note that Hu, M. Jiang, and Y. Jiang [25] have constructed deformations of

conservative Anosov diffeomorphisms and of conservative expanding endomorphisms
having arbitrarily small metric entropy. In the case of diffeomorphisms with dominated
splittings, their result follows from Theorem 1.5. Their construction is very different
from ours.

1.6. Comments on the proofs. Let us summarize the ideas of the proof of Theorem
1.5. Motivated by the work of Shub and Wilkinson [42], Baraviera and Bonatti [5] have
proved the following ‘local flexibility’ result: given a conservative stably ergodic partially
hyperbolic diffeomorphism, one can perturb it so that the sum of central Lyapunov
exponents becomes different from zero. Their idea was to perturb the diffeomorphism
on a small ball around a non-periodic point (so to avoid fast returns) by rotating on
a center-unstable plane so that the central bundle borrows some expansion from the
unstable bundle. Actually, their argument allows to slightly mix Lyapunov exponents in
any pair of consecutive bundles in a dominated splitting, while the Lyapunov exponents
in the other bundles move extremely little. So it is conceivable that with a sequence of
Baraviera–Bonatti perturbations, one could mix Lyapunov exponents basically at will.
Though this idea is ultimately correct, several difficulties need to be overcome to turn
it into a proof of Theorem 1.5. First, how can we ensure that the effect of the perturbations
is not too weak? Second, how can we obtain a prescribed Lyapunov spectrum exactly?

Let us discuss how to overcome the first difficulty. Instead of using a single ball as
the support of a perturbation, we select several small balls whose union has a large first
return time but non-negligible measure: this is done with a standard tower construction
(in the style of [9, 13], for instance). In each of these balls, one composes with the same
‘model’ perturbation of the identity that rotates the appropriate plane. However, this trick
by itself is not sufficient to conclude. If the domination or the hyperbolicity gets weak,
the rotations should be smaller and their effect on the Lyapunov exponents are also small.
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The solution is to select carefully not only the location of the balls but also their shape.
This is done using a specially adapted Riemannian metric such that, on the one hand,
domination and hyperbolicity are seen in a single iterate (as in [23]), but on the other
hand, for a large proportion of points with respect to the reference measure m, the rates
of expansion on a single iterate with respect to the adapted metric are very close to the
Lyapunov exponents. We only perform the perturbations on balls around those good points.
In this way, we can ensure that the effect of the perturbation on the Lyapunov exponents is
considerable. In this regard, we also remark that we have no bound for the C1 size of the
deformation (ft )t∈[0,1] that we eventually construct in Theorem 1.5. Therefore, we need
to be careful with the quantifiers to ensure some effectiveness of the perturbation without
knowing which diffeomorphism we are perturbing.

Concerning the second difficulty, we note that the type of perturbations sketched above
always has some small ‘noisy’ effect on the Lyapunov exponents that cannot be made
exactly zero (except if some of the invariant sub-bundles are smoothly integrable). To
resolve this, we define our perturbations depending on several parameters, allowing us
to move the Lyapunov spectrum in all directions. By topological reasons, this eventually
permits us to obtain open sets of spectra. Now, to construct these multiparametric
perturbations, in principle, one could try to compose several Baraviera–Bonatti-like
perturbations that mix different pairs of Lyapunov exponents. This idea turns out to be
impractical, essentially because one would need to consider adapted metrics and towers
depending on parameters. Luckily, it is possible to define a new type of multiparametric
model perturbation that includes Baraviera–Bonatti perturbations as a particular case,
freeing us from the trouble of working separately with each pair of exponents.

Now let us outline the proof of Theorem 1.7. To manipulate, say, the first two Lyapunov
exponents while keeping the third one unchanged, we follow the same strategy as in
the proof of Theorem 1.5, but using Baraviera–Bonatti perturbations that preserve the
center-unstable foliation. This is possible because we start with the automorphism FL for
which this foliation is smooth. In the converse direction, suppose that f is a conservative
Anosov diffeomorphism of T

3 homotopic to FL whose Lyapunov spectrum is simple
but is not majorized by the spectrum of L. For example, consider the case u = 2 and
λ1(f ) > λ1(L). If f had a simple dominated splitting, then the exponential growth rate
of the strong unstable foliation of f would be bigger than the corresponding rate for FL,
and this would contradict the quasi-isometric property of this foliation obtained by Brin,
Burago, and Ivanov [15].

1.7. Further directions of research and other instances of the flexibility program.

1.7.1. Extensions of our methods. Hyperbolicity is not fundamental to our constructions;
as in Baraviera and Bonatti [5], domination is the important keyword. In fact, this
perturbation method seems much more versatile, and should apply if domination is allowed
to degenerate in a controlled way on a certain singular set, as is the case in [18, 26].
Therefore, the conjectures of §1.2 seem approachable, at least in some cases.

Let us briefly discuss what happens when we approach the boundary of the set of
allowable spectra ξ in Theorem 1.5. We consider the principal case f = FL. Let u be

https://doi.org/10.1017/etds.2021.78 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.78


562 J. Bochi et al

the unstable index of FL. Consider the set of ξ that meet conditions (a) and (b) in the
theorem. There are three types of components of the boundary.
(a) ξu = 0 or ξu+1 = 0. One can carry our construction across either of those. The

resulting map of course is not Anosov anymore but partially hyperbolic with a
one-dimensional central bundle (a similar construction appears in [37], but starting
with an automorphism FL of T3 whose central exponent is already close to 0).

(b)
∑k
i=1ξi = ∑k

i=1λi (L) for some k ∈ {1, . . . , d − 1}. Cases k = 1 and k = d − 1
are feasible: as in the proof of the ‘if’ part of Theorem 1.7, the perturbations
preserve codimension-one FL-invariant foliations. For other values of k, we get into
difficulties: our construction is iterative, but after the first step, the foliation that
needs to be preserved would no longer be smooth.

(c) ξi = ξi+1 for some i ∈ {1, . . . , d − 1}. Our construction degenerates because the
amount of domination decreases and the Lyapunov metric explodes.

Related to the last point, to realize non-simple Lyapunov spectrum (e.g. to prove
Conjecture 1.4), one should be able to manipulate Lyapunov exponents at least in some
cases of non-simple dominated splittings. However, then formula (1.6) does not apply, so
finer methods would be required.

1.7.2. Explicit constructions and bounds. As mentioned before, in dimension 2, there
exists a simple construction of conservative Anosov diffeomorphisms with prescribed
Lyapunov spectra. It would be interesting to have such explicit constructions on
higher-dimensional tori as well.

Here is an exciting general question†: What would be the effect of bounds on the Cr

norms on the flexibility results? Our constructions are certainly very ‘expensive’ in terms
of C2 norms, and probably in terms of C1 norms as well (because do not have estimates
on the eccentricities of the Lyapunov balls).

1.7.3. Other measures. In other settings, the invariant measure (or measures) one is
interested in is not necessarily fixed in the class of dynamical systems under consideration,
but varies with the dynamics itself. The prototypical example consists of equilibrium states
of sufficiently hyperbolic dynamics with respect to relevant potentials. The flexibility
paradigm then applies. See [19] for a result in this direction, where expanding maps on
the circle are considered.

1.7.4. Symplectic systems. The problems that we have posed in the volume-preserving
setting have symplectic counterparts, where symmetry of the spectrum appears as an extra
requirement. It is plausible that our methods can be adapted to the symplectic setting, but
not in a straightforward way.

1.7.5. Flows. Structural stability for flows does not imply topological conjugacy, so
topological entropy becomes a free parameter even in the uniformly hyperbolic case.
Thus, for conservative Anosov flows on three-dimensional manifolds, the basic flexibility

† We thank a referee for suggesting it.

https://doi.org/10.1017/etds.2021.78 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.78


Flexibility of Lyapunov exponents 563

problem involves the realization of arbitrary pairs of numbers as values for topological
and metric entropy subject only to the variational inequality. This problem can be solved
fairly easily for suspensions of T2 and unit tangent bundles of surfaces of genus g ≥ 2
using time changes of homogeneous models but becomes more interesting (probably still
tractable) for exotic Anosov flows where homogeneous models are not available.

The problem becomes really interesting in the standard setting when one considers
special classes of Anosov flows. The prime example here is provided by geodesic flows on
compact surfaces of negative curvature. In this case, a natural normalization is available
by fixing the total surface area. The variational inequality is strengthened by the conformal
inequality [27] and possible values of the metric entropy hm and topological entropy htop

for Riemannian metrics of negative non-constant curvature are restricted to:

hm <

(
4π(g − 1)

V

)1/2

< htop,

where g is the genus of the surface and V is its total area. For any constant curvature metric
those inequalities become equalities. The fact that equality of the metric and topological
entropy implies constant curvature is a prototype case of rigidity that is discussed below.
The flexibility problem in this setting is solved in [20]. The solution uses methods which
are totally different from those of the present work. For flexibility results where the
conformal class is fixed (and also taking other invariant quantities into account), see [7,
8]. More problems are posed in [20, §4] and [8, §7].

The higher dimensional case is wide open. One of the difficulties of dealing with
geodesic flows on higher dimensional negatively curved manifolds is that algebraic models
have a non-simple Lyapunov spectrum (in fact, either one or two Lyapunov exponents are
of the same sign and full splittings never exist).

1.7.6. Flexibility and rigidity. In the context of conservative smooth dynamical systems,
the strongest natural equivalence relation is smooth conjugacy. For symplectic systems, it is
similarly a symplectic conjugacy, for geodesic flows—isometry of the underlying metrics,
and so on. A general phenomenon of rigidity in this context can be described as follows:

(R) Values of finitely many invariants determine the system either locally, that is, in
a certain neighborhood of a ‘model’, or globally within an a priori defined class of
systems.

The space of equivalence classes, at best, can be given some natural infinite-dimensional
structure and, at worst, is ‘wild’. This is proven in a number of situations but, in
general, it has to be viewed as a paradigmatic statement, not a theorem, and, beyond
the C1 case, almost every meaningful general question is open. Thus, rigidity should be
quite rare because it should appear for very special values of invariants. (Nevertheless,
for zero entropy systems, local rigidity of toral translations appears in the context of
Kolmogorov–Arnold–Moser theory and global rigidity for circle diffeomorphisms with
Diophantine rotation number. Those situations do not concern us here.)

