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1. Introduction. We shall be studying the following structure, which we 
shall call a V-form ('Vector-valued form"). Let G and W be additive abelian 
groups with every element of order 2 (i.e. vector spaces over the field GF(2) 
of two elements). Let there be given a symmetric bilinear map from G X G 
to W\ we shall write it simply as a product ab. We define an equivalence 
relation on unordered TZ-ples of G. For n = 2: (a, b) ~ (c, d) if a + b = c + d 
and ab = cd. For n > 2 we define equivalence "piecewise": there is to be a 
chain from (ai, . . . , an) to (6i, . . . , bn) where at each step only two elements 
are changed in accordance with the equivalence just defined for n = 2. 

There are two fairly obvious invariants: ^at (we call this the discriminant), 
and Ylaiaj summed over i <j (we call this the Witt invariant). 

Question. Do these invariants suffice? If not, what else is needed? 

The reason for studying V-forms is that they are a generalization of ordinary 
quadratic form theory. Let K be any field of characteristic not 2, let K* be its 
multiplicative group of non-zero elements, and write G = K*/(K*)2. Although 
the natural notation for G is multiplicative, we prefer to write G additively. 
Let W be the subgroup of the Brauer group of K generated by all quaternion 
algebras; we also write W additively. Sending the pair a, b £ K* into the 
quaternion algebra they determine (i2 = a, j 2 = 6, ij = —ji) induces a map 
G X G —* W which is known to be symmetric and bilinear. Thus we have a 
V-form. Now we come to the crucial fact: for this V-form, the equivalence 
classes of n-p\es described above are in one-to-one correspondence with 
equivalence classes of non-singular ^-dimensional quadratic forms over K. To 
see this, think of the quadratic forms as diagonal matrices, and note that the 
diagonal elements can be thought of as lying in G, since multiplication of a 
diagonal element by a non-zero square is harmless; then make use of the 
characterization of two-dimensional quadratic forms by quaternion algebras 
(5, Satz 11), and Witt 's theorem on piecewise equivalence (5, Satz 7). 

We devote this paper partly to exploring the theory of V-forms for its own 
sake, and partly to noting the implications for "concrete" quadratic forms. 
In § 2 we discuss completely the case where W is one-dimensional, which 
corresponds to local fields (the real numbers and the £-adic numbers). We are 
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led to a local-global point of view which apes the familiar one of class field 
theory. In § 3 we describe the V-forms arising from the field of rational 
numbers and from the field of rational functions in one variable over a finite 
field. The interesting thing here is that the well-known analogies of class 
field theory can become actual identity from the V-form point of view. In § 4 
the topic is algebraic function fields in one variable over a real closed field; 
the V-form then has additional structure which makes it a Boolean ring. In 
§ 5 we turn to symmetric bilinear forms over fields of characteristic 2. This 
theory is not describable as a V-form. However, the failure of cancellation 
suggests that we switch to the stable point of view. When we do so, we find 
that this theory is an instance of V-forms; in particular, there is a Witt 
invariant, a fact which appears to be new. Because of the apparent lack of an 
appropriate analogue of quaternion algebras, the V-form has to be constructed 
in a devious way. 

We learned, through H. Bass,* of a similar investigation due toScharlau (3). 
He too discards the underlying field. He replaces it with a profinite group 
acting on a module (motivating example: the Galois group of the separable 
algebraic closure acting on it). Under cup-product, H1 and H2 give rise to a 
V-form. Where comparison is possible, the situation (crudely) is: Scharlau 
assumes more and gets more. 

2. The local theorem. Let a V-form: G X G -> W be given, as defined 
in § 1. We use the symbol ~ for the equivalence relation introduced on n-ples. 

We define the kernel N of the V-form to be the subspace of G consisting of 
all a satisfying aG = 0. We say that the V-form is non-singular if N = 0. 
Let 7T be the natural mapping from G onto G/N. By declaring ir(x)w(y) = xy 
we define a non-singular V-form from G/N X G/N to W. In passing from the 
V-form on G to that on G/N we lose track of the discriminant, but no other 
information is lost. In detail, we have the following result. 

LEMMA 1. (ai, . . . , an) ~ (6i, . . . , bn) if and only if ]£#* = J^bt and 
Or(ai), . . . , ir(an)) ~ (TT(6I), . . . , x(6n)). 

We leave the proof to the reader. Because of Lemma 1 we can usually restrict 
our deliberations to non-singular V-forms. We also leave to the reader the 
proofs of Lemma 2, a lemma which allows us to change our abstract quadratic 
forms by homothety, and Lemma 3, which asserts that equality of dis­
criminants and Witt invariants enjoys a cancellation property. 

