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TOOLS TO ESTIMATE THE FIRST PASSAGE TIME
TO A CONVEX BARRIER
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Abstract

The first passage time of a random walk to a barrier (constant or concave) is of great
importance in many areas, such as insurance, finance, and sequential analysis. Here,
we consider a sum of independent, identically distributed random variables and the
convex barrier cb(n/c), where c is a scale parameter and n is time. It is shown, using
large-deviation techniques, that the limit distribution of the first passage time decays
exponentially in c. Under a tilt of measure, which changes the drift, four properties
are proved: the limit distribution of the overshoot is distributed as an overshoot over a
linear barrier; the stopping time is asymptotically normally distributed when it is properly
normalized; the overshoot and the asymptotic normal part are asymptotically independent;
and the overshoot over a linear barrier is bounded by an exponentially distributed random
variable. The determination of the function that multiplies the exponential part is guided
by consideration of these properties.
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1. Introduction

Consider a sum Sn = ∑n
i=1 Xi that starts at zero and whose increments are independent

and identically distributed, and let cb(n/c) be a distant upper convex barrier. The barrier is
three-times continuously differentiable with b(0) > 0 and c a scale parameter.

Example 1. The barrier b(s) can take one of the following forms: 1, s + 1, es , e−s , 1 + s2, etc.
We choose a convex barrier for two reasons: this case has not been fully studied and convexity
of the barrier will preserve convexity of a rate function of the stopping time (to be introduced
later).

Definition 1. The time when the process Sn passes or hits cb(n/c) first is denoted by Nc =
inf{n : Sn ≥ cb(n/c)}, with Nc = ∞ if Sn < cb(n/c) for all n.

The overshoot over the barrier is written

Z = SNc − cb

(
Nc

c

)
.

What is the asymptotic distribution of the stopping time when the scale parameter c goes to
infinity?
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Note that the scaling of time n/c is natural since it is the same scale as Sn/c, the scale of
large numbers; see the following example.

Example 2. An investor is obliged by the bank to deposit K = $10 000 for a spread position
Sn = ∑n

i=1 Xi , where the Xi are the net loss or profit each day. The bank pays interest r such
that at time s, measured in years, the deposit is worth Kers . If Sn is less than or equal to the
deposit, the spread position is closed. What is the probability of the bank closing the position
and what is the distribution of the stopping time of this event?

Assume that r = 0.0365 and s = n/365; then rs = (365/104) · (n/365) = n/104. Under
these assumptions, it is natural to put c = 104 and, thus, cb(n/c) = cen/c. The probability
of the bank closing the position can be approximated by the asymptotic distribution derived in
this article (using −Sn as the process).

In the early literature on insurance, the probability of ever hitting a constant barrier – a
prospect that meant ruin – was studied by Cramér [3] and Lundberg [21]. They found that
the probability of ruin decayed exponentially with a constant rate as the distance to the barrier
increased.

The probability of ruin (also before a finite time) has been analysed by the use of many
different techniques: two-dimensional renewal theory [15]; ladder variables [30]; integral
equations [26]; and martingale techniques [8]. More recently, ruin probability has become of
interest in finance. For example, Dembo et al. used large-deviation techniques to study credit
risk in a loan or bond portfolio [5]. Further references to the insurance literature can be found
in the textbooks by Grandell [8] and Rolski et al. [25].

Renewal theory can be used to study the stopping time to a linear barrier; see, for example,
[32]. One method of generalization is to make the barrier time dependent and study the first
time at which Sn ≥ cb(n). The barrier b(n) = nγ , where 0 ≤ γ < 1, is nondecreasing,
concave, and regularly varying at infinity, and has been studied by Gut [9], [10].

The next possible theoretical step to take is to use nonlinear renewal theory, which is
fundamental in sequential analysis. In nonlinear renewal theory, the first passage of Wn =
Sn + ξn to a linear barrier was analysed by Lai and Siegmund [18], [19]. The sequence ξn

is independent of Sm (m > n), slowly changing, and uniformly continuous in probability.
As an alternative, let Wn be a perturbed random walk, which means that ξn instead satisfies
limn→∞ ξn/n = 0 almost surely. Gut [11] studied the first passage time of a perturbed random
walk to a barrier that is nondecreasing, concave, and regularly varying at infinity. (Also see the
remarks on [11] made by Larsson-Cohn [20].)

As indicated, the barriers are almost always concave or linear in this area of research (see
below for exceptions) and three properties are central. The first property is a central limit
theorem of the stopping time. The second is that the overshoot over the barrier converges
in distribution to the distribution of an overshoot over a linear barrier. The last property
is asymptotic independence between the overshoot and the stopping time. For examples
of pioneering work on this, see [13], [18], [19], [29], and [31]. For more references and
background on nonlinear renewal theory and sequential analysis, consult the textbooks by
Gut [10], Siegmund [28], and Woodroofe [32] for examples.

The first passage density of a Brownian motion, with and without drift to a curved barrier, has
been approximated by different schemes; see, for example, [6], [7], [16], and [17]. In the case
of diffusions, Roberts and Shortland [24] studied approximations of the stopping time to curved
barriers using enveloping curves. The sum Sn could, with the right scaling, be approximated
by diffusion. This, however, is not the aim here.
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The contribution of this article has several aspects. In the literature on insurance and
sequential analysis, the first passage to a convex barrier has not been studied extensively.
However, Martin-Löf [22] studied the asymptotic distribution of P(Nc ≤ ct), using Wald’s
identity and large-deviation techniques. He restricted his analysis to the case t ≥ T , where T

is the most probable value for Nc. We will use a more probabilistic approach and study the
properties for both t ≥ T and t < T in more depth.

Siegmund [27] embedded the distribution of Xi in an exponential family in order to find
the asymptotic distribution of P(Nc < cb(n/c) | Sc = cµ0), where µ0 < b(1). This can
be ‘translated into knowledge about P(Nc < cb(n/c)) by integrating out µ0, although a
rigorous justification of this approach leads to questions of uniformity in µ0, which may involve
additional technical difficulties’ [27]. The method used is claimed to work for a large set of
barriers, but only the constant barrier and b(s) = const · s1/2 are analysed here.

We will use large-deviation techniques to prove that limc→∞ c−1 log(P(Nc ≤ ct)) =
−infs≤tR(s), where R(s) is a rate function of the first passage time. The rate function is
equal to a constant R(T ) whenever t ≥ T . The most probable time to pass the barrier is
determined by the two equations g(θ) = θb′(T ) and g′(θ) = b(T )/T , where g(θ) is the
cumulant generating function of the increments (and a prime denotes differentiation). The rate
function is R(s) = θb(s) − g(θ)s, where θ is determined by the equation g′(θ) = b(s)/s.

The exponential rate of decay is in line with what one expects from the results reported
in insurance literature. Furthermore, the rate function of the first passage time is convex and
R(s) > 0 for all s if µs < b(s), where µ is the expected value of Xi . If there is a T such that
µT = b(T ), then R(s) is no longer convex and R(T ) = 0.

The Esscher transform tilts the true distribution P to a distribution Pθ , so that the drift
changes. By an appropriate choice of θ , the drift is changed to the tilted drift µθ = b(t)/t (and
µθ = b(T )/T for t ≥ T ). The variance of the increments is denoted by σ 2.