A natural question in our context is whether particular values of Lyapunov exponents
(for conservative systems, or symplectic systems, or geodesic flows) imply rigidity. In
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FIGURE 1. The top graph shows j ∈ {0, . . . , d} → λ̂j (f ) for some f. The bottom graph corresponds to T (ξ) for
some ordered vector ξ satisfying assumptions (a)–(b) from Theorem 1.5.

agreement with the general flexibility paradigm, one may expect this to happen at the
extreme allowable values of exponents. This tends to be true in low dimension, not
true in full generality, and probable in a number of interesting situations. Several recent
results fit this pattern: see the papers [22, 33, 40] (concerning conservative Anosov
diffeomorphisms, mostly) and [16, 17] (concerning geodesic flows).

1.8. Organization of the paper. The rest of this paper is organized as follows. In §2, we
state the technical Proposition 2.1, which is a local multiparametric version of Theorem
1.5, and we show how it implies the theorem. In §3, we construct the adapted metrics
mentioned above. In §4, we use them to define damping perturbations; these are actually
‘large perturbations’, but we show that their results are still Anosov under the appropriate
conditions. In §5, we define the local model of our multiparametric perturbations and
perform some computations concerning those. In §6, we use the results of the previous
sections and a tower construction to prove Proposition 2.1. In §7, we prove Theorem 1.7.

2. Reduction to a central proposition
Let H := {(ξ1, . . . , ξd) ∈ R

d ;
∑
ξj = 0}. Define a linear isomorphism T : H → R

d−1

by:

T (ξ1, ξ2, . . . , ξd−1, ξd) := (ξ1, ξ1 + ξ2, . . . , ξ1 + · · · + ξd−1). (2.1)

Given an ergodic f ∈ Diffrm(M), recall that λ(f ) denotes the Lyapunov spectrum of f
with respect to the volume measure m. We define λ̂(f ) := T (λ(f )), that is, λ̂(f ) is the
vector whose jth entry λ̂j (f ) is the sum of the j biggest Lyapunov exponents. This is a
natural object to consider because λ̂j (f ) equals the top Lyapunov exponent of the j-fold
exterior power of the derivative cocycle. It is also convenient to define λ̂0(f ) := 0 =:
λ̂d(f ). The fact that λ1(f ) ≥ · · · ≥ λd(f ) means that the function j ∈ {0, . . . , d} →
λ̂j (f ) is concave: see Figure 1.

In this section, we state Proposition 2.1, which roughly says that we can perturb f to
slightly lower the graph of j ∈ {0, . . . , d} → λ̂j (f ) and that different vertices of the
graph can be moved somewhat independently. We also show how Proposition 2.1 implies
the main theorem (Theorem 1.5).

Given u ∈ {1, 2, . . . , d − 1}, define a ‘gap function’ gu : Rd → R by:

gu(ξ1, . . . , ξd) := min{ξ1 − ξ2, ξ2 − ξ3, . . . , ξd−1 − ξd , ξu, −ξu+1} . (2.2)
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FIGURE 2. Illustration of Proposition 2.1 for d = 3. The images of the edges of the square [0, 1]2 under the map
t → λ̂(ft ) stay on the strips determined by conditions (2.4) and (2.5). Corollary 2.2 tells us that the image of this

map is a set � that contains the small gray square and is contained in the big square.

Note that if f is a conservative Anosov diffeomorphism of unstable index u and admitting
a simple dominated splitting, then gu(λ(f )) is strictly positive; indeed it is the minimal
gap between the d + 1 numbers

λ1(f ) > · · · > λu(f ) > 0 > λu+1(f ) > · · · > λd(f ).

PROPOSITION 2.1. (Central proposition) Let u ∈ {1, 2, . . . , d − 1}, and let a1, . . . , ad−1,
σ , and δ0 be positive numbers. Then there exists δ ∈ (0, δ0) so that the following holds.

If f ∈ Diffrm(M) is a conservative Anosov diffeomorphism of unstable index u,
admitting a simple dominated splitting, and such that gu(λ(f )) ≥ σ , then there exists a
continuous map

t ∈ [0, 1]d−1 → ft ∈ Diffrm(M),

where f(0,...,0) = f and for each t = (t1, . . . , td−1) ∈ [0, 1]d−1, the conservative diffeo-
morphism ft is Anosov of unstable index u, admits a simple dominated splitting, and, for
each j ∈ {1, . . . , d − 1},

λ̂j (f )− 4δaj < λ̂j (ft ) < λ̂j (f )+ δaj , (2.3)

tj = 0 ⇒ λ̂j (f )− δaj < λ̂j (ft ) < λ̂j (f )+ δaj , (2.4)

tj = 1 ⇒ λ̂j (f )− 4δaj < λ̂j (ft ) < λ̂j (f )− 2δaj . (2.5)

So the numbers aj allow us to move some of the summed exponents λ̂j faster than
others, but the overall movement is controlled by the scaling factor δ. Let us emphasize
that a main point of the proposition is that the dependence of δ on f is only through u and
σ , and that is the key for the possible iteration of the proposition to obtain Theorem 1.5.

The following consequence is intuitively obvious (see Figure 2).
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COROLLARY 2.2. In Proposition 2.1, the set � := {λ̂(ft ) ; t ∈ [0, 1]d−1} satisfies

d−1∏
j=1

[λ̂j (f )− 2δaj , λ̂j (f )− δaj ] ⊆ � ⊆
d−1∏
j=1

[λ̂j (f )− 4δaj , λ̂j (f )+ δaj ].

The second inclusion comes from inequality (2.3). For the first one, we need the
following topological fact.

LEMMA 2.3. Let ϕ = (ϕ1, . . . , ϕd−1) : [−1, 1]d−1 → R
d−1 be a continuous map such

that for every z = (z1, . . . , zd−1) ∈ [−1, 1]d−1 and every j ∈ {1, . . . , d − 1},
zj = −1 ⇒ ϕj (z) < − 1

3 ,

zj = 1 ⇒ ϕj (z) >
1
3 .

Then the image of ϕ contains the cube [− 1
3 , 1

3 ]d−1.

Proof of Corollary 2.2. Let C := [−1, 1]d−1. Note that:

for all z ∈ ∂C, the segment [z, ϕ(z)] does not intersect the cube 1
3C. (2.6)

Consider the map ψ : C → R
d−1 that coincides with a rescaled version of ϕ on the

subcube 1
2C, and on the remaining shell, interpolates linearly between ϕ|∂C and id|∂C .

More precisely, letting ‖·‖∞ denote the maximum norm in R
d−1 (whose unit closed ball

is the cube C), we define:

ψ(z) :=
{
ϕ(2z) if ‖z‖∞ ≤ 1/2;

2(1 − ‖z‖∞)ϕ(‖z‖−1∞ z)+ (2 − ‖z‖−1∞ )z otherwise.

In particular, ψ coincides with the identity on the boundary ∂C.
By contradiction, suppose that 1

3C \ ϕ(C) contains a point w. Then it follows from
observation (2.6) that the image of ψ does not contain w. Fix a retraction π of Rd−1 \ {w}
onto ∂C. Then π ◦ ψ is a retraction of the cube C onto its boundary. It is a known fact that
no such map exists. This contradiction completes the proof of the lemma.

Now Corollary 2.2 follows by an affine change of coordinates. Namely, consider the
map:

ϕ(z) := B(λ̂(fA(z)))

where A = (A1, . . . , Ad−1), B = (B1, . . . , Bd−1) are the maps:

Aj(z1, . . . , zd−1) := 1 − zj

2
, Bj (ξ1, . . . , ξd−1) := 1 + 2

3
ξj − λ̂j (f )

δaj
.

By equation (2.4), if zj = 1, then 1
3 < ϕj (z) <

5
3 , while by equation (2.5), if zj = −1,

then − 5
3 < ϕj (z) < − 1

3 . So we can apply Lemma 2.3 and conclude the proof of
Corollary 2.2.

Proof of Theorem 1.5. Let f and ξ be as in the statement of the theorem. Let

σ := 1
2 min{gu(λ(f )), gu(ξ)}.
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FIGURE 3. Illustration of the proof of Theorem 1.5 with d = 3, u = 1. The function gu ◦ T −1 is positive on the
sector between the horizontal positive semi-axis and the diagonal. The gray region is the neighborhood V, and the
marked points along the segment [ξ̂ , λ̂(f )] are the ηi values. For the first perturbation (g0,t ), the corresponding

hatted Lyapunov vector λ̂(g0,t ) stays inside the upper right rectangle and hits η1 for some parameter t = t0.

Recalling equation (2.1), let ξ̂ := T (ξ) and (a1, . . . , ad−1) := λ̂(f )− ξ̂ . Because λ(f )

strictly majorizes ξ , each aj is positive. The function gu ◦ T −1 : Rd−1 → R is concave
(because it is the minimum of affine functions), and it follows that this function is ≥ 2σ
on the segment [ξ̂ , λ̂(f )]. By continuity, we can find a small positive δ0 < 1 such that
the function gu ◦ T −1 is ≥ σ on the following neighborhood of the segment (pictured in
Figure 3):

V := [ξ̂ , λ̂(f )] +
d−1∏
j=1

[−4δ0aj , δ0aj ].

Let δ = δ(a1, . . . , ad−1, σ , δ0) be given by Proposition 2.1. Let n := �δ−1�; this is a
positive integer because 0 < δ < δ0 < 1. For each i ∈ {0, 1, . . . , n}, let

ηi :=
(

1 − i

n

)
λ̂(f )+ i

n
ξ̂ .

Note that 1
n

∈ [δ, 2δ]. Therefore, for each i ∈ {0, . . . , n− 1},

ηi+1 − ηi ∈
d−1∏
j=1

[−2δaj , −δaj ]. (2.7)

We now construct a continuous path (fs)s∈[0,1] of conservative Anosov diffeomor-
phisms as follows. Applying Proposition 2.1 to the diffeomorphism f0 := f , we obtain
a certain family of Anosov diffeomorphisms (g0,t ), where t runs in the cube [0, 1]d−1.
Because λ̂(f0) = η0, by Corollary 2.2 and equation (2.7), there exists t0 in the cube
such that λ̂(g0,t0) = η1. Let f1/n := g0,t0 , and define fs for s in the interval [0, 1/n] by
fs := g0,nt0s . Note that these diffeomorphisms obey the gap condition gu(λ(fs)) ≥ σ . We
continue recursively in the obvious way: we apply Proposition 2.1 and Corollary 2.2 to the
diffeomorphism f1/n, extend the family ft to the interval [1/n, 2/n], and so on. We end
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up defining a path (fs)s∈[0,1] of conservative Anosov diffeomorphisms of unstable index u
admitting simple dominated splittings, such that λ̂(fi/n) = ηi for each i ∈ {0, . . . , n}. In
particular, λ̂(f1) = ξ̂ , or equivalently, λ(f1) = ξ , as desired.