LEMMA 2. (<ii, . . . , an) ~ (&i, . . . , bn) if and only if (ai + c, . . . , an + c) ~ 
(bi + c, . . . , bn + c). 

LEMMA 3. Suppose that (a, &i, . . . , bn) and (a, Ci, . . . , cn) have the same 
discriminant and the same Witt invariant. Then (b\, . . . , bn) and (c\, . . . , cn) 
likewise have the same discriminant and the same Witt invariant. 

^Written communication. 
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Consider a non-singular V-form with G one-dimensional. Then W might as 
well be one-dimensional. This is the V-form that we obtain from any ordered 
field where every positive element is a square, and there is a generalized 
theorem of inertia which simply states that equivalent n-ples are identical 
(up to a permutation, of course). The trivial proof is left to the reader. 

If IF is one-dimensional and G more than one-dimensional, we have a case 
that corresponds to p-adic fields and requires a modest investigation. 

One further definition: we say that (ai, . . . , an) represents b, written 
(tfi, . . . , an) ~ b, if there exist elements b2l . . . , bn Ç G such that 
(ai, . . . , an) ~ (b, b2, . . . , bn). 

THEOREM. Suppose that we are given a non-singular V-form G X G —> W 
with W one-dimensional and G more than one-dimensional. Then the discriminant 
and Witt invariant are a complete set of invariants for equivalence classes of n-ples. 
Furthermore, all \-ples represent 0. 

Remark. There is a possibility of confusion between our statement that 
4-ples represent 0 and the traditional one that 5-forms represent 0. Because 
of our switch from the multiplicative to the additive notation, the corre­
sponding classical statement is that non-singular 4-forms represent 1. 

Proof. We begin by discussing triples. Suppose then that (a, b, c) and 
(d, e,f) have the same discriminant and Witt invariant; we are to prove 
them equivalent. We suppose the contrary. By Lemma 2 we can assume that 
the common discriminant a + b + c = d + e+f is 0. I t follows from 
Lemma 3 that (a, b, c) and (d, e,f) cannot have in common an element of G 
which they both represent. In particular, (a, b) cannot represent d, i.e. (a, b) 
is not equivalent to id, a + b + d), namely ab 9^ d(a + b + d) = d(c + d). 
Hence 

(1) ab = cd + d2 + 1. 

(We are writing 0, 1 for the elements of W.) By symmetry, (1) also holds 
after any permutation of a, fr, c} and after d is replaced by e or/ . Replace d by e: 

(2) ab = ce + e2 + 1. 

Add (1) and (2) and recall that d + e = f: 

(3) cf+f = 0. 

In (3) replace c by b and add; the result is af = 0. Thus the product of any 
of a, bf c by any of d, e, f is 0. Then a further use of (3) yields/2 = 0. Hence 
also d2 = e2 = 0 and then (1) yields ab = 1. By symmetry between the two 
triples, we also have de = 1. 

Now ab = (a + d)(b + d) since ad, bd, and d2 are all 0. Hence 
(a, b) ~ (a + d, b + d) and (a, b, c) ~ (a + d, b + d, c). Everything shown 
above for (a, b, c) holds for this new triple (a + d, b + d, c). In particular, 
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(a + d)e = 0, whereas it is 1 since ae = 0 and de = 1. This contradiction 
completes the discussion of triples. 

We next show that any quadruple (a, è, c, d) represents 0, and again the 
proof is indirect. We must have ab = 1, for otherwise (a, b) ~ (0, a + b). 
Thus ab, ac, . . . , cd are all 1. We have (a + c)d = 0; it follows that (a, b) 
cannot be equivalent to (a + c, b + c), for if it were we would have 

(a, b, d) ~ (a + c, b + c, d) ~ (b + c, 0, a + c + d). 

Hence ab ^ (a + c) (b + c), i.e. c2 = 1. Of course also a2 = b2 = d2 = 1. 
Next assume that a 9e b. There exists an element t G G with (a + b)t = 1. 

By replacing / by / + c if necessary we can arrange t2 = 1. Then 

(a, Z?) ~ (a + Lb + /). 