Let ‘
pθ→’ denote convergence in probability under the tilted measure. Under the tilted

distribution, we use large deviations to prove four properties of the stopping time. Three
of them have corresponding results in nonlinear renewal theory, namely,

1. limc→∞ c−1/2(Nc − ct)
pθ→ Y ∼ N(0, a2), where a2 = σ 2t3(b(t) − b′(t)t)−2 and

g′(θ) = b(t)/t ;

2. the overshoot Z is asymptotically independent of Y under the tilted distribution Pθ ; and

3. the overshoot Z converges in distribution to an overshoot Zl over a linear barrier cb(t)+
b′(t)(n − ct) under Pθ .

These results, and the techniques used in their proofs, differ from the ones in nonlinear renewal
theory in that the barrier is convex and we use large-deviation techniques. The fourth property
is that the overshoot over a linear barrier is bounded by an exponential random variable.

One important use of these properties is to show that

lim
c→∞ ecR(T ) P(Nc ≤ cT + c1/2y) = η

a
Eθ [e−θZl ]�

(
y

η

)
, (1)

where Eθ [·] is the expected value under the measure Pθ , � is the cumulative distribution
function of a standard normal random variable, Zl is the overshoot over the linear barrier
cb(T ) + b′(T )(n − cT ) and η−2 = a−2 + b′′(T )θ .
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Example 3. Let Xi ∼ N(0, 1) and b(s) = 1 + s2. Then g(θ) = 1
2θ2, which implies that the

system of equations to be solved is

1
2θ2 = 2θT , θ = 1 + T 2

T
.

The solution is θ = 4/31/2 and T = 3−1/2. Hence,

R(T ) = θb(T ) − g(θ)T = 4(1 + 1
3 )√

3
− 8

3
√

3
= 8

3
√

3
.

The variance is
a2 = σ 2t3(b(T ) − b′(T )T )−2 = 1

4

√
3

and η−2 = a−2 + θb′′(T ) = 4/31/2 + 2 · 4/31/2 = 12/31/2. If we simply ignore the constant
Eθ [e−θZl ] then we can write

P(Nc ≤ cT + c1/2y) ≈ exp(−cR(T ))
η

a
�

(
y

η

)
= √

3 exp

(
− 8c

3
√

3

)
�

(
y
√

12
4
√

3

)
.

Furthermore, the constant Eθ [e−θZl ] can also be approximated; see [28, p. 175].

Example 4. As a comparison to renewal theory, let b(s) = 1. Then, the barrier is both
convex and concave. Furthermore, assume that there is a T such that µT = 1. This implies
that R(T ) = 0, and that the tilted measure is equal to the original one (θ = 0). We have
µ = 1/T > 0 and, therefore, by Theorem III 5.1 of [10],

lim
c→∞ P

(
Nc − c/µ√

σ 2µ−3c
≤ y

)
= lim

c→∞ P

(
Nc − cT√

σ 2T 3c
≤ y

)
= �(y).

Not surprisingly, this is equal to the expression given in (1).

When t < T , the rate function is

inf
s≤t

R(s) = R(t) = θb(t) − g(θ), where g′(θ) = b(t)/t.

The function that multiplies the exponential part is not so easy to compute in this case. In
Section 5 we will argue that

lim
c→∞ c1/2ecR(t) P(Nc ≤ ct) = Eθ [e−θZl ]

(1 − eR′(t))
√

2πa
,

where a2 = σ 2t3(b(t)− b′(t)t)−2 (as above) and R′(t) = θb′(t)− g(θ). The proof of this can
be found in Hammarlid [12].

A unified formulation of the function that multiplies the exponential part for the two cases
t < T and t ≥ T may possibly be derived as Höglund [14] did in the case of a sum of
independent random variables. Another step towards generalization is to apply the method
presented here to concave barriers, but a problem here is that the convexity of R(s) is lost and,
in an extreme case, there might be multiple candidates for T ; see Martin-Löf [22].

The outline of the article is as follows. In Section 2, we introduce large-deviation techniques
and give a short, heuristic calculation of the limit distribution. Furthermore, we use large-
deviation techniques to derive the equations determining the dominating point of the barrier
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and the rate function R(s) and its properties. In Section 3, we discuss the tilting of a distribution
and its implications for the rate function and convergence of the normalized stopping. All the
results regarding asymptotic normality, independence, and the distribution of the overshoot are
proved in Section 4. The results from previous sections are then used in Section 5 to prove the
main theorem.

2. A large-deviation estimate of the first passage time

In this section, we will compute the counterpart to the rate function of a sum, namely the rate
function of the stopping time. First, however, we will give an introduction to large deviations
and a short, heuristic explanation of our general argument.

Assume that the cumulant function g(θ) = log(E[eθXi ]) exists for θ in some open set, rule
out the special case of Xi being a constant, meaning that g′′(θ) > 0, and write µ for the
expected value of Xi . No assumptions are imposed on µ, but the most interesting case is when
µs < b(s). A simple application of Markov’s inequality gives, for x > µ and θ > 0,

P(Sn > nx) ≤ exp[−n(xθ − g(θ))].
The best possible approximation is achieved by minimizing over θ . Therefore, we define the
rate function I (x) = supθ (xθ − g(θ)) and find that

P(Sn > nx) ≤ exp(−nI (x)) if x > µ. (2)

This bound is called the Chernoff bound [2]. There is also a lower bound such that [1], for any
convex set B,

lim
n→∞ n−1 log

(
P

(
Sn

n
∈ B

))
= − inf

x∈B
I (x).

This result is usually stated as two separate limit theorems: one upper bound for closed sets,
and one lower bound for open sets. We will work with sets, such as intervals and convex sets,
such that the upper bound equals the lower bound.

The rate function has some well-known properties:

I (x) ≥ 0 for all x,

I (µ) = 0,

I (x) = θx − g(θ), where g′(θ) = x, (3)

I ′(x) = θ,

θ ′(x) = 1/g′′(θ).

In large-deviation theory, it is customary to suppress the dependence of θ on x. We will adhere
to this custom for notational convenience. However, θ will be fixed by either x = b(t)/t when
t < T , or x = b(T )/T when t ≥ T . Whenever necessary, we will write θ(x). All of the
properties follow from manipulations of the definition of rate function; see, for example, [1]
and [4].

The intuitive appeal of large-deviation techniques can be explained by the following heuristic
argument. Loosely speaking, we could say that the theory of large deviations tells us that
P(Sn/n ≈ x) ≈ exp(−nI (x)). Hitting the barrier at n implies a drift Sn/n ≈ (c/n)b(n/c) and
a rate I ((c/n)b(n/c)). Therefore, we expect the following estimate:

P(Nc/c ≈ s) ≈ K(c) exp(−csI (b(s)/s)) = K(c) exp(−cR(s)),
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where
R(s) = sI (b(s)/s)

and K(c) is a function changing more slowly than the exponential term. When the scale
parameter is large, the time T , defined by R(T ) = infs R(s), will dominate, so that

P(Nc/c < ∞) ≈
∑

s

K(c) exp(−cR(s)) ≈ K(c) exp(−cR(T )).