Remark 2.4. (Prescribing paths of spectra) The proof of Theorem 1.5 can be easily adapted
so that the path (λ(ft ))t∈[0,1] is C0-close to any given path from λ(f ) to ξ that satisfies
property (a) and is monotone with respect to the majorization partial order.

In §§3 to 5, we establish several preliminary results which will be eventually used to
prove the central proposition (Proposition 2.1) in §6.

3. Lyapunov metrics and charts
3.1. Lyapunov metrics. There are different ways to introduce Riemannian metrics that
are suitable to study particular classes of hyperbolic dynamical systems. Such metrics are
usually called Lyapunov or adapted metrics, and both terms are used in more than one
meaning. For various versions of such Lyapunov metrics, see e.g. [6, 23, 28]. Here we will
construct a variant which specifically fits our setting.

Suppose that f ∈ Diffrm(M) is a conservative Anosov diffeomorphism admitting a
simple dominated splitting TM = E1 ⊕ · · · ⊕ Ed . Given a C0 Riemannian metric 〈〈·, ·〉〉,
let |||·||| denote the induced vector norm, and consider the expansion functions χ1, . . .,
χd : M → R defined by

χj (x) := log
|||Df (x)v|||

|||v||| for arbitrary nonzero v ∈ Ej(x). (3.1)

It is clear that each χj is continuous and its integral is λj (f ). We say that 〈〈·, ·〉〉 is a
Lyapunov metric if:
• the bundles Ej are mutually orthogonal with respect to 〈〈·, ·〉〉;
• the expansion functions satisfy, for every x ∈ M ,

χ1(x) > χ2(x) > · · · > χu(x) > 0 > χu+1(x) > · · · > χd(x), (3.2)

where u is the unstable index of f.

PROPOSITION 3.1. (Lyapunov metric with L1 estimate) Let f ∈ Diffrm(M) be a conser-
vative Anosov diffeomorphism admitting a simple dominated splitting. Furthermore, let
ε > 0. Then there exists a Lyapunov metric such that each expansion function is L1-close
to a constant: ∫

M

|χj (x)− λj (f )| dm(x) < ε. (3.3)

We could smoothen the metrics given by the proposition, but in that case we would lose
the orthogonality of the bundles of the dominated splitting, which is convenient for our
later calculations.
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Proof of Proposition 3.1. We fix an arbitrary Riemannian metric on M. Consider the
following continuous functions:

θ
(n)
j (x) := log

‖Df n(x)v‖
‖v‖ for arbitrary non-zero v ∈ Ej(x).

For each j, the sequence above forms an additive cocycle with respect to the dynamics f.
By domination and hyperbolicity, if N is sufficiently large then

for all x ∈ M , θ(N)1 (x) > · · · > θ(N)u (x) > 0 > θ
(N)
u+1(x) > · · · > θ

(N)
d (x). (3.4)

However, the functions θ(n)j /n converge m-a.e. to the constant λj (f ). So, increasing N if
necessary, we assume that ∫

M

∣∣∣∣θ(N)j (x)

N
− λj (f )

∣∣∣∣ dm(x) < ε. (3.5)

Now, for each x ∈ M , j ∈ {1, . . . , d}, and v ∈ Ej(x), we let

|||v||| :=
N−1∏
n=0

‖Df n(x)v‖1/N . (3.6)

This defines a norm on each one-dimensional bundle Ej(x). Consider the unique inner
product on TxM that makes those bundles orthogonal and whose induced norm agrees
with the definition above.

If v ∈ Ej(x) is non-zero then, by telescopic multiplication,

|||Df (x)v|||
|||v||| = ‖DfN(x)v‖1/N

‖v‖1/N .

This means that the expansion function χj defined by equation (3.1) equals θ(N)j /N .
Therefore, the desired properties shown by equations (3.2) and (3.3) are just those of
equations (3.4) and (3.5).

Remark 3.2. It follows from the proof that the Lyapunov metrics can be constructed so
that the tempering property |χj ◦ f − χj | < ε also holds.

Remark 3.3. Our proof used that the bundles of the dominated splitting are one-
dimensional, so that the geometric average defined by formula (3.6) defines a norm. If the
bundles Ej are higher dimensional, one can still adapt this trick by taking an appropriate
notion of averaging on the symmetric space of inner products: see [10, p. 1839].

3.2. Lyapunov charts.

PROPOSITION 3.4. (Lyapunov charts) Suppose that f ∈ Diffrm(M) is a conservative
Anosov diffeomorphism of unstable index u admitting a simple dominated splitting TM =
E1 ⊕ · · · ⊕ Ed , and that 〈〈·, ·〉〉 is a Lyapunov metric.

Then for all x ∈ M , there exists a map �x : B0 → M , where B0 ⊂ R
d is a fixed closed

ball centered at 0, with the following properties:
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(a) �x(0) = x;
(b) �x is a smooth diffeomorphism onto its image;
(c) �x has constant Jacobian, that is, the push-forward of Lebesgue measure on B0

equals the restriction of the measure m to �x(B0) times a constant factor;
(d) the derivativeLx := D�x(0) takes the canonical basis {e1, . . . , ed} of Rd to a basis

{Lx(e1), . . . , Lx(ed)} of TxM which is orthonormal for the Lyapunov metric 〈〈·, ·〉〉x
and, moreover, Lx(ej ) ∈ Ej(x) for each j.

Furthermore, {�x ; x ∈ M} is a relatively compact subset of C∞(B0, M).

Proof. As it is well known and elementary (see e.g. [30, p. 6]), the manifold M admits
a conservative atlas, that is, an atlas whose charts Fi : Ui ⊂ R

d → M are such that the
push-forward of Lebesgue measure on Ui coincides with the measure m restricted to
Fi(Ui). By compactness, we assume that this atlas is finite.

Now, given x ∈ M , let Lx : R
d → TxM be a linear isomorphism that sends the

coordinate axes to the bundles E1, . . ., Ed , and such that the push-forward of the standard
inner product is the Lyapunov metric 〈〈·, ·〉〉x . Choose i such that Fi(Ui) � x, and define

�x(z) := Fi(F
−1
i (x)+ (DF−1

i (x) ◦Lx)(z)),
for every z in a sufficiently small closed ball B0 ⊂ R

d around 0. It is clear that these maps
have the asserted properties (a)–(d). Moreover, all their derivatives are uniformly bounded,
so we obtain relative compactness of the family.

The maps �x given by the proposition are called Lyapunov charts. Note that the
derivative of f at an arbitrary point x ∈ M can be diagonalized using the Lyapunov charts
as follows:

D(�−1
f (x) ◦ f ◦�x)(0) =

⎛⎜⎝±eχ1(x) 0
. . .

0 ±eχd(x)

⎞⎟⎠ . (3.7)

4. Damping perturbations
In this section, we define a certain type of perturbations f̃ of an Anosov diffeomorphism f,
called damping perturbations. The idea comes from Baraviera and Bonatti [5] but, as one
of the referees has pointed out to us, constructions of this type go back to Newhouse and
Mañé.

Damping perturbations are actually ‘large perturbations’, in the sense that the C1

or even the C0 distance between f̃ and f may be large. However, the support of the
perturbation, that is, the set Z := {x ; f̃ (x) �= f (x)} is required to be ‘dynamically small’:
the return times from Z to itself are not smaller than a large number N. On Z, we impose a
transversality condition: essentially we want the spaces Df̃ (x)Eu(x) and Df̃ (x)Es(x)

to be transverse to Es(f̃ (x)) and Eu(f̃ (x)), respectively, where Eu ⊕ Es denotes the
hyperbolic splitting of f. We show that if the least return time N is large enough, then
the perturbed diffeomorphism f̃ is still Anosov. Moreover, on the set Z, the new unstable
bundle Ẽu is close to the old one Eu, while on the set f (Z), they can be far apart. As
we go upwards in the tower with base Z, the bundle Ẽu is attracted by Eu, so it suffers
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FIGURE 4. A damping perturbation f̃ of an Anosov diffeomorphism f.

some ‘damping’ before returning to Z and getting ‘kicked’ again. See Figure 4. Actually,
we work with Anosov diffeomorphisms with simple dominated splitting; we show that
domination also persists under damping perturbations. Let us give precise statements.

4.1. Definition of damping perturbations. Assume given a conservative Anosov diffeo-
morphism f ∈ Diffrm(M) of unstable index u and admitting a simple dominated splitting
TM = E1 ⊕ · · · ⊕ Ed . Fix a Lyapunov metric 〈〈·, ·〉〉. Let us use the following notation:

χ(x) := (χ1(x), . . . , χd(x)), (4.1)

where the χj terms are the expansion functions of equation (3.1). By definition of
the Lyapunov metric, gu(χ(x)) > 0 for every x ∈ M , where gu is the gap function of
equation (2.2).

For each x ∈ M , let

Lx : Rd → TxM (4.2)

be a linear map that takes the canonical basis {e1, . . . , ed} of R
d to a basis

{Lx(e1), . . . , Lx(ed)} of TxM that is orthonormal for the Lyapunov metric 〈〈·, ·〉〉x and,
moreover, Lx(ej ) ∈ Ej(x) for each j. Note that the map Lx is unique modulo composing
from the right by a matrix of the form diag(±1, . . . , ±1). Taking quotient by this finite
group, Lx becomes unique and continuous.