What was shown above applies to (a + t, b -{- ty c, d). In particular, 
(a -\r t)2 = 1, whereas we know it is 0. Thus we are left with the case 
a — b = c = d. We now invoke for the first time the hypothesis that the 
dimension of G is at least 2; we use it to assert that G contains a non-zero 
element u with u2 = 0. Then 

(a, a, a, a) ~ (a + u, a + u, a, a), 

and this transfers us out of the case where all four entries are equal. 
We can now swiftly conclude the proof of the theorem. Suppose that 

(ai, . . . , an) and (bi, . . . , bn) have the same discriminant and Witt invariant. 
We are to prove them equivalent. This is true by definition for n = 2, and 
we have handled the case n = 3. Suppose that n ^ 4. Then 

(fli, . . . , an) ~ (0, c2, . . . , cn) and (bh . . . , bn) ~ (0, d2, . . . , 4 ) . 

By Lemma 3, fe, . . • , c„) and (d2, . . . , dw) have the same discriminant and 
Witt invariant, and by induction they are equivalent. 

Remark. We leave it to the reader to investigate the question of the existence 
of w-ples with prescribed discriminant and Witt invariant. The answer is 
entirely analogous to what holds in local fields: no condition for n ^ 3 and 
an obvious necessary condition for n = 2. 

We return to the case of a general V-form: G X G —> W, with W having any 
dimension. Let M be the dual space of W, i.e. the set of all functionals from 
W to GF(2). For any \f/ G M, the V-form x, y —> $(xy) is one to which the 
above discussion applies. Note that even if we assume the given V-form to be 
non-singular, we may have re-introduced a kernel, and we write it N\//. When 
dim G/N\(/ ̂  2, the local V-form is determined by a discriminant and Witt 
invariant; of course these merely paste together to form the global discriminant 
and Witt invariant. When dim(G/iV^) = 1 we obtain a true additional 
invariant: the local index. This local-global point of view is entirely analogous 
to the one occurring in the Minkowski-Hasse theorem (see, e.g., 5, pp. 41-42). 
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In (4) there are a number of results asserting that under suitable hypotheses, 
local equivalence implies global equivalence. We mention: 

(1) W two-dimensional, the V-form alternate (i.e. a2 = 0 for all a Ç G), 
(2) W two-dimensional, dimension of G/N sufficiently large, 
(3) W three-dimensional, the V-form alternate, dimension of G/N suffi­

ciently large, 
(4) dimension of G/N\p sufficiently large for each \p Ç M (the estimate 

depending on the dimension of W). 
Results ( l )-(3) are best possible with respect to the dimension of W. 
We do not know of any fields to which these theorems are applicable. 

3. Global fields. Let Q be the field of rational numbers. We wish to describe 
the V-form attached to Q. A natural basis for G = Q*/(Q*)2 consists of 
elements xpi p ranging over the primes, and x_i. Furthermore, by the 
Minkowski-Hasse theorem, the same elements serve in a natural way as a 
basis of W. By the Minkowski-Hasse theorem, quadratic reciprocity, and the 
quadratic character of —1 and 2, the multiplication table is given by the 
following statements: 

(1) X_i2 = X_i + X2, 

(2) X2
2 = X-\X2 = 0, 

(3) x2xv = 0 for p = ± 1 (mod 8), 
(4) x2xp = x2 + xp for p = ± 3 (mod 8), 
(5) X-iXp = xp

2 = 0 for p = 1 (mod 4), 
(6) X-iXp = xp

2 = x2 + xp for p E= 3 (mod 4), 
(7) If p and q are odd primes with at least one congruent to 1 (mod 4), then 

XpXq = 0 or XpXq = Xp + xq; the product is 0 if and only if p is a quadratic 
residue of q, 

(8) If p and q are both congruent to 3 (mod 4) and p is a quadratic residue 
of g, then xpxQ = x2 + xp. 

Note that this complicated object is an algebra over GF(2). The elements 
xp with p = 1 (mod 4) span a much simpler subalgebra. Let us abstract its 
properties. 

We consider an algebra H over GF(2), with a basis {ui}. We assume the 
following: 

(a) Ui2 = 0, 
(b) UiUj = 0 or UiUj = Ui + ujt 

(c) Given a finite number of basis elements Ui, . . . , wn, there exists a basis 
element u different from them such that, for each i, uut = 0 or 
tiUi = u + Ui as prescribed in advance. 

We note that in the V-form for Q, the xps with £ = 1 (mod 4) span an 
algebra of this type, the property (c) being a consequence of Dirichlet's 
theorem on primes in an arithmetic progression. 

If we assume countable dimension, a typical stepwise argument shows that 
the properties (a), (b), and (c) determine H uniquely. Furthermore: regardless 
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of countability, for the V-form determined by H the discriminant and Witt 
invariant suffice. Details are given in (4); in addition, there is a similar 
treatment of the full V-form of Q, and of three more subalgebras: those 
spanned by the odd numbers, the positive numbers, and the odd positive 
numbers. 