Furthermore, for t ≥ T , by the same type of argument, we have

P(Nc/c < t) ≈ K(c) exp(−cR(T )),

while, for t < T , the dominant time is t and P(Nc/c < t) ≈ K(c) exp(−cR(t)).

Lemma 1. Let µ = E[Xi] and assume that µs < b(s) for all s. Then the function R(s) =
sI (b(s)/s) is convex and it attains its minimum at T , which is determined by

g(θ) = b′(T )θ and g′(θ) = b(T )/T . (4)

The rate function of the stopping time is R(s) = θb(s) − g(θ)s, where g′(θ) = b(s)/s.
Therefore,

lim
c→∞ c−1 log(P(Nc ≤ ct)) =

{
−R(t) for t < T ,

−R(T ) for t ≥ T .

Remark 1. By (4), is it possible to write R(T ) = θ(b(T ) − T b′(T )) = T (θg′(θ) − g(θ)).

Proof of Lemma 1. The proof is carried out in two steps. First, we show that c−1 log(P(Nc ≤
ct)) has an upper and a lower bound which, in the limits, are equal. Then, the first- and second-
order derivatives of R(s) are computed, where R′′(s) ≥ 0 and the unique solution to R′(s) = 0
is the optimal time T .

The probability we want to estimate is

P(Nc ≤ ct) = P

(�ct�⋃
n=1

{
Sn ≥ cb

(
n

c

)})
,

where �·� denotes the integer part. This probability has an upper bound, derived from the
Chernoff bound (2) and Boole’s inequality. Since (c/n)b(n/c) > µ for all n, we have

P

(�ct�⋃
n=1

{
Sn ≥ cb

(
n

c

)})
≤

�ct�∑
n=1

exp

(
−c

(
n

c

)
I

(
c

n
b

(
n

c

))
.

One point will dominate the others in the sum. Hence, if s = n/c, then

P

(�ct�⋃
n=1

{
Sn ≥ cb

(
n

c

)})
≤ ct exp

(
−c inf

0≤s≤t
sI

(
b(s)

s

))
. (5)

Let us turn to the lower bound of P(Nc ≤ ct). It is always true that, for any n ≤ ct ,

P

(
Sn

n
≥ c

n
b

(
n

c

))
≤ P

(�ct�⋃
n=1

{
Sn ≥ cb

(
n

c

)})
.
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Therefore, if we fix s such that s = n/c, the lower large-deviation bound ensures that

−sI (b(s)/s) ≤ lim
c→∞ c−1 log(P(Sn/n ≥ (c/n)b(n/c))), s = n/c. (6)

The s that maximizes the rate on the left-hand side of (6) gives the best bound and is equal to
the dominant point T in (5). Take the logarithm of both sides of (5) and divide by c. Then, in
the limit, and in combination with the lower bound (6), we have

lim
c→∞ c−1 log(P(Nc ≤ ct)) = − inf

0≤s≤t
sI (b(s)/s) = − inf

0≤s≤t
R(s).

The second step of the proof is to compute the first- and second-order derivatives of R(s)

in order to find the unique optimal point. The first-order derivative is R′(s) = I (b(s)/s) +
I ′(b(s)/s)[b′(s)s − b(s)]/s, which we simplify, using the properties of the rate function (3), to

R′(s) = θb′(s) − g(θ). (7)

Without restrictions on s, the minimum of R(s) is attained when R′(s) = 0 and, hence, by (7),
we have b′(T )θ = g(θ), where g′(θ) = b(T )/T .

The second-order derivative of R(s) is, from (7), R′′(s) = (d/ds)(θb′(s) − g(θ)). Using
the chain rule and the fact that θ ′(x) = 1/g′′(θ), and making the substitution g′(θ) = b(s)/s,
gives

R′′(s) = (b′(s)s − b(s))2

g′′(θ)s3 + θb′′(s). (8)

The barrier and the cumulant function are convex and, hence, b′′(s) ≥ 0 for all s and
g′′(θ) > 0 for all θ in the defined open set. We know that g′(θ) is nondecreasing, since
g′′(θ) > 0, and that g′(0) = µ. This implies that the value of θ that solves g′(θ) = b(s)/s

must be greater than 0 when b(s)/s > µ and less than 0 when b(s)/s < µ. Therefore, since
b(s)/s > µ for all s and s > 0, we have R′′(s) ≥ 0.

If t < T then the optimal solution is not feasible, and the solution must be on the boundary
of [0, t). The function R(s) is decreasing in s ≤ T , so infs≤t R(s) = R(t).

Remark 2. Note that if s = T in (8) then, by Remark 1,

R′′(T ) = R(T )2

g′′(θ)θ2T 3 + θb′′(T ). (9)

Every point s > T ∗, where T ∗ solves b′(s) = b(s)/s and may be infinite, is on the ‘shadow
side’. We call it the shadow side because no point on that side can be reached by a straight line
from the origin without passing the barrier along the way. The barrier is convex and therefore

b(s)/s > b′(s) for every s < T ∗. (10)

When the barrier is crossed by the drift line, the function R(s) is no longer convex.

Lemma 2. Assume that there is a T that solves µT = b(T ). Then R(T ) = R′(T ) = 0 and
the function R(s) is not, in general, convex. More precisely, R′′(s) > 0 for all s ≤ T < T ∗,
and R′′(T ∗) ≤ 0.
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Proof. The minimum of I (µ) is 0, by the properties of the rate function (3). This, and the
assumption that µT = b(T ), gives R(T ) = T I (b(T )/T ) = 0. We know that θ = 0 solves
g′(θ) = b(T )/T , which, by (7), gives R′(T ) = 0. When s ≤ T < T ∗, b(s)/s ≥ µ, which
implies that θ ≥ 0 and, therefore, that R′′(s) > 0 (see the discussion under (8)). On the other
hand, θ < 0 when g′(θ) = b(T ∗)/T ∗ < µ and R′′(T ∗) = θb′′(T ∗) ≤ 0. Hence, the function
R(s) is not convex.

Remark 3. How is the value of the rate function at the point u < T ∗ related to that at the
point v > T ∗, when u and v are the crossing times of a line from the origin to the barrier
b(s)? The relation is linear, because the slope of the line is the same at each point. That is,
b(v)/v = b(u)/u and

vI (b(v)/v) = uI (b(u)/u) + (v − u)I (b(u)/u).

From this, we see that T ≤ T ∗.

3. Tilted distribution

One important tool is the tilted distribution – sometimes called an exponential change of
measure or the Esscher transform; see, for example, [1] and [22]. For every θ in the defined open
set, a tilting of a distribution F(x) is defined by dFθ(x) = exp(θx − g(θ)) dF(x). The tilted
expectation is denoted Eθ [·] and the tilted cumulant function gθ (γ ) = log(Eθ [exp(γXi)]). It
can easily be shown that gθ (γ ) = g(γ + θ) − g(θ). The expected value and variance under
the tilted measure are therefore defined by the first- and second-order derivatives of the tilted
cumulant at γ = 0, as follows:

Eθ [Xi] = g′(θ) and varθ (Xi) = g′′(θ).