For each j ∈ {1, . . . , d − 1} and τ > 0, we define the standard horizontal and vertical
cones of index j and opening τ as the following subsets of Euclidean space R

d :

Hj (τ ) := {(z1, . . . , zd) ; z2
j+1 + · · · + z2

d < τ 2(z2
1 + · · · + z2

j )} ∪ {0}, (4.3)

Vj (τ ) := {(z1, . . . , zd) ; z2
1 + . . .+ z2

j < τ 2(z2
j+1 + . . .+ z2

d)} ∪ {0}. (4.4)

Then we define the following continuous fields of cones on the tangent bundle TM:

Hj (x, τ) := Lx(Hj (τ )), Vj (x, τ) := Lx(Vj (τ )).
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By equation (3.7), we have the following invariance properties, for every τ > 0:

Df (x)Hj (x, τ) ⊆ Hj (f (x), e−[χj (x)−χj+1(x)]τ), (4.5)

Df−1(x)Vj (x, τ) ⊆ Vj (f−1(x), e−[χj (f−1(x))−χj+1(f
−1(x))]τ). (4.6)

Let P u and P s : TM → TM be the projections on the unstable and stable bundles of f,
respectively, so that their sum is the identity.

Fix numbers α > β > 0, κ > 0, σ > 0, and N ≥ 2. We say that a diffeomorphism f̃ ∈
Diffrm(M) is a (α, β, κ , σ , N)-damping perturbation of f with respect to the metric 〈〈·, ·〉〉
if the following conditions hold.

(i) For all x ∈ M and j ∈ {1, . . . , d − 1},
Df̃ (x)Hj (x, β) ⊆ Hj (f̃ (x), α),

Df̃−1(x)Vj (x, β) ⊆ Vj (f̃−1(x), α).

(ii) For all x ∈ M ,

v ∈ Hu(x, β) ⇒ |||P u Df̃ (x) v||| ≥ κ |||P u v|||,
v ∈ Vu(x, β) ⇒ |||P s Df̃−1(x) v||| ≥ κ |||P s v|||.

(iii) Letting

Z := {x ∈ M ; f̃ (x) �= f (x) or Df̃ (x) �= Df (x)},
the sets Z, f (Z), . . ., f N−1(Z) have disjoint closures.

(iv) For all x ∈ Z, we have, in terms of notations (4.1) and (2.2):

gu

(
1

N − 1

N−1∑
n=1

χ(f nx)

)
≥ σ

2
, gu

(
1

N − 1

0∑
n=−N−2

χ(f nx)

)
≥ σ

2
.

Note that the definition is symmetric under time-reversal, that is, f̃−1 is a
(α, β, κ , σ , N)-damping perturbation of f−1. Indeed, {x ∈ M ; f̃−1(x) �= f−1(x) or D
f̃−1(x) �= Df−1(x)} = f (Z).

Remark 4.1. Note that condition (iv) is weaker than the condition gu ◦ χ ≥ σ/2, which
is always satisfied in this paper. The reason why we insist in working with the more
complicated condition (iv) is that it may be useful for future applications of our methods.
Moreover, working with the stronger condition would not make the proof of Proposition
4.2 below any simpler.

4.2. Properties of damping perturbations. We will show that damping perturbations
are still Anosov with simple dominated splitting, provided the ‘damping time’ N is large
enough. It is important that the condition on N depends only on the other parameters α, β,
κ , σ (together with a parameter γ that controls the desired closeness between the new and
the old spaces), but not on f itself. Furthermore, given the other parameters, the damping
time N must be at least of the order 1/σ . This should not come as a surprise, because
Lyapunov exponents are inversely proportional to the time it takes to obtain a prescribed
factor of expansion or contraction.
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Given numbers α > β > γ > 0, κ > 0, and σ > 0, let

N0 :=
⌊

2
σ

log(max{κ−1, αγ−1})
⌋

+ 2. (4.7)

Let f ∈ Diffrm(M) be a conservative Anosov diffeomorphism of unstable index u admit-
ting a simple dominated splitting TM = E1 ⊕ · · · ⊕ Ed , and fix a Lyapunov metric
for f.

PROPOSITION 4.2. Let N ≥ N0 and let f̃ ∈ Diffrm(M) be a (α, β, κ , σ , N)-damping
perturbation of f with respect to the Lyapunov metric.

Then f̃ is a conservative Anosov diffeomorphism of unstable index u, and it admits a
simple dominated splitting Ẽ1 ⊕ · · · ⊕ Ẽd .

Moreover, letting Z := {x ∈ M ; f̃ (x) �= f (x) or Df̃ (x) �= Df (x)}, then for all x ∈
M and j ∈ {1, . . . , d − 1}:
(a) Ẽ1(x)⊕ · · · ⊕ Ẽj (x) and Ej+1(x)⊕ · · · ⊕ Ed(x) are transverse, and if x �∈⊔N−1

n=1 f
n(Z), then Ẽ1(x)⊕ · · · ⊕ Ẽj (x) ⊂ Hj (x, γ );

(b) Ẽj+1(x)⊕ · · · ⊕ Ẽd(x) and E1(x)⊕ · · · ⊕ Ej(x) are transverse, and if x �∈⊔0
n=−N−2 f

n(Z), then Ẽj+1(x)⊕ · · · ⊕ Ẽd(x) ⊂ Vj (x, γ ).

Observe that N0 ≥ 2 and that

e(N0−1)σ/2 > max{κ−1, αγ−1}. (4.8)

The first step is to construct continuous fields of cones that are invariant with respect to
the perturbation f̃ .

LEMMA 4.3. For each j ∈ {1, . . . , d − 1}, there exists a continuous function ωj on M
such that, for every x ∈ M ,
(a) γ ≤ ωj (x) ≤ α;
(b) ωj (x) = γ if x �∈ ⊔N−1

n=1 f
n(Z̄);

(c) Df̃ (x)Hj (x, ωj (x)) ⊂ Hj (f̃ (x), ωj (f̃ (x))).

Proof of Proposition 4.2. Fix j. By equation (4.8), we can choose ε > 0 such that

ε < inf
M
(χj − χj+1) and αe−(N−1)(σ/2−ε) < γ .

Let

A := {x ∈ M ; Df̃ (x)Hj (x, γ ) ⊂ Hj (f̃ (x), γ )}.
Then A is an open set and A ∪ Z = M . Let ρ1 + ρ2 = 1 be a partition of unity
subordinated to this open covering. Define the function ωj as follows:

• if x �∈ ⊔N−1
n=1 f

n(Z̄), then we let ωj (x) := γ ;
• if x ∈ f (Z) = f̃ (Z), then we let

ωj (x) := γρ1(f̃
−1(x))+ αρ2(f̃

−1(x)).
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• if x ∈ f n(Z), where 2 ≤ n ≤ N − 1 then, assuming ωj was already defined on
f n−1(Z), we let

ωj (x) := max{γ , ωj (f−1(x))e−χj (f−1(x))+χj+1(f
−1(x))+ε}.

The function ωj is continuous and has properties (a) and (b). Next we check property (c)
case by case. First, consider x ∈ Z.
• If x ∈ Z ∩ A, then ωj (x) = γ and ωj (f̃ (x)) ≥ γ , so property (c) follows directly

from the definition of A.
• If x ∈ Z \ A, then ωj (x) = γ < β and ωj (f̃ (x)) = α, so property (c) follows from

condition (i) in the definition of damping perturbations.
Next we consider the cases where x �∈ Z, and so f̃ (x) = f (x) andDf̃ (x) = Df (x).

• If x �∈ ⊔N−1
n=0 f

n(Z̄), then ωj (x) = ωj (f (x)) = γ , so property (c) follows from the
invariance property (4.5).

• If x ∈ f n(Z) for some n ∈ {1, . . . , N − 2}, then

ωj (f (x)) ≥ ωj (x)e
−χj (x)+χj+1(x)+ε,

and so property (c) again follows from the invariance property (4.5).
• Finally, if x ∈ f N−1(Z) then, letting y := f−N+2(x),

ωj (x) = max
{
γ , ωj (y) exp

N−2∑
i=0

[−χj (f i(y))+ χj+1(f
i(y))+ ε]

}
.

Using the fact that ωj (y) ≤ α, condition (iv) from the definition of damping perturba-
tions, and the choice of ε, we obtain that ωj (x) = γ . Of course, ωj (f (x)) also equals
γ , so property (c) again follows from the invariance property (4.5).

This completes the proof of lemma.
Property (c) from Lemma 4.3 means that for each j, the continuous cone field

Cj (x) := Hj (x, ωj (x)) is strictly forward invariant. This implies that the diffeomorphism
f̃ has a simple dominated splitting Ẽ1 ⊕ · · · ⊕ Ẽd such that for all x and j, we have
Ẽ1(x)⊕ · · · ⊕ Ẽj (x) ⊂ Cj (x); see e.g. [41, Proposition 2.2]. In particular, conclusion
(a) of Proposition 4.2 is satisfied. Because the definition of damping perturbations is
symmetric under time-reversal, it follows that conclusion (b) is also satisfied.

Next, consider the sub-bundles:

Eu := E1 ⊕ · · · ⊕ Eu, Es := Eu+1 ⊕ · · · ⊕ Ed ,

Ẽu := Ẽ1 ⊕ · · · ⊕ Ẽu, Ẽs := Ẽu+1 ⊕ · · · ⊕ Ẽd .

Let us check that the Df̃ -invariant splitting Ẽu ⊕ Ẽs is uniformly hyperbolic.
Recall that P u : TM → TM denotes the projection onto Eu with kernel Es. Then, for

every x ∈ M and v ∈ TxM ,

|||P uDf (x) v||| ≥ eχu(x)|||P uv||| ≥ a1|||P uv|||, (4.9)
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for some constant a1 > 1. Now consider x ∈ Z and v ∈ Cu(x); then,

|||P u Df̃ N(x)v||| ≥ |||P uDfN−1(f̃ (x)) Df̃ (x) v|||

≥ exp
[ N−2∑
i=0

χu(f
i(f̃ (x)))

]
|||P uDf̃ (x) v|||

≥ e(N−1)σ/2|||P uDf̃ (x) v||| (by (iv))

≥ κe(N−1)σ/2|||P uv||| (by (ii)).

Let a2 =: κe(N−1)σ/2, which, by inequality (4.8), is bigger than 1.
Let a3 := min{a1, a1/N

2 } > 1. We claim that there exists a constant c > 0 such that for
all x ∈ M , v ∈ Cu(x), and n ≥ 0,

|||P u Df̃ n(x) v||| ≥ can3 |||P u v|||. (4.10)

Indeed, the inequality holds with c = 1 if the segment of orbit {x, f̃ (x), . . . , f̃ n−1(x)}:
• either does not intersect Z;
• or, for each time it enters Z, it goes through the tower Z � f (Z) � · · · � f N−1(Z)

completely.
In general, the segment may end inside the tower; in this case, its contribution is uniformly
bounded, so we conclude that equation (4.10) holds for an appropriate value of c.