Now let k be a finite field of characteristic not 2 and K = k(x) the rational 
function field in one indeterminate over k. A natural basis for K*/(K*)2 

consists of the monic irreducible polynomials together with an element in k 
but not in k2, and W can be given the same basis. Suppose that — 1 is a square 
in k. Then the V-form of K is exactly the above algebra H. More exactly, this is 
true provided the polynomial ring k[x] enjoys a strengthened form of Dirichlet's 
theorem asserting that non-trivial arithmetic progressions contain an infinite 
number of irreducible polynomials with degrees of a prescribed parity. (We 
have not found this statement in the literature and have not tried to prove it.) 

If —1 is not a square in k, then the V-form for K closely resembles the 
subalgebra spanned by the positive elements in the rational number V-form. 
Again the details appear in (4). 

4. Real function fields. Let k be a real closed field. Let K be an algebraic 
function field in one variable over k. In this section we shall exhibit a natural 
ring structure on the V-form of K (or more precisely, on its V-form reduced 
modulo the kernel) that makes it a Boolean ring. 

We assume that K is formally real. Otherwise, quadratic form theory over 
K is trivial. Let L = K(i), i2 = —1. I t is known that L admits no division 
algebras; its Brauer group is 0. In particular, every quaternion algebra over K 
is split by L. 

Let us, as usual, write G = K*/(K*)2. In this section we shall write Q for 
the V-form: G X G -> W. We write N for its kernel, and G0 = G/N. The 
fact that every quaternion algebra is split by L has the following consequence: 
N is the image in G of the set of sums of squares in K* (and it is furthermore 
true that every sum of squares in K is a sum of two squares). Take any 
quaternion algebra over K. Since it is split by L, it can be written as Q( — 1, a). 
Here a may be meaningfully taken in Go, and it is a unique element of Go. 
In this way we have defined a map W —» Go. This may be compounded with 
Go X Go —» W to yield a ring structure on Go. It is immediate that every 
element is idempotent. There is a unit element, given by the image of — 1 in 
G0. Less obvious is the associative law, which we now prove. For a0, b0, c0 in Go 
we have to prove that (a0bo)co — ao(b0c0). We take representatives a, b, c and 
interpret the multiplication. Thus: 

(4) Q(a,b)~Q(-l,d), 
(5) Q(d,c)~Q(-l,e), 
(6) Q(b,c)~Q(-l,f), 
(7) Q(a,f)~Q(-l,g). 

We have to prove that e0 = g0, i.e. eg is a sum of squares. If this is not true, 
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then there is an ordering of K making eg negative, say e < 0, g > 0. Then by 
(5), d, c < 0, by (4), a, b < 0, by (6), / < 0, and by (7), g < 0, a contra­
diction. 

We have thus shown that the (reduced) V-form of K carries a natural 
Boolean ring structure. Let us briefly consider more generally the V-form 
arising from any associative (and commutative) ring. What we notice at 
once is that the discriminant and Witt invariant are the first two elementary 
symmetric functions and we promptly introduce all of them, noting that they 
are all invariants. 

When G is a Boolean ring, they constitute a complete set of invariants. 

THEOREM. Let G be a Boolean ring, and consider the V-form it defines. Let 
(#i, . . . , an) and (bi, . . . , bn) be n-ples having the same elementary symmetric 

functions. Then (#i, . . . , an) ~ (b\, . . . , bn). 

Proof. For any a and b in G we have ab = ab(a + b + ab). Hence 
(a, b) ~ (ab, a + b + ab), i.e. (a, b) represents the product ab. If we iterate 
this remark we see that (a, b, c) represents abc, etc. Thus (ax, . . . , an) and 
(6i, . . . , bn) both represent ai. . . an = b\. . . bn. The complementary (n — 1)-
ples again have equal elementary symmetric functions (by a simple computa­
tion valid in any commutative ring). Induction on n completes the proof. 

Remarks. (1) I t is furthermore true that we can omit the elementary sym­
metric functions of odd degree, starting at degree 3. 

(2) Our description of quadratic forms over real function fields can be seen 
(after some technical manoeuvres) to be equivalent to that of Witt 
(5, pp. 143-144) and also to that of Knight (2). 