The tilted rate function is Iθ (x) = γ x − gθ (γ ), where γ solves g′
θ (γ ) = x, and Iθ (g

′(θ)) = 0
since g′(θ) = Eθ [Xi]. Also, I ′

θ (g
′(θ)) = 0 since I ′

θ (x) = γ , according to the properties of the
rate function (3), and γ = 0 solves g′

θ (γ ) = g′(θ) = Eθ [Xi] = µθ .

Lemma 3. Let t ≤ T ∗ be fixed and let θ solve g′(θ) = b(t)/t . Then the function Rθ(s) =
sIθ (b(s)/s) is not, in general, convex, but Rθ(t) = 0, R′

θ (t) = 0, and R′′
θ (t) > 0. Furthermore,

there is a constant d > 0 such that Rθ(t ± ε) ≤ dε2 for some fixed ε > 0. In particular,

Pθ (Nc < c(t − ε)) ≤ cte−cRθ (t−ε) ≤ cte−cdε2
,

Pθ (Nc > c(t + ε)) ≤ e−cRθ (t+ε) ≤ e−cdε2
.

(11)

Remark 4. The most important case is when t = T .

Remark 5. Only ct ≥ 1 is of interest since, trivially, P(Nc < 1) = 0.

Remark 6. In analogy with the case of a linear barrier, it is tempting to believe that, for any
fixed c, we have Pθ (Nc < ∞) = 1. This is not always true, however: it is only true when
b′(s) ≤ µθs = sb(t)/t for all s.

Assume that there is a T ∗∗ such that b′(s) > µθs for all s ≥ T ∗∗. Then, for a fixed c, there
is a strictly positive probability of not passing the barrier before T ∗∗. The probability of not
passing the barrier after T ∗∗ is also positive since the process, from this point on, may follow
the drift without passing the barrier. Hence, the probability in this case is Pθ (Nc < ∞) < 1.
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Proof of Lemma 3. The tilted drift is µθ = g′(θ) = b(t)/t , which crosses the barrier at
time t . The minimum of Rθ(t) and R′

θ (t) is 0 and Rθ(t) is not generally convex but R′′
θ (t) > 0

(all of which follow from Lemma 2). Therefore, the Taylor expansion of Rθ(t ± ε) is 1
2R′′

θ (ξ)ε2,
where |ξ − t | ≤ ε, so we choose d ≤ 1

2R′′
θ (s) for all |s − t | ≤ ε.

Now consider the sets

{Nc < c(t − ε)} = {Sn ≥ cb(n/c) for some n < c(t − ε)},
{Nc > c(t + ε)} = {Sn < cb(n/c) for all n ≤ c(t + ε)}.

To the probability of the first set we apply Boole’s inequality and then the Chernoff bound. The
second set is a subset of {Sc(t+ε) < cb(c(t + ε))/(t + ε)}, which can be dominated using the
Chernoff bound. Hence,

Pθ (Sn ≥ cb(n/c) for some n < c(t − ε)) ≤ ct exp
(
−c inf

0≤s<t−ε
sIθ (b(s)/s)

)
,

Pθ (Sn < cb(n/c) for all n < c(t + ε)) ≤ exp(−c(t + ε)Iθ (b(t + ε)/(t + ε))).

The definition of Rθ(s) = sIθ (b(s)/s) and the Taylor expansion then give (11).

We write ‘
a.s.→’ for Pθ -almost-sure convergence.

Lemma 4. Fix ε > 0, γ > 0, and α > 0 such that α < 2γ . Then, under the tilted distribution,
there is a d > 0 such that

Pθ

(∣∣∣∣ (Nc − ct)α

cγ

∣∣∣∣ > ε

)
≤ 2ct exp(−c2γ /α−1dε2/α),

where g′(θ) = b(t)/t with t ≤ T . Also, c−γ (Nc − ct)α
a.s.→ 0 as c → ∞ in the set of integers.

Proof. We have, by the large-deviation estimates of Lemma 3,

Pθ (|Nc/c − t | > ε) ≤ 2cte−cdε2
.

Therefore,

Pθ

(∣∣∣∣ (Nc − ct)α

cγ

∣∣∣∣ > ε

)
= Pθ

(∣∣∣∣Nc − ct

c

∣∣∣∣ > cγ/α−1ε1/α

)
≤ 2ct exp(−c2γ /α−1dε2/α),

where we have used the fact that ct ≥ 1. If 2γ > α then ct exp(−dε2/αc2γ /α−1) → 0 as c

goes to infinity. Choose ε = c−η, where η > 0 is such that γ − η > 1
2α. Then

∞∑
c=1

Pθ

(∣∣∣∣ (Nc − ct)α

cγ

∣∣∣∣ >
1

cη

)
≤ 2

∞∑
c=1

ct exp(−c2(γ−η)/α−1d) < ∞.

The Borel–Cantelli lemma states that the convergence is almost sure.

Corollary 1. Fix ε. Then there is a constant d > 0 such that, under the tilted distribution,
Pθ (|Nc − cT | > cε) ≤ 2cte−cdε2

, where g′(θ) = b(T )/T and Nc/c
a.s.→ T as c → ∞ in the

set of integers.

Proof. This is a direct consequence of Lemma 4, with t = T , γ = 1, and α = 1.
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Later, we will need to use the fact that the overshoot Z converges to 0 when scaled by
c−α . However, if we use the definition of the overshoot, Taylor expand the barrier around the
dominating point, and use the fact that SNc−1 ≤ cb((Nc − 1)/c), then

Z = SNc − cb(Nc/c) ≤ XNc − b′(t) + (b′′(ξ)/c)|Nc − 1 − ct |, (12)

where ξ is between t and Nc/c. The last step (in Sn) might be negative, but the overshoot is, of
course, always positive.

Lemma 5. Let α > 0. Then, under the tilted distribution,

|XNc |
cα

a.s.→ 0 as c → ∞.

For a proof, see that of Theorem I.2.3(i) of Gut [10].

Lemma 6. Let α > 0. Then, under the tilted distribution,

Z

cα

a.s.→ 0 as c → ∞.

Proof. This is a direct consequence of (12), Lemma 5, and the fact that limc→∞ b′′(ξ) is
an almost-everywhere-bounded random variable, so that c−(1+α)b′′(ξ)|Nc − 1 − ct | a.s.→ 0 (by
Lemma 4).

4. Normality, overshoot, and independence

4.1. Asymptotic normality

Gut [9], [10] uses Anscombe’s theorem as a key factor in proving asymptotic normality for
stopping times of random walks or perturbed random walks hitting a regularly varying, linear
or concave boundary. We will use the same technique.

Theorem 1. (Anscombe’s theorem.) Let {Xi, i ≥ 1} be a sequence of independent, identically
distributed random variables with mean 0 and variance σ 2 and let {Sn, n ≥ 1} denote their
partial sums. Furthermore, assume that Mc is a sequence of integer-valued, positive random
variables such that Mc/c

pθ→ T as c → ∞. Then

lim
c→∞ P(SMc ≤ yσ

√
Mc) = �(y),

lim
c→∞ P(SMc ≤ yσ

√
cT ) = �(y).

Proof. For a proof, see Rényi [23] or Gut [10].