Next, note that for all x ∈ M ,

Cu(x) = {v ∈ TxM ; |||Ps(v)|||2 < ωu(x)
2|||Pu(v)|||2} ∪ {0}

= {v ∈ TxM ; |||Pu(v)|||2 > (1 + ωu(x)
2)−1|||v|||2} ∪ {0}.

By Lemma 4.3(a), ωu(x) ≤ α. Using equation (4.10), we conclude that for all v ∈ Cu(x)
and n ≥ 0,

|||Df̃ n(x) v||| ≥ |||P u Df̃ n(x) v||| ≥ can3 |||P u v||| ≥ c(1 + α2)−1/2an3 |||v|||.
In particular, the bundle Ẽu is uniformly expanding. By symmetry, the bundle Ẽs is
uniformly contracting. This shows that f̃ is an Anosov diffeomorphism of index u,
completing the proof of Proposition 4.2.

5. The model deformation
In this section, we define a special family of diffeomorphisms called the ‘model deforma-
tion’ that will be the basis for the construction in §6. We also establish a few properties of
those maps.

Let ‖·‖ denote the Euclidean norm in R
d , and let B := {z ; ‖z‖ ≤ 1} be the unit ball.

Denote by m the Lebesgue measure on R
d . All the constructions in this section are in R

d ,
so there is no risk of confusion with the volume measure on the manifold M.

Let Diff∞m (B, ∂B) denote the set of all maps h : B → B that can be extended
to volume-preserving C∞-diffeomorphisms of R

d that coincide with the identity
outside B.

For each j ∈ {1, . . . , d − 1} and θ ∈ R, let R(j)θ be the orthogonal matrix that rotates
the plane {0}j−1 × R

2 × {0}d−j−1 by angle θ and is the identity on its orthogonal
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complement, that is,

R
(j)
θ :=

⎛⎜⎜⎝
Idj−1

cos θ − sin θ
sin θ cos θ

Idd−j−1

⎞⎟⎟⎠ . (5.1)

Fix a rotationally symmetric (that is only depending on the norm) C∞-function
ρ : Rd → R which is not identically zero and is supported on B. For each j ∈ {1, . . . , d −
1} and s ∈ R, define h(j)s ∈ Diff∞m (B, ∂B) by

h
(j)
s (z) := R

(j)

sρ(z)(z) ; (5.2)

such a map is indeed conservative because it preserves the family of spheres with
center at the origin and it acts on each of these as an orthonormal map. The diffeo-
morphisms h(j)s will be called the elementary model deformations. See the figure in
[p. 334].

For each t = (t1, . . . , td−1) ∈ R
d−1, define ht ∈ Diff∞m (B, ∂B) by

ht := h
(d−1)
td−1

◦ · · · ◦ h(1)t1 . (5.3)

This d − 1-parameter family of diffeomorphisms will be called the model
deformation.

If t ∈ R
d−1 is sufficiently close to (0, . . . , 0), then the diffeomorphism ht is sufficiently

C1-close to the identity so that the following transversality condition holds: for all z ∈ B

and j ∈ {1, . . . , d − 1},
Dht(z)(R

j × {0}d−j ) is transverse to {0}j × R
d−j . (5.4)

Adjusting ρ if necessary, we assume from now on that every t in the unit cube [0, 1]d−1

satisfies the transversality condition.
If A is any d × d matrix and I, J ⊆ {1, . . . , d} are non-empty subsets of the same

cardinality, let us denote by A[I , J ] the submatrix formed by the entries with row in I
and column in J. Recall that the determinants of those matrices are called the minors
of A; the kth principal minor corresponds to I = J = {1, . . . , k}, and is denoted by
detk A.

Note that the derivatives of the maps (5.2) have the following form (where asterisks are
placeholders for unspecified entries):

Dh
(j)
s (z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
∗ · · · ∗ * ∗ ∗ · · · ∗
∗ · · · ∗ ∗ ∗ ∗ · · · ∗

1
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭ j

⎫⎪⎪⎪⎬⎪⎪⎪⎭ d − j

.
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Moreover, because these matrices have unit determinant, we conclude that their principal
minors are

detk Dh
(j)
s (z) =

{
1 if k �= j ,

�
(j)
s (z) if k = j ,

(5.5)

where �(j)s (z) is defined as the (j , j)-entry of the matrix Dh(j)s (z), that is, the circled
entry above.

The matrices Dh(j)s (z) have no common block triangular form, so the derivative of the
composition (5.3) is intricate. Nevertheless, there is a simple expression for its principal
minors.

LEMMA 5.1. For all z ∈ B, t = (t1, . . . , td−1) ∈ R
d−1, and j ∈ {1, . . . , d − 1},

detj Dht (z) = �
(j)
tj

◦ h(j−1)
tj−1

◦ · · · ◦ h(1)t1 (z).

Proof. Fix z and t, and let P := Dht(z). Let z(0) := z. For each k ∈ {1, . . . , d − 1},
let z(k) := h

(k)
tk

◦ · · · ◦ h(1)t1 (z) and Ak := Dh
(k)
tk
(z(k−1)). By the chain rule, P =

Ad−1 · · · A2A1.
Fix j ∈ {1, . . . , d − 1}, and let J := {1, . . . , j}. We claim that if I ⊂ {1, . . . , d} has

cardinality j and I �= J then:

det Ak[I , J ] = 0 for every k < j ; and (5.6)

det Ak[J , I ] = 0 for every k > j . (5.7)

Indeed, for all i > j , the row matrix Ak[{i}, J ] vanishes if k < j , and the column matrix
Ak[J , {i}] vanishes if k > j .

By the Cauchy–Binet formula for the minors of a product,

det P [J , J ] =
∑

det Ad−1[J , Id−2] · · · det Aj [Ij , Ij−1] · · · det A1[I1, J ],

where the sum is over all d − 2-tuples (I1, . . . , Id−2) of subsets of {1, . . . , d} of
cardinality j. Consider a non-zero term of this sum. Using equation (5.6) recursively, we
obtain J = I1 = I2 = · · · = Ij−1. However, using equation (5.7) recursively, we obtain
J = Id−2 = Id−3 = · · · = Ij . Therefore, the sum contains a single non-zero term, which
by equation (5.5) equals �(j)tj (z

(j−1)).

The transversality condition (5.4) is equivalent to the non-vanishing of the minors
detj Dht (z). When t = 0, these minors equal 1. So the minors are always strictly positive.
In particular, by Lemma 5.1, the functions �(j)s are strictly positive for s ∈ [0, 1]. We will
need information about the logarithms of these functions. By definition,

�
(j)
s (z1, . . . , zd) = ∂

∂zj
(zj cos(sρ(z))− zj+1 sin(sρ(z))).

Because ρ is rotationally symmetric,

�
(j)
s (z1, . . . , zd) = �(1)s (zj , zj+1, . . . , zd , z1, . . . , zj−1).
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In particular, for each s ∈ [0, 1], the integral

Q(s) := − 1
m(B)

∫
B

log �(j)s dm, (5.8)

is independent of j.

LEMMA 5.2. For every s ∈ [0, 1], we have Q(s) ≥ 0, with equality if and only if s = 0.

Proof. Consider j = 1 in equation (5.8). Then the lemma follows from Jensen inequality
and a geometric argument: see [5, Lemma 1.2].

Because each h(j)tj is volume preserving, we obtain from equations (5.8) and Lemma 5.1
that

1
m(B)

∫
B

log detj Dht dm = −Q(tj ). (5.9)

This formula will be essential for our deformations of Lyapunov exponents: roughly
speaking, it will allow us to move the summed exponents λ̂j simultaneously and
independently, as we will see in the next section.

Let us discuss a few other features of the model deformation.
Recall the definitions (4.3) and (4.4) of standard cones in R

d . By the transversality
assumption (5.4), if α > 1 is large enough and β := α−1, then for all z ∈ B, t ∈ [0, 1]d−1,
and j ∈ {1, . . . , d − 1},

Dht(z)Hj (β) ⊆ Hj (α) and Dh−1
t (z)Vj (β) ⊆ Vj (α). (5.10)

In fact, the inclusions are equivalent to one another because the complement of a horizontal
coneHj (τ ) is (modulo sets of non-empty interior) a vertical coneVj (τ ). Let us fix these
numbers α > β > 0 from now on.

Let Pj and Qj : Rd → R
d be the projections on the spaces R

j × {0}d−j and {0}j ×
R
d−j , respectively. We fix κ > 0 such that{

v ∈ Hj (β) ⇒ ‖Pj Dht (z) v‖ ≥ κ ‖Pj v‖,
v ∈ Vj (β) ⇒ ‖Qj Dh

−1
t (z) v‖ ≥ κ ‖Qj v‖.

(5.11)

Let us recall a few facts about exterior powers. Let {e1, . . . , ed} denote the canonical
basis in R

d . Then, for each k ∈ {1, . . . , d}, �kRd is a vector space with the canonical
basis {ei1 ∧ · · · ∧ eik }i1<···<ik . We endow �kRd with the inner product that makes the
canonical basis orthonormal. There is a wedge operation (v, w) ∈ (�kRd)× (��Rd) →
v ∧ w ∈ �k+�Rd which is associative, mutilinear, and skew-symmetric (that is, w ∧
v = (−1)k�v ∧ w). Given a linear map A : R

d → R
d , there are induced linear maps

�kA : �kRd → �kRd such that (�kA)(ei1 ∧ · · · ∧ eik ) = Aei1 ∧ · · · ∧ Aeik . The entries
of the matrix of the exterior power �kA with respect to the canonical basis are exactly
the k × k minors of A; this is called the kth compound matrix of A. More precisely, if
I = {i1 < · · · < ik} and J = {j1 < · · · < jk}, then

〈ei1 ∧ · · · ∧ eik , (�kA)(ej1 ∧ · · · ∧ ejk )〉 = det A[I , J ].
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So the Cauchy–Binet formula used before is nothing but the functoriality of the exterior
powers, that is,�k(AB) = (�kA)(�kB). If A is an orthogonal linear map, then so is�kA.
Therefore, the inner product on �kRd depends only on the inner product on R

d and not
on the choice of orthonormal basis; equivalently, the k-fold exterior power of an inner
product space is an inner product space. From a more geometrical viewpoint, if v1, . . .,
vk are vectors in R

d then the norm of v1 ∧ · · · ∧ vk is the k-dimensional volume of the
parallelepiped spanned by these vectors.