5. Symmetric bilinear forms over fields of characteristic 2. Over a 
field F of characteristic 2 there exists a well-developed theory of quadratic 
forms. That is not our topic in this final section. Rather, we shall discuss the 
entirely distinct subject of symmetric bilinear forms. More exactly, we shall 
discuss the non-alternate ones; alternate forms have an entirely trivial theory 
and we say no more about them. Any non-alternate symmetric bilinear form 
can be diagonalized (1, Theorem 6), and we are instantly ready to discuss 
them in the same way we did quadratic forms over fields of characteristic 
not 2. Immediately, we have a first question: can their theory be given by a 
V-form? The answer is negative. The argument is brief. We use the notation 
Q(a, b) for the hypothesized V-form, ordinary parentheses for diagonalized 
symmetric bilinear forms, ~ for equivalence of the latter. Let a, b, a + b be 
non-zero elements of K. Since (a, a + b) ~ (b, ab(a + b)) and 

(a, ab(a + b)) ~ (b, a + b), 

we have: Q(a, a + b) = Q(b, ab{a + b)), Q(a, ab(a + b)) = Q(b, a + b), 
thus by the bilinearity Q(a, ab) = Q(b,ab), hence Q(a, a) = Q(b,b). This 
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would imply, however, that (a, a) ~ (b, b), which in fact is true only if ab 
is a square. 

All this suggests, however, that we consider a strengthening of the relation 
of equivalence so as to allow (a, a) and (b, b) to be equivalent. We define a 
new equivalence relation (denoted by ~N) so that (ai, . . . , an) ~N (61,. . . , bn) 
if and only if there exists a finite chain beginning with (ai, . . . , an) and ending 
with (61, . . . , bn) such that adjacent forms are either equivalent or of the 
form (c, c, c%, . . . , cn), (d, d, c3, . . . , cn). We introduce the concept this way 
because it best fits our needs. However, ~N is in fact the same as "stable 
equivalence"; that is, (#i, . . . , an) ~H (61, . . . , bn) if and only if there exist 
Ci, . . . , cr with 

(ch . . . , cr, ah . . . , an) ~ (ci, . . . , cr, 61, . . . , bn). 

(We could also express this in the language of the appropriate Grothendieck 
group.) We omit the rather long proof, which is given in (4). However, we 
need and shall prove the lowest-dimensional case (Lemma 7). 

Let us note the following obvious fact: the vector space (ai, . . . , an) over 
F2 spanned by a±, . . . , an is an invariant of (#i, . . . , an) under ~. One might 
regard this as a second invariant to be considered right after the discriminant. 
We mention, without proof, that if the dimension of (ai, . . . , an) does not 
exceed 3, then (ai, . . . , an) and the discriminant are a complete set of in­
variants for ~. This does not work starting at dimension 4, there being in 
fact a counter-example in 4 X 4 matrices. 

Plainly, (au . . . , an) is not an invariant under new equivalence. (However, 
equality of this space plus new equivalence implies equivalence.) But in the 
extreme case, dim (aï} . . . , an) = n, it is an invariant, for the extra changes 
allowed in new equivalence never get a chance to come into play. We state 
this formally as a lemma. 

LEMMA 4. Suppose that aiy . . . , an are linearly independent mod F2, and 

(au . . . , On) ~N (61, . . . ,bn). 

Then (ah . . . , an) ~ (blt . . . , bn). 

In the case of 3-forms of discriminant 1 we note what happens in the 
dependent case. 

LEMMA 5. If a, b, and ab are linearly dependent mod F2, then 
(1) Either a is a square or (b, ab) ~ (1, a), 
(2) (a, 6, aft) ~ ^ (1 ,1 ,1) . 

Proof. We have, say, x2a + y2b + z2ab = 0. If y2b + z2ab 9^ 0, then (6, ab) 
represents a, i.e. (6, ab) ~ (1, a). If y2b + z2ab = 0, we note that y and z 
must be non-zero and conclude that a is a square. This proves part (1). 
Part (2) follows at once from part (1). 
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Before proving Lemma 7 we treat an extreme case of cancellation which is 
easy since the relevant vector is unique. 

LEMMA 6. Suppose that a, a2, . . . , an we linearly independent mod F2 and 
(a, a2, . . . , an) ~ (a, b2, . . . , &„)• Then (a2, . . . , a») ~ (ft2, . • • , bn). 

Proof. Let us think of the underlying vector space V equipped with a basis 
ei, . . . , en and an inner product <t> satisfying <£(ei, ei) = a, <j>{et, et) = at for 
i = 2, . . . , n, 0(e*, e;) = 0 for i ^ j . The linear independence mod F2 of 
a, a2, . . . , an tells us that €i is the only vector in V satisfying #(ei, ei) = a. 
Thus if rji, . . . , rjn is the second basis, we must have r/i = e±. The lemma