Theorem 2. Assume that varθ (Xi) = σ 2 = g′′(θ) < ∞ and that g′(θ) = b(t)/t . Then, for
t ≤ T ∗,

lim
c→∞ Pθ

(
b(t) − b′(t)t

t
(Nc − ct) ≤ yσ

√
ct

)
= �(y).

In the special case in which g′(θ) = b(T )/T , we have b(T ) − b′(T )T = θ−1R(T ) and

lim
c→∞ Pθ

(
R(T )

θT
(Nc − cT ) ≤ yσ

√
cT

)
= �(y).
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Proof. Start with Anscombe’s theorem,

lim
c→∞ Pθ (SNc − g′(θ)Nc ≤ yσ

√
ct) = �(y).

The stopped process is, by Definition 1, greater than or equal to the barrier; hence,

cb(Nc/c) − g′(θ)Nc

σ
√

ct
≤ SNc − g′(θ)Nc

σ
√

ct
≤ cb(Nc/c) − g′(θ)Nc

σ
√

ct
+ Z

σ
√

ct
. (13)

The last term on the right-hand side converges to 0 in probability, by Lemma 6. Substituting
the Taylor expansion

cb(Nc/c) = cb(t) + b′(t)(Nc − ct) + 1
2c−1b′′(ξ)(Nc − ct)2,

where ξ is between t and Nc/c, into (13), and using the fact that g′(θ) = b(t)/t , gives

cb(Nc/c) − g′(θ)Nc

σ
√

ct
= cb(t) + b′(t)(Nc − ct) + 1

2c−1b′′(ξ)(Nc − ct)2 − Ncb(t)/t

σ
√

ct

= − (b(t) − b′(t)t)(Nc − ct)

σ t
√

ct
+ b′′(ξ)(Nc − ct)2

2c3/2t1/2σ
.

When s ≤ T ∗, b′′(s) is bounded and c−3/2(Nc − ct)2 pθ→ 0 as c goes to infinity, by Lemma 4.
Hence, the term quadratic in Nc −ct converges to 0. The theorem then follows by the symmetry
of the normal distribution. In the special case in which g′(θ) = b(T )/T , we have, by Remark 1,

b(T ) − b′(T )T = R(T )/θ.

4.2. Overshoot

In this section, we show that the overshoot is distributed as is an overshoot over a linear
barrier. In our case, the linear barrier of interest is

cl(n/c) = cb(t) + b′(t)(n − ct).

Let

N+ = inf{n : n ≥ 1, Sn − nb′(t) > 0},
Mc = inf{m : Sm ≥ cl(m/c)},

with possibly infinite stopping times if the process never passes or hits the barrier. However,
Pθ (Mc < ∞) = 1 and Pθ (N+ < ∞) = 1; see [10]. Define the linear overshoot as

Zl = SMc − cl(Mc/c).

Now, Zl has a well-known asymptotic distribution Qθ(z), where g′(θ) = b(t)/t , when
c → ∞. This distribution can be expressed in terms of the distribution of SN+ − b′(t)N+; see
[28, Corollary 8.33, p. 171].

It is reasonable to believe that g
Zl

θ (γ ) = log(E[exp(γZl)]) is bounded when |γ | < γ̄ , since
gθ (γ ) exists. It is fairly easy to show that, for an overshoot Z over any convex barrier, we have
exp(gZ

θ (γ )) ≤ ct exp(gθ (γ )). To prove this, we could use the reasoning leading to (14), below,
but instead we strengthen the result as follows.
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Lemma 7. There is a γ̄ > 0 such that g
Zl

θ (γ ) < constant, uniformly in c, for γ < γ̄ .

Proof. First, note that if we define X̃i = Xi − b′(t) and S̃n = ∑n
i=1 X̃i , the overshoots are

equal, i.e.
Z̃l = S̃Mc − c(b(t) − b′(t)t) = SMc − cl(Mc/c) = Zl.

The expected value Eθ [X̃i] = b(t)/t − b′(t) is greater than 0 since t < T ∗, which implies that
Eθ [N+] < ∞. Let us write X̃+

i = max(X̃i , 0) and conclude that

Eθ [exp(γ X̃N+)] ≤ Eθ

[ N+∑
i=1

exp(γ X̃+
i )

]
= Eθ [N+] Eθ [exp(γ X̃+

1 )] < ∞. (14)

For a more extensive discussion of this step, see Section I.8 of [10]. Trivially, we have
S̃N+ ≤ X̃N+ and, thus, g+

θ (γ ) = log(Eθ [exp(γ S̃N+)]) < ∞.
Assume that b(t)−b′(t)t = 1, without any loss of generality. Define the sequence of ladder

variables as Wk = ∑k
j=1 
S̃(j), where 
S̃(j) are the independent and identically distributed

differences between the old and the new maxima. The number of epochs needed to pass the
constant barrier is denoted by

K = inf
0≤k

{k : Wk ≥ c}.
We are now prepared to derive the moment-generating function of the linear overshoot. First,

split the sample space into the disjoint sets {K = k}. Then

Eθ [exp(γ Z̃l)] =
∞∑

k=1

Eθ [exp(γ Z̃l), K = k]

=
∞∑

k=1

Eθ [Eθ [exp(γ Z̃l), Wk−1 < c ≤ Wk | Wk−1]].

The overshoot is Z̃l = 
S̃(K) − c + WK−1 and the distributions of Wk and 
S̃(j), which is
distributed as is SN+ , are written Fk∗

θ (dw) and Fθ(ds), respectively. Therefore,

Eθ [exp(γ Z̃l)] =
∞∑

k=1

∫
w<c

∫
s≥c−w

exp(γ (s − c + w))Fθ (ds)F
(k−1)∗
θ (dw).

If we extend the range of integration of s to the positive half-line, the integral is equal to
exp(g+

θ (γ )). Therefore, we get an upper bound

Eθ [exp(γ Z̃l)] ≤ exp(g+
θ (γ ))

∞∑
k=1

∫
w<c

exp(−γ (c − w))F
(k−1)∗
θ (dw)

= exp(g+
θ (γ ))

∫
w<c

exp(−γ (c − w))U(dw),

where U(dw) is the renewal measure; see [10] or [28]. This integral is bounded, which follows
by the key renewal theorem [10].

Let us now turn to the overshoot Z = SNc −cb(Nc/c). Our aim is to show that the overshoot
converges in distribution to the overshoot over the linear barrier cl(n/c). This could be proved
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by a transformation to a perturbed random walk, using the results of [28], and then transforming
back. In doing so, however, the intuition and simplicity of the idea would be lost.

We will make use of the auxiliary stopping time Mc−cα and 
N = Nc −Mc−cα . The choice
of the constant α > 0 will later be such that the distance left to the true barrier can be neglected
in the limit on the scale c, but great enough for the overshoot to gain the asymptotic properties.

The overshoot over the auxiliary barrier (c − cα)l(n/(c − cα)) is denoted by Zα , and

Pθ (Nc = Mc−cα ) ≤ Pθ (Zα > cα(b(t) − b′(t)t))
≤ exp(−cαγ (b(t) − b′(t)t) + g

Zα

θ (γ )), (15)

where γ > 0 is such that g
Zα

θ (γ ) = log(Eθ [exp(γZα)]) < ∞, by Lemma 7. Furthermore,
b(t) − b′(t)t > 0 for all t ≤ T ∗, which follows from (10).