Coming back to the model deformation, let us note for later use that for any ν > 0, there
exists γ ∈ (0, β) such that for all z ∈ B, t ∈ [0, 1]d−1, j ∈ {1, . . . , d − 1} and all linearly
independent vectors w1, . . ., wj ∈ Hj (γ ),∣∣∣∣ log

〈(�jDht (z))(w1 ∧ · · · ∧ wj), e1 ∧ · · · ∧ ej 〉
〈w1 ∧ · · · ∧ wj , e1 ∧ · · · ∧ ej 〉 − log detj Dht (z)

∣∣∣∣ < ν; (5.12)

this statement includes the fact that the numerator and the denominator in the expression
above are both non-zero and have the same sign.

6. Proof of the central proposition
We now assemble the material of the previous three sections to prove Proposition
2.1 (which, as we have seen, implies Theorem 1.5). Recall that we need to define a
multiparametric perturbation (ft ) of f whose Lyapunov exponents ‘spread out’ in a
controlled way (see Figure 2). Our diffeomorphisms ft will be damping perturbations of
the given f. Recall from §4.2 that the damping time N (that is, the minimal return time to
the support of the perturbation) must be roughly proportional to 1/σ , where σ is the bound
on the gap. By preservation of the measure, the volume of the support of the perturbations
cannot be larger than 1/N � σ . This upper bound can be essentially attained using the
Rokhlin tower lemma to select convenient places to perturb. The actual maps ft will be
defined by inserting copies of our model deformations on many ‘Lyapunov balls’ (that
is, balls with respect to the Lyapunov charts constructed in §3.2). Our preparations will
ensure that such maps ft are Anosov with simple dominated splittings E1,t ⊕ · · · ⊕ Ed,t ,
and what we are left to do is to estimate their Lyapunov exponents. It is convenient to
work with the summed exponents λ̂j (ft ), which equal the average log of the expansion
of j-dimensional volume along the invariant sub-bundle E1,t ⊕ · · · ⊕ Ej ,t . It boils down
that, modulo a small error (arising from the lack of smooth integrability), λ̂j (ft ) drops
compared with the unperturbed λ̂j (f ), and the drop is proportional to two things (see
equation (6.16)): the integrals (5.9) that control the basic effect of each model perturbation,
and the total measure of the supports of the perturbations. The integrals are bounded
by constants, and the measure of the support of the whole damping perturbation is, as
explained above, of the order of σ . So ultimately, we are able to move Lyapunov exponents
by an amount that depends on the gap σ but not on f itself, which is an essential feature of
Proposition 2.1.

Proof of Proposition 2.1. Let u ∈ {1, . . . , d − 1} and a1, . . ., ad−1, σ , δ0 > 0 be given.
Recall that Q(s) denotes the quantity defined in equation (5.8), which is a continuous
function of s ∈ [0, 1], vanishes at s = 0, and is positive for s > 0 (by Lemma 5.2).
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Reducing δ0 if necessary, we may assume that

3δ0 max{a1, . . . , ad−1} ≤ Q(1).
For each j ∈ {1, . . . , d − 1}, define

bj := the least value in [0, 1] such that Q(bj ) = 3δ0aj . (6.1)

We fix several other constants. Let α > β > 0 be openings with property (5.10). Let
κ > 0 be a constant with property (5.11). Let ν := (δ0/2) min{a1, . . . , ad−1} and take
γ ∈ (0, β) with property (5.12). Let N := N0(α, β, γ , κ , σ) be given by equation (4.7).
Let δ := δ0/N ; this will be the scaling factor as in the statement of Proposition 2.1. Choose
a very small ε > 0; this choice will be apparent at the end of the proof.

Now let us pick f ∈ Diffrm(M) as in the statement of Proposition 2.1, that is, a con-
servative Anosov Cr -diffeomorphism of unstable index u, admitting a simple dominated
splitting, and such that gu(λ(f )) ≥ σ .

We apply Proposition 3.1 and find a Lyapunov metric so that the associated expansion
functions χ1, . . ., χd obey the L1-estimate (3.3) with the chosen value of ε. Consider the
sets

Rj := {x ∈ M ; |χj (x)− λj (f )| ≥ σ/2}.
By a trivial estimate (Markov’s inequality), m(Rj ) ≤ 2σ−1ε. Thus, the open set

U := M \
d−1⋃
j=1

N−1⋃
n=−N+1

f n(Rj )

has measure m(U) > 1 − 4dNσ−1ε.
By the Rokhlin lemma, there exists a measurable set Z1 disjoint from f (Z1), f 2(Z1),

. . . , f N−1(Z1) with measure

m(Z1) >
1
N

− ε.

Then

m(Z1 ∩ U) > 1
N

− (1 + 4dNσ−1)ε.

Let Z2 be a compact subset of Z1 ∩ U satisfying the same bound. Then take an open
neighborhood Z3 ⊆ U of Z2 that satisfies the same bound, and, moreover, is disjoint from
f (Z3), f 2(Z3), . . ., f N−1(Z3).

Let �x : B0 → M be the Lyapunov charts coming from Proposition 3.4; here, B0 is a
rescaling of the unit closed ball B, that is, B0 = s0B for some s0 > 0. For every x ∈ M
and every s ∈ (0, s0], let us define a Lyapunov ball as

B(x, s) := �x(sB).

Reducing s0 if necessary, we assume that the following properties hold:

y, y′ ∈ B(x, s) ⇒ |χj (y)− χj (y
′)| < ε; (6.2)

y ∈ B(x, s) ⇒ ‖D�−1
x (y)Ly − Id‖ < ε; (6.3)

where Ly := D�y(0).
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Because the Lyapunov charts �x form a relatively compact subset of C1(B0, M),
the family of Lyapunov balls contained in the open set Z3 forms a Vitali covering of
Z3. Therefore, there exists a finite collection of disjoint Lyapunov balls B(x1, s1), . . . ,
B(xp, sp) ⊆ Z3 whose union Z4 has measure m(Z4) > m(Z3)− ε. To simplify notation,
let Bi := B(xi , si) and define

�i : B → M by�i(z) := �xi (siz); (6.4)

so �i has constant Jacobian and image Bi .
For each t ∈ [0, 1]d−1, let us define gt ∈ Diff∞m (M) as follows: gt equals the identity

outside of Z4, and on each Bi it is defined as

gt := �i ◦ hBt ◦�−1
i , (6.5)

where B(t1, . . . , td−1) := (b1t1, . . . , bd−1td−1), and bj comes from equation (6.1). The
sought-after deformation of f is defined as

ft := f ◦ gt for t ∈ [0, 1]d−1.

We now need to check that the maps ft have the properties asserted in Proposition 2.1.
As a first step, we show the following lemma.

LEMMA 6.1. Each ft is a (α, β, κ , σ , N)-damping perturbation of f.

Proof. Condition (i) in the definition of damping perturbations follows from the inclusions
(5.10) and the fact that Df (respectively Df−1) decreases the opening of horizontal
(respectively vertical) cones: see equations (4.5), (4.6). Let us check condition (ii). If
v ∈ Hu(x, β) then, using property (5.11),

|||P uDf̃ (x) v||| = |||P uDf (gtx) Dgt (x) v||| ≥ |||P uDgt(x) v||| ≥ κ |||P uv|||,
while if v ∈ Vu(x, β), then Df̃−1(x) v ∈ Vu(f̃−1(x), β) and so

|||P sDf̃−1(x) v||| = |||P sDg−1
t (f̃−1(x))Df̃−1(x) v||| ≥ κ |||P sDf̃−1(x) v||| ≥ κ |||P sv|||.

Condition (iii) follows from the fact that the set Z4 is disjoint from its N − 1 first
iterates, while condition (iv) follows from the fact that Z4 is contained in U.

Now Proposition 4.2 ensures that each ft is an Anosov diffeomorphism of unstable
index u and admits a simple dominated splitting TM = E1,t ⊕ · · · ⊕ Ed,t . Moreover, by
part (a) of the proposition,

E1,t (x)⊕ · · · ⊕ Ej ,t (x) is transverse to Ej+1(x)⊕ · · · ⊕ Ed(x), (6.6)

E1,t (x)⊕ · · · ⊕ Ej ,t (x) ⊂ Hj (x, γ ) if x ∈ Z4. (6.7)

The rest of the proof consists in estimating the summed Lyapunov exponents λ̂j (ft ).
For each x ∈ M and j ∈ {1, . . . , d}, let vj (x) := Lxej , which is a vector that spans

Ej(x). Because these vectors form an orthonormal basis of TxM , using the definition
(3.1) of the expansion function χj , we obtain that for every vector w ∈ TxM ,

〈〈Df (x)w, vj (f (x))〉〉 = eχj (x)〈〈w, vj (x)〉〉. (6.8)
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In each exterior power of the tangent bundle, we consider the corresponding exterior
power of the Lyapunov metric, denoting it by the same symbol. Let

v̂j (x) := v1(x) ∧ · · · ∧ vj (x) ∈ �jTxM .

Note that for every ŵ ∈ �jTxM ,

〈〈�jDf (x)ŵ, v̂j (f (x))〉〉 = eχ1(x)+···+χj (x)〈〈ŵ, v̂j (x)〉〉. (6.9)

For each x ∈ M , j ∈ {1, . . . , d}, and t ∈ [0, 1]d−1, let us choose a vector vj ,t (x) that
spansEj ,t (x) in such a way that it depends continuously on t and equals vj (x)when t = 0.
Let

v̂j ,t (x) := v1,t (x) ∧ · · · ∧ vj ,t (x) ∈ �jTxM .

Define the functions

ψj ,t (x) := |〈〈�jDft (x) v̂j ,t (x), v̂j (ft (x))〉〉|
〈〈v̂j ,t (x), v̂j (x)〉〉 . (6.10)

Note that the numerator and the denominator in this formula are both positive, thanks to
equation (6.6).

LEMMA 6.2. We have
∫
M

log ψj ,t dm = λ̂j (ft ).

Proof. The top Lyapunov exponent of the linear cocycle �jDft equals λ̂j (ft ), has
multiplicity 1, and the corresponding Oseledets space at a regular point x is spanned by
v̂j ,t (x) (see [3, Theorem 5.3.1]). In particular, the corresponding expansion function

log
|||�jDft (x) v̂j ,t (x)|||

|||v̂j ,t (x)||| =: log ψ̃j ,t (x)

has integral λ̂j (ft ). Furthermore,

�jDft (z) v̂j ,t (x) = ±ψ̃j ,t (x) v̂j ,t (ft (x)).

Substituting into equation (6.10), we see that the functions log ψj ,t and log ψ̃j ,t are
cohomologous. In particular, they have the same integral, proving the lemma.

Let us analyze the function log ψj ,t to estimate its integral.

LEMMA 6.3. If x �∈ Z4, then log ψj ,t (x) = χ1(x)+ · · · + χj (x).

Proof. If x /∈ Z4, then ft = f on a neighborhood of x and so the lemma follows from
equation (6.9).

However, on Z4 = ⊔
i Bi , we have the following estimate.

LEMMA 6.4. If x ∈ Bi and z := �−1
i (x), then

| log ψj ,t (x)− [χ1(x)+ · · · + χj (x)+ log detj DhBt (z)]| ≤ ν +O(ε). (6.11)
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Here and in what follows,O(ε) stands for anything whose absolute value is bounded by
ε times something depending on the numbers fixed at the beginning of the proof and on
the model deformation.

Proof. Consider the case j = 1. Because ft = f ◦ gt ,

log ψ1,t (x) = log
∣∣∣∣ 〈〈Df (gt (x))Dgt (x)v1,t (x), v1(f (gt (x)))〉〉

〈〈Dgt(x)v1,t (x), v1(gt (x))〉〉
∣∣∣∣

+ log
∣∣∣∣ 〈〈Dgt(x)v1,t (x), v1(gt (x))〉〉

〈〈v1,t (x), v1(x)〉〉
∣∣∣∣

=: 1 + 2 .

The first term is easy to estimate, using equations (6.8) and (6.2):

1 = χ1(gt (x)) = χ1(x)+O(ε). (6.12)

Consider x as fixed and denote e1,t := L−1
x v1,t (x). Then

3 := 〈〈v1,t (x), v1(x)〉〉 = 〈〈Lxe1,t , Lxe1〉〉 = 〈e1,t , e1〉,
because Lx sends the Euclidean metric on R

d to the Lyapunov metric at TxM . Recall
from equation (6.7) that v1,t (x) ∈ H1(x, γ ), that is, e1,t ∈ H1(γ ). So the inner product 3

is always positive (by continuity) and actually satisfies the bound:

3 ≥ (1 + γ 2)−1/2‖e1,t‖. (6.13)

Recall that z := �−1
i (x). By equation (5.12), 〈DhBt (z)e1,t , e1〉 is positive and∣∣∣∣ log

〈DhBt (z)e1,t , e1〉
〈e1,t , e1〉 − log det1 DhBt (z)

∣∣∣∣ < ν. (6.14)

Next, consider the quantity

4 :=〈〈D〉〉gt (x)v1,t (x), v1(gt (x))

= 〈〈Dgt(x)Lxe1,t , Lgt (x)e1〉〉 = 〈L−1
gt (x)

Dgt (x)Lxe1,t , e1〉.
Applying the chain rule,

Dgt(x) = D�i(hBt (z)) DhBt (z) D�
−1
i (x) (by equation (6.5))

= D�xi (�
−1
xi
(gt (x))) DhBt (z) D�

−1
xi
(x) (by equation (6.4)).

Therefore,

4 = 〈[D�−1
xi
(gt (x))Lgt (x)]−1 DhBt (z) [D�−1

xi
(x)Lx]e1,t , e1〉

=: 〈(Id + P)−1 DhBt (z) (Id +Q)e1,t , e1〉,
where, by equation (6.3), the linear maps P , Q : Rd → R

d satisfy ‖P ‖, ‖Q‖ < ε. So

4 = 〈DhBt (z)e1,t , e1〉 +O(ε‖e1,t‖), (6.15)
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and, in particular, 4 is positive. Now we can estimate

2 = log( 4 / 3 ) (by definition)

= log
(

〈DhBt (z)e1,t ,e1〉
〈e1,t ,e1〉 +O(ε)

)
(using equations (6.13) and (6.15))

= log
(

〈DhBt (z)e1,t ,e1〉
〈e1,t ,e1〉

)
+O(ε) (using equation (6.14)).

Combining this with equations (6.14) and (6.12), we obtain the desired estimate (6.11) for
the case j = 1.

The proof for j ≥ 2 follows exactly the same pattern, taking exterior powers, of course.
The only point that deserves notice is that estimate (6.13) should be replaced by the
following: if ej ,t := L−1

x vj ,t (x), then

|〈e1,t ∧ · · · ∧ ej ,t , e1 ∧ · · · ∧ ej 〉| ≥ (1 + γ 2)−j/2‖e1,t ∧ · · · ∧ ej ,t‖.

Indeed, the orthogonal projection onto the space spanned by e1, . . ., ej cannot contract
a vector in the cone Hj (γ ) by a factor smaller than (1 + γ 2)−1/2, and hence it cannot
contract the volume of a j-dimensional parallelepiped in the cone by a factor smaller than
(1 + γ 2)−j/2.

We obtain from equations (6.11) and (5.9) that for each Lyapunov ball Bi ,∣∣∣∣ ∫
Bi

log ψj ,t dm−
∫
Bi
(χ1 + · · · + χj ) dm+m(Bi )Q(bj tj )

∣∣∣∣ ≤ m(Bi )ν +O(ε).

This together with Lemmas 6.2 and 6.3 yields

|λ̂j (ft )− λ̂j (f )+m(Z4)Q(bj tj )| ≤ m(Z4)ν +O(ε). (6.16)

Because ν ≤ δ0aj /2 and 1/N −m(Z4) = O(ε),∣∣∣∣λ̂j (ft )− λ̂j (f )+ Q(bj tj )
N

∣∣∣∣ ≤ δ0aj

2N
+O(ε).

By the definition (6.1) of bj ,

Q(0) = 0 ≤ Q(bj tj ) ≤ 3δ0aj = Q(bj ).
Combining these two pieces of information, and recalling that δ = δ0/N , we obtain

λ̂j (ft )− λ̂j (f ) ≥
{

−3.5 δaj −O(ε) for all t ;

−0.5 δaj −O(ε) if tj = 0;

λ̂j (ft )− λ̂j (f ) ≤
{

0.5 δaj +O(ε) for all t ;

−2.5 δaj +O(ε) if tj = 1.

So a sufficiently small choice of ε ensures that inequalities (2.3)–(2.5) are satisfied.
Proposition 2.1 and, therefore, Theorem 1.5 are proved.
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7. Proof of additional results for tori
In this section, we prove two supplements to Theorem 1.5, namely Corollary 1.6 and
Theorem 1.7.

7.1. Anosov diffeomorphisms display all hyperbolic simple Lyapunov spectra. To
deduce Corollary 1.6 from Theorem 1.5, we need the following fact.

LEMMA 7.1. Given integers d > u > 0, there exists an Anosov linear automorphism of Td

with unstable index u and simple Lyapunov spectrum.

Proof. We need to show the existence of a polynomial P(x) with integer coefficients,
leading term xd , constant term ±1, whose roots are all real and simple, being u of them
with modulus bigger than 1 and d − u of them of modulus smaller than 1. Then the
companion matrix of P(x) will be an element L ∈ GL(d, Z) that induces an Anosov
linear automorphism FL : Td → T

d with unstable index u and simple Lyapunov spectrum.
Though the existence of such polynomials can be quickly deduced from Dirichlet’s unit
theorem, we will provide a completely elementary proof. The idea comes from a proof of
existence of Pisot–Vijayaraghavan numbers of arbitrary degree [43, Theorem 1].

Fix integers

a1 > · · · > au > 0 > au+1 > · · · > ad

whose sum is 0 and such that ai − ai+1 ≥ 2 for each i ∈ {1, . . . , d − 1}. Let b ≥ 3 be
another integer, and consider the polynomial

P(x) :=
d∑
i=0

(−1)ibâi xd−i where âi := a1 + · · · + ai , â0 := 0.

Note that âi ≥ 0 for each i and so P has integer coefficients. Furthermore, P is monic and
has constant term (−1)d .

Let us locate the roots of P. We claim that, for all n ∈ Z \ {a1, . . . , ad},

P(bn) is non-zero and has the same sign as
d∏
j=1

(n− aj ), (7.1)

and so, by the intermediate value theorem, P has d − u simple roots on the interval (0, 1)
and u simple roots on the interval (1, +∞). To prove the claim, fix n and consider the
expression:

P(bn) =
d∑
i=0

(−1)ibâi+n(d−i). (7.2)

The function i ∈ {0, . . . , d} → âi + n(d − i) is integer-valued, strictly concave, and
attains a maximum at i = k, where k is the number of negative factors in the product∏d
j=1(n− aj ). Using that 2

∑∞
j=1 b

−j ≤ 1, we see that the term corresponding to i = k

in the right-hand side of equation (7.2) is bigger in absolute value than the sum of all other
terms. So the sign of P(bn) is (−1)k , thus proving equation (7.1).
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Proof of Corollary 1.6. Consider non-zero numbers ξ1 > · · · > ξd whose sum is equal to
0, and let ξ := (ξ1, . . . , ξd). By Lemma 7.1, there exists an Anosov linear automorphism
FL : Td → T

d whose Lyapunov spectrum λ(L) is simple and has the same unstable
index as ξ . If n is sufficiently large, then λ(Ln) = nλ(L) strictly majorizes ξ . Hence
by Theorem 1.5, there exists a conservative Anosov C∞ diffeomorphism f : Td → T

d

homotopic to FLn with simple dominated splitting and such that λ(f ) = ξ , as we wanted to
prove.