Lemma 8. Assume that 0 < α < 1. Then, under the tilted distribution for arbitrary 0 < δ <

b(t) − b′(t)t , there are a time t̂ ≤ T ∗ and a constant d > 0 such that

Pθ (|
N − cαt̂ | > cαδ) ≤ 3cαt̂ exp(−cαdδ2),

where g′(θ) = b(t)/t and c−α
N
a.s.→ t as c → ∞ in the set of integers.

Proof. The idea of the proof is that, when the auxiliary barrier is passed, the remaining
distance is of order cα and, consequently, so is the remaining time.

Consider the set {ω : |
N − cαt̂ | > cαδ} = A′ ∪ A′′, where

A′ = {Sn ≥ cb(n/c) for some n ≤ Mc−cα + cα(t̂ − δ)},
A′′ = {Sn < cb(n/c) for all n ≤ Mc−cα + cα(t̂ + δ)},

and let us write 
n = n − Mc−cα , when n ≥ Mc−cα , and 
Sn = Sn − SMc−cα
. We assume

that Zα ≤ cαδ, to ensure that Mc−cα < Nc and that the remaining distance is of order cα . The
partial sum may, in this notation, be written as

Sn = 
Sn + SMc−cα

= 
Sn + (c − cα)l(Mc−cα /(c − cα)) + Zα,

and the remaining distance is cb(n/c) − SMc−cα
. By Taylor expanding the original barrier

around t , we find that the remaining distance is

cb(n/c) − SMc−cα
= cαl(
n/cα) + 1

2 (b′′(ξ)/c)(n − ct)2 − Zα

= cαl(
n/cα) + O((n − ct)2/c + Zα),

where ξ is between t and n/c. We then have

A′ = {
Sn ≥ cαl(
n/cα) + O((n − ct)2/c + Zα) for some 
n ≤ cα(t̂ − δ)},
A′′ = {
Sn < cαl(
n/cα) + O((n − ct)2/c + Zα) for all 
n ≤ cα(t̂ + δ)}.

The most probable time to hit or cross cαl(
n/cα) + O((n − ct)2/c + Zα) is when the
barrier is crossed by the drift line g′(θ)
n. The most probable time t̂ = 
n/cα is the solution
to

g′(θ)
n/cα = b(t) + b′(t)(
n/cα − t) + O((n − ct)2/c1+α + Zα/cα).
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The equation

g′(θ)t̂ = b(t) + b′(t)(t̂ − t) + O((n − ct)2/c1+α + Zα/cα)

always has a solution when c is large enough, because t ≤ T ∗ and, therefore, g′(θ) = b(t)/t >

b′(t) and b(0) > 0; see the implication (10) of not being on the shadow side. The overshoot
term in the remainder converges almost surely to 0, by Lemma 6. Also, the quadratic term
converges in probability to 0 since Mc−cα ≤ n ≤ Nc and

c−(1+α)(n − ct)2 ≤ c−(1+α)((Mc−cα − ct)2 + (Nc − ct)2),

which, by Lemma 4, converges in probability to 0. Therefore, when c → ∞, the solution is
t = t̂ .

Lemma 3, (15), and the law of total probability together imply that

Pθ (|
N − cαt̂ | > cαδ) ≤ Pθ (A
′ ∪ A′′, Zα ≤ cαδ) + Pθ (Zα > cαδ)

≤ 3cαt̂ exp(−cαdδ2).

Now, if we put δ = c−α/4 and sum over c, then

∞∑
c=1

Pθ

(
|
N − cαt | >

cα

cα/4

)
≤ 3

∞∑
c=1

cαt̂ exp(−cα/2d) < ∞.

The Borel–Cantelli lemma ensures the almost-sure convergence.

Lemma 9. Let 0 < α < 1
4 and g′(θ) = b(t)/t , where t ≤ T ∗. Then, under the tilted

distribution,

lim
c→∞ c−1((Nc − ct)2 − (Mc−cα − (c − cα)t)2) = 0 almost surely

in the set of integers.

Proof. The trick of the proof is to split the sample space into two sets; the likely event A

and its complement Ac. The probability of the unlikely event converges to 0 and, if the likely
event occurs, the distance between the two quadratic terms converges to 0.

Fix an arbitrary ε > 0 and 0 < δ < 1 to define the set

A = {ω : |Mc−cα − (c − cα)t | < (c − cα)ε} ∩ {|
N − cαt̂ | < cαδ} ∩ {|Nc − ct | < cε}. (16)

On the set A we have, by the conjugate rule, that

|(Nc − ct)2 − (Mc−cα − (c − cα)t)2| = |Nc − Mc−cα − cαt ||Nc − ct + Mc−cα − (c − cα)t |
≤ cαδε(c + c − cα)

≤ 2cα+1ε.

We choose ε = 1
2c−2α . Then

c−1|(Nc − ct)2 − (Mc−cα − (c − cα)t)2| ≤ c−α ≤ η when c > η−1/α, (17)
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which implies that Pθ (|(Nc − ct)2 − (Mc−cα − (c − cα)t)2| > cη, A) = 0. This and the law
of total probability give, for c ≥ η−1/α ,

Pθ (|(Nc − ct)2 − (Mc−cα − (c − cα)t)2| > cη) ≤ Pθ (A
c).

The probability of the complement can be bounded according to Lemma 4 and Lemma 8, as
follows:

Pθ (A
c) ≤ 3cαt̂ exp(−cαdδ2) + 2(c − cα)t exp(−(c − cα)c−4αd) + 2ct exp(−c1−4αd)

≤ 4ct (exp(−cαdδ2) + exp(−(c − cα)c−4αd)).

In the last inequality, we have used the fact that c−cα ≤ c and assumed that t̂ ≤ t . (However,
taking t̂ ≥ t would cause no practical change.)

Let η = c−α/4. Since α < 1
4 , we have c1/4α ≤ c, which implies the following convergent

sum:

∞∑
c=1

Pθ (c
−1|(Nc − ct)2 − (Mc−cα − (c − cα)t)2| > 1/c1/4)

≤ 4
∞∑

c=1

ct (exp(−cαdδ2) + exp(−(c − cα)c−4αd)).

The convergence is therefore almost sure, by the Borel–Cantelli lemma.

The idea now is to look at the stopping time of the process to a barrier that is just below
the true barrier. The second-order term of this barrier does not change after Mc−cα , and the
corresponding ‘auxiliary’ stopping time is defined as

Nl = inf{n : Sn > cl(n/c) + b′′(t)(Mc−cα − (c − cα)t)2/2c − b′′(t)/2cα}
and the corresponding ‘auxiliary’ overshoot as

Z̃l = SNl
− cl(Nl/c) − b′′(t)(Mc−cα − (c − cα)t)2/2c + b′′(t)/2cα,

where t ≤ T ∗. The extra (final) term b′′(t)/2cα is added to ensure that this auxiliary barrier is
just below the true barrier on a certain set and, therefore, that Nl ≤ Nc.