7.2. Spectra of Anosov diffeomorphisms with simple dominated splitting on T
3. In

this subsection, we prove Theorem 1.7. Fix a hyperbolic matrix L ∈ GL(3, Z) whose
eigenvalues are all real and simple. So the induced automorphism FL : T3 → T

3 is Anosov
and its Lyapunov spectrum is simple. Let u ∈ {1, 2} be its unstable index.

Proof of the ‘only if’ part of Theorem 1.7. Let f ∈ Diff∞m (T3) be an Anosov dif-
feomorphism homotopic to the automorphism FL, and admitting simple dominated
splitting. Because f and FL are topologically conjugate, they have the same unstable
index u. Taking inverses if necessary, we can assume that u = 2. So the Lyapunov
spectrum λ(f ) = (λ1(f ), λ2(f ), λ3(f )) satisfies λ1(f ) > λ2(f ) > 0 > λ3(f ). Let us
show that λ(f ) is majorized by λ(L). As explained before, the inequality λ1(f )+
λ2(f ) ≤ λ1(L)+ λ2(L) is immediate: see equation (1.3). Therefore, we need to show that
λ1(f ) ≤ λ1(L).

Let f̃ be a lift of f to the universal covering R
3. Because f is homotopic to FL, we have

f̃ = L+ ϕ for some Z
3-periodic map ϕ : R3 → R

3. So, for every n ≥ 0,

f̃ n = Ln +
n−1∑
k=0

Lk ◦ ϕ ◦ f̃ n−1−k .

Because ϕ is bounded, it follows that there is a constant C1 > 0 (independent of n) such
that, for all x, y ∈ R

d with ‖x − y‖ ≤ 1,

‖f̃ n(x)− f̃ n(y)‖ ≤ C1

n∑
k=0

‖Lk‖.

Because the top eigenvalue of the linear map L is simple, there is another constant C2 > 0
such that ‖Lk‖ ≤ C2e

kλ1(L) for all k ≥ 0. In particular,

‖f̃ n(x)− f̃ n(y)‖ ≤ C3e
nλ1(L),

where C3 > 0 is another constant.
By [15, Theorem 1.3] (see also [38, Corollary 7.7]), the strong unstable foliation in the

universal covering is quasi-isometric; this means that there is a constant C4 > 0 such that
if I ⊂ R

3 is a segment of strong unstable manifold, then its length, denoted by len(I ), can
be bounded as

len(I ) ≤ C4 diam(I )+ C4.
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Hence, for every such a segment with diam(I ) ≤ 1, and every n ≥ 0,

len(f̃ n(I )) ≤ C4C3e
nλ1(L) + C4.

If follows from the next lemma that λ1(f ) ≤ λ1(L), as we wanted to prove.

LEMMA 7.2. For each x ∈ T
3, let Wx ⊂ T

3 be the segment of strong unstable leaf of
length 1 for which x is a midpoint. Then, for m-almost every x ∈ T

3,

lim sup
n→∞

log len(f n(Wx))

n
≥ λ1(f ).

(See [39] for related results.)

Proof. Let � denote a one-dimensional Hausdorff measure (that is, length) on T
3. For

every x ∈ T
3,

�(f n(Wx)) =
∫
Wx

‖Df n|E1(y)‖ d�(y).

Because �(Wx) = 1, Jensen’s inequality yields:

log �(f n(Wx)) ≥
∫
Wx

log ‖Df n|E1(y)‖ d�(y).

Let R be the set of points y ∈ T
3 for which limn→∞(1/n) log ‖Df n|E1(y)‖ = λ1(f ); then

m(R) = 1. By absolute continuity of the strong unstable foliation [36, Lemma 10], for
m-almost every x ∈ T

3, we have �(Wx ∩ R) = 1. Therefore,

log �(f n(Wx))

n
≥

∫
Wx∩R

log ‖Df n|E1(y)‖
n

d�(y) −−−→
n→∞ λ1(f ).

Proof of the ‘if’ part of Theorem 1.7. Now we fix a vector ξ = (ξ1, ξ2, ξ3) such that
ξ1 > ξ2 > ξ3, ξu > 0 > ξu+1, and ξ � λ(L). We want to find a smooth conservative
Anosov diffeomorphism f homotopic to FL, admitting a simple dominated splitting, and
with spectrum λ(f ) = ξ . If ξ is strictly majorized by λ(L), then the existence of f is
guaranteed by Theorem 1.5. So let us assume that majorization is not strict, that is, either
ξ1 = λ1(L) or ξ1 + ξ2 = λ1(L)+ λ2(L). We can assume that only one of these equalities
is satisfied, because otherwise, we can simply take f = FL.

Let EL1 , EL2 , EL3 denote the eigenspaces of L corresponding to the Lyapunov exponents
λ1(L), λ2(L), λ3(L), respectively. In the case ξ1 = λ1(L), we shall perform the deforma-
tion in Theorem 1.5 in such a way that the foliation F23 parallel to EL2 ⊕ EL3 is preserved,
while in the case ξ1 + ξ2 = λ1(L)+ λ2(L) (or equivalently λ3(f ) = λ3(L)), we shall do
it in such a way that foliation F12 parallel to EL1 ⊕ EL2 is preserved. Because both cases
are dealt with similarly, we will concentrate on the second case, namely ξ3 = λ3(L).

The following observation will make the argument simpler.

LEMMA 7.3. Let f be a conservative Anosov diffeomorphism of T3 homotopic to FL. If f
preserves the foliation F12, then λ3(f ) = λ3(L).
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Proof. Let f̃ be a lift of f to the universal covering R
3. Because f is homotopic to FL,

we have f̃ = L+ ϕ for some Z
3-periodic map ϕ. Let P1, P2, P3 be the projections

associated to the splitting R
3 = EL1 ⊕ EL2 ⊕ EL3 . The fact that f preserves the foliation

F12 implies that f̃ preserves the foliation F̃12
of R3 along planes parallel to EL1 ⊕ EL2 . For

every x ∈ R
3 and every v ∈ EL1 ⊕ EL2 , we have P3 ◦ f̃ (x) = P3 ◦ f̃ (x + v) and therefore

P3 ◦ ϕ(x) = P3 ◦ ϕ(x + v). Because FL is a three-dimensional Anosov automorphism,
the plane EL2 ⊕ EL3 projects to a dense subset of T

3, and because the map P3 ◦ ϕ is
Z

3-periodic, it must be constant. So the derivative of f written with respect to the splitting
R

3 = EL1 ⊕ EL2 ⊕ EL3 is necessarily of the form⎛⎝ ∗ ∗ 0
∗ ∗ 0
∗ ∗ ±eλ3(L)

⎞⎠ .

Because f̃ is volume preserving, this implies that the absolute value of the determinant of
Df̃ restricted to EL1 ⊕ EL2 is everywhere constant e−λ3(L). The same is true for Df and
hence λ1(f )+ λ2(f ) = −λ3(L), that is, λ3(f ) = λ3(L) (actually, λ3,μ(f ) = λ3(L) for
any f -invariant probability measure μ, by the same proof).

Coming back to the proof of Theorem 1.7, we need a variation of the central proposition
(Proposition 2.1) where all diffeomorphisms preserve the foliation F12.

PROPOSITION 7.4. Let a1, σ , and δ0 be positive numbers. Then, there exists δ ∈ (0, δ0)

with the following properties.
Let f ∈ Diff∞m (T3) be an Anosov diffeomorphism homotopic to FL admitting a simple

dominated splitting, and such that gu(λ(f )) ≥ σ . In addition, assume that f preserves the
foliation F12 (and so λ3(f ) = λ3(L), by Lemma 7.3). Then there exists a continuous map

t ∈ [0, 1] → ft ∈ Diff∞m (T3),

where f0 = f and for each t ∈ [0, 1], the conservative diffeomorphism ft is Anosov,
admits a simple dominated splitting, and its top Lyapunov exponent satisfies

λ1(f )− 4δa1 < λ1(ft ) < λ1(f )+ δa1,

λ1(f )− 4δa1 < λ1(f1) < λ1(f )− 2δa1.

In addition, each ft preserves the foliation F12 (and so λ3(ft ) = λ3(L), by Lemma 7.3).

Once this is established, we mimic the proof of Theorem 1.5; namely, we concatenate
paths produced by the proposition and obtain a deformation of FL that ends with a
diffeomorphism having Lyapunov spectrum equal to ξ .

To prove Proposition 7.4, we begin by modifying the construction of the Lyapunov
charts in Proposition 3.4. Because we are working in the torus T

3 = R
3/Z3, we can

identify tangent spaces TxT3 with R
3. Let π : R3 → T

3 be the quotient projection. For
each x ∈ T

3, let Lx : R3 → R
3 be a linear map that takes the canonical basis {e1, e2, e3}

of R3 to a basis {Lx(e1), Lx(e2), Lx(e3)} of R3 which is orthonormal for the Lyapunov
metric 〈〈·, ·〉〉x , and, moreover, Lx(ej ) ∈ Efj (x) for each j. Then we define the Lyapunov
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charts

�x(z) := x + π(Lx(z)).

These charts have all properties from Proposition 3.4 and the following additional one:
(e) �x is a foliated chart, that is, if z1, z2, z3 denote canonical coordinates in R

3, then
�x maps level sets of z3 (horizontal slices) into leaves of F12.

Indeed, the derivatives D�x(z) are constant and equal to Lx , and Lx maps the plane
Re1 ⊕ Re2 to the plane Ef1 (x)⊕ E

f

2 (x) = EL1 ⊕ EL2 , which is tangent to F12.
Then we follow the proof of Proposition 2.1 (but with a2 = 0). To summarize, the

deformation ft of f is constructed as follows:
• we select a disjoint family of Lyapunov balls B1, . . . , Bp; each ball Bi equals �i(B),

where B is the unit ball B in R
3 and �i(z) = �xi (siz) is a rescaled Lyapunov chart;

• on each Lyapunov ball Bi , the deformation is defined as ft = f ◦ gt , where gt =
�i ◦ h(1)b1t

◦�−1
i ; here b1 > 0 is a constant and h(1)t is the first elementary model

deformation.
Inspecting the equations (5.1), (5.2) that define the diffeomorphism h

(1)
t : B → B, we

immediately see that it preserves horizontal slices (that is, level sets of z3). Because
�i maps horizontal slices into leaves of F12, the upshot is that each diffeomorphism ft

preserves the foliation F12. This proves Proposition 7.4. As explained before, Theorem 1.7
follows.
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