Lemma 10. When Xi is nonarithmetic, under the tilted distribution,

Nc − Nl
pθ→ 0 as c → ∞,

where g′(θ) = b(t)/t .
When Xi is arithmetic with span h, the convergence still holds if c does not go to infinity as

a multiple of h.

Proof. On the set A defined in (16) with ε = 1
2c−2α and α < 1

4 , we have, for Mc−cα ≤ n ≤
Nc, that

b′′(t)
2c

((n − ct)2 − (Mc−cα − (c − cα)t)2) + b′′(t)
2cα

≥ b′′(t)
2cα

− b′′(t)
2cα

= 0,

by the same reasoning that led to (17). Hence, Nl ≤ Nc.
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Let us now study the case in which the stopping times are not equal on A; that is, where

{ω : Nc > Nl} =
{
ω : cl

(
Nl

c

)
+ b′′(t)

2c
(Mc−cα − (c − cα)t)2 − b′′(t)

2cα
≤ SNl

< cb

(
Nl

c

)}

=
{
ω : 0 ≤ Z̃l <

b′′(t)
2c

((Nl − ct)2 − (Mc−cα − (c − cα)t)2) + b′′(t)
2cα

}

⊆
{
ω : 0 ≤ Z̃l <

b′′(t)
cα

}
.

By the law of total probability, (15), and the fact that limc→∞ Pθ (A
c) = 0, we have

lim
c→∞ Pθ (Nc �= Nl) ≤ lim

c→∞ Pθ (Nc > Nl, A) + Pθ (A
c)

≤ lim
c→∞ Pθ (0 ≤ Zl < c−αb′′(t))

= lim
c→∞ Fc

Zl
(c−αb′′(t)),

where Fc
Zl

(·) is the cumulative distribution function of the overshoot, under the tilted measure,
for a fixed c. The limit distribution FZl

(·) is continuous when Xi is nonarithmetic; see
[28, Corollary 8.33, p. 171]. Therefore, for fixed ν > 0, there is a c such that c−αb′′(t) < ν and
Fc

Zl
(c−αb′′(t)) ≤ Fc

Zl
(ν). We must have limc→∞ Fc

Zl
(c−αb′′(t)) ≤ FZl

(ν), but ν is arbitrary.
When Xi is arithmetic with span h, the limit distribution of the overshoot is also arithmetic.

For c large enough, c−αb′′(t) is less than the span, and

lim
c→∞ Pθ (0 ≤ Zl < c−αb′′(t)) = 0.

The one exception is when c → ∞ as a multiple of h. Then the limit is not 0, but rather
limc→∞ Pθ (Z = 0) = d/ E[SN+]; see [28, Corollary 8.33, p. 171].

From now on we assume that when the Xi are arithmetic, c does not go to infinity as a
multiple of the span h.

Theorem 3. The distribution of the overshoot under the tilted distribution, where g′(θ) =
b(t)/t and t ≤ T ∗, satisfies

lim
c→∞ Pθ (Z ≤ z) = lim

c→∞ Pθ (SMc − cl(Mc/c) ≤ z) = Qθ(z),

where, recall, Qθ(z) is the asymptotic distribution of the overshoot Zl over the linear boundary
cl(n/c) and Mc is the first passage time to this barrier.

Proof. The idea of the proof is to condition on Mc−cα and SMc−cα
, when and where the

process crosses the auxiliary barrier (c − cα)l(n/(c − cα)). This auxiliary barrier is distant
enough to preserve the asymptotic properties of the overshoot. Furthermore, when we exchange
Nc with Mc−cα in the second-order term of the expansion of the barrier, the difference vanishes.
The real barrier is then exchanged for a linear barrier translated by the curvature of the auxiliary
barrier at the stopping time.

In the Taylor expansion of the barrier, the remainder – the third-order term – is ignored
because, according to Lemma 4, it converges to 0 in probability under the tilted measure. Thus,
Z = SNc − cb(Nc/c)

pθ→ SNc − cl(Nc/c) + 1
2c−1b′′(t)(Nc − ct)2 when the scale parameter c

goes to infinity. The partial sum hits or passes the auxiliary barrier at Mc−cα , before the original
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barrier. The difference in curvature vanishes almost surely, so that, according to Lemma 9,
c−1(Nc − ct)2 can be exchanged for c−1(Mc−cα − (c − cα)t)2. Furthermore, the difference
between Nc and Nl equals 0 in probability as c → ∞, by Lemma 10. Hence,

lim
c→∞

(
SNc − cb

(
Nc

c

))
pθ→ lim

c→∞

(
SNl

− cl

(
Nl

c

)
− b′′(t)

2c
(Mc−cα − (c − cα)t)2 + b′′(t)

2cα

)
.

The quadratic term on the right-hand side is asymptotically a χ2-distributed random variable.
Therefore, we have

lim
c→∞

(
SNl

− cb(t) − b′(t)(Nl − ct) − b′′(t)
2c

(Mc−cα − (c − cα)t)2
)

dθ→ lim
c→∞

(
SMc − cl

(
Mc

c

))
,

where ‘
dθ→’ denotes convergence in distribution under the tilted measure.

4.3. Asymptotic independence

Theorem 4. Under the tilted distribution, with g′(θ) = b(t)/t and t ≤ T ∗, the overshoot Z and
Yc = a−1c−1/2(Nc −ct) are asymptotically independent, where a2 = g′′(θ)t3(b(t)−b′(t)t)−2

(the variance). Therefore,

lim
c→∞ Pθ (Z ≤ z, Y ≤ y) = Qθ(z)�(y).

When t = T , a2 = g′′(θ)θ2T 3/R(T )2.

Proof. Let us write Yα = a−1c−1/2(Mc−cα − (c − cα)t), where 0 < α < 1
2 . Furthermore,

define the set
A = {ω : |Yα − Y | < ε} = {ω : |
N − cαt | < c1/2ε}.

By the law of total probability, it is possible to use this set to derive the upper bound

Pθ (Z ≤ z, Y ≤ y) ≤ Pθ (Z ≤ z, Yα ≤ y + ε, A) + P(Ac).

Remember that limc→∞ Pθ (A
c) = 0, by Lemma 8.

Now, rewrite the overshoot as the overshoot of the remaining distance, i.e.

Z = 
SNc − cαl

(

N

cα

)
+ b′′(t)

2c
(
N + Mc−cα − ct)2 − Zα + O

(
(Nc − ct)3

c2

)
.

The remainder term converges to 0 when the scale parameter goes to infinity, by Lemma 4.
Therefore, Yα and Z are asymptotically independent, conditioned on Mc−cα and SMc−cα

. Using
this, Bayes’s theorem, and the bounded convergence theorem, we find that

lim
c→∞ Pθ (Z ≤ z, Yα ≤ y, A)

= lim
c→∞

∫
A,Yα≤y+ε

Pθ (Z ≤ z | Mc−cα , SMc−cα
) d Pθ (Mc−cα , SMc−cα

)

=
∫

Y≤y+ε

lim
c→∞ Pθ (Z ≤ z) d Pθ (Mc−cα , SMc−cα

).
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Finally, if we apply Theorems 2 and 3, we find that

lim
c→∞ Pθ (Z ≤ z, Y ≤ y) ≤ Qθ(z)�(y + ε).

A lower bound Qθ(z)�(y − ε) ≤ limc→∞ Pθ (Z ≤ z, Y ≤ y) is found in a similar way.
Thus,

Qθ(z)�(y − ε) ≤ lim
c→∞ Pθ (Z ≤ z, Y ≤ y) ≤ Qθ(z)�(y + ε),

but ε is arbitrary and, so, limc→∞ Pθ (Z ≤ z, Y ≤ y) = Qθ(z)�(y).

Note that for arbitrary 0 < η �= 1
2 it is easy to show that c−η(Nc − ct) and the overshoot are

asymptotically independent.

5. Main result

We will start by giving a heuristic large-deviation argument. The expansion of the rate
function isR(s) = R(T ) + 1

2R′′(T )(s − T )2, sinceT is determined by the equationR′(T ) = 0.
Therefore,

P(Nc ≈ cT + c1/2y) ≈ const · exp(−cR(T ) − 1
2R′′(T )y2),

where R′′(T ) = R(T )2/g′′(θ)θ2T 3 + θb′′(T ), according to (9). The quadratic part is almost
the density of a normal distribution and, therefore, one would expect that

P(Nc ≤ cT + c1/2y) ≈ const · e−cR(T )�(
√

R′′(T )y).

Theorem 5. Assume that the barrier b(s) is convex and three-times continuously differentiable,
that it satisfies b(0) > 0, and that µs < b(s) for all s. The rate of the stopping time Nc is
R(T ) = θb′(T ) − g(θ)T , where the parameters are solutions to

g′(θ) = b(T )

T
and g(θ) = θb′(T ),

and the asymptotic distribution of the first passage time is

lim
c→∞ ecR(T ) P(Nc ≤ cT + c1/2y) = a−1η Eθ [e−θZl ]�(y/η),

where a2 = g′′(θ)θ2T 3/R(T )2, the variance η2 is determined by η−2 = a−2 + b′′(T )θ =
R′′(T ), and Zl is the overshoot over the barrier cb(T ) + b′(T )(n − cT ).

In the proof of this theorem, we will tilt the probability of the stopping time as follows:

Pθ (Nc ≤ ct) = E

[
1{N≤ct}

�ct�∑
n=1

exp(θSn − ng(θ)) 1{N=n}
]

= E[1{N≤ct} exp(θSN − Ng(θ))],

where 1{·} is an indicator function. The presence of the indicator function 1{N≤ct} ensures that
this way of changing the measure is valid even in the case in which Pθ (Nc = ∞) > 0, with c

fixed.

Proof of Theorem 5. The first idea in this proof is to split the probability into two parts. Fix
ε > 0 and let A = {|Nc − cT | < c3/4ε}. Then the upper large-deviation bound and the Taylor
expansion of the rate function of the stopping time around T give

ecR(T ) P(Nc ≤ cT + c1/2y, Ac) ≤ 2cT exp(− 1
2c1/2R′′(T )ε2) → 0 as c → 0. (18)
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The second part of the probability is

ecR(T ) P(Nc ≤ cT + c1/2y, A) = E[1{Nc≤cT +c1/2y} ecR(T ), A].
We tilt the distribution by adding and subtracting g(θ)Nc and θSNc in the exponent, respectively,
i.e.

E[1{Nc≤cT +c1/2y} ecR(T ), A] = Eθ [1{Nc≤cT +c1/2y} exp(cR(T ) + g(θ)Nc − θSNc), A],
where g′(θ) = b(T )/T . Then, using the fact that SNc = cb(Nc/c) + Z and expanding the
barrier to order three around T give

SNc = cb(T ) + b′(T )(Nc − cT ) + b′′(T )
(Nc − cT )2

2c
+ b′′′(ξ)

(Nc − cT )3

3! c2 + Z

for a ξ that is somewhere between T and Nc/c. The third-order term in the expansion of the
barrier is less than the product of c1/4ε3 and a bounded random variable. If we set ε = c−1/11,
for example, then the bound in (18) is still true and the remaining term in the expansion is of
order c−1/44.

Combining the rate R(T ) = θb(T )−g(θ)T and the first derivative R′(T ) = θb′(T )−g(θ) =
0 with the expansion above gives

Eθ [1{Nc≤cT +c1/2y} exp(cR(T ) + g(θ)Nc − θSNc), A]
= Eθ

[
1{Nc≤cT +c1/2y} exp

(
−θ

b′′(T )

2c
(Nc − cT )2 − θZ + O(c−1/44)

)
, A

]
. (19)

Now write Yc = c−1/2(Nc − cT ), which, by Theorem 2, converges in probability to a normal
random variable Y with variance a2 = R(T )−2g′′(θ)θ2T 3. Theorem 4 implies that Y and
the overshoot Z are asymptotically independent. Furthermore, the overshoot converges to
the overshoot over a linear barrier Zl , by Theorem 3. We have, by the bounded convergence
theorem,

lim
c→∞ Eθ

[
1{Nc≤cT +c1/2y} exp

(
−θb′′(T )

(Nc − cT )2

2c
− θZ + O(c−1/44)

)
, A

]
= Eθ [e−θZl ] Eθ [1{Nc≤cT +c1/2y} exp(− 1

2θb′′(T )Y 2)].
Because of the squared, normally distributed random variable on the right-hand side, it is
convenient to change variances, as follows. Let η2 be the variance of a new normal distribution,
where

η−2 = θb′′(T ) + a−2 = θb′′(T ) + R(T )2

g′′(θ)θ2T 3 = R′′(T ),

according to (9). Then

Eθ [1{Nc≤cT +c1/2y} exp(− 1
2θb′′(T )Y 2)] = 1√

2πa

∫ y

−∞
exp

(
− 1

2θb′′(T )u2 − u2

2a2

)
du

= η

a
�(y/η).
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Now the theorem follows from the law of total probability, the ‘sandwiching’ inequalities

E[1{Nc≤cT +c1/2y} ecR(T ), A] ≤ ecR(T ) P(Nc ≤ cT + c1/2y)

≤ E[1{Nc≤cT +c1/2y} ecR(T ), A] + P(Ac),

and the fact that, in the limit as c goes to infinity, the upper and the lower bounds are equal.
This completes the proof.

Remark 7. When t < T , the first-order derivative is R′(t) �= 0. In this case, we start with
computations that are almost identical to those in the proof of Theorem 5, and we find that

ecR(t) P(Nc ≤ ct) ≈ Eθ

[
1{Nc≤ct} exp

(
−R′(t)(Nc − ct) − θ

b′′(t)
2c

(Nc − ct)2 − θZ

)]
,

where, now, g′(θ) = b(t)/t (cf. (19)). The overshoot still factors out by asymptotic inde-
pendence, but the rest of the slowly changing function is not so easily handled. Heuristically,
we write this expectation as a sum and exchange the probability for its Fourier inversion of
the characteristic function. Then, the central part converges to the characteristic function of a
normally distributed random variable. After some calculations, we find that

lim
c→∞ c1/2ecR(t) P(Nc ≤ ct) = Eθ [e−θZl ]

(1 − eR′(t))
√

2πa
, a2 = g′′(θ)t3(b(t) − b′(t)t)−2.

This assertion is proved in [12].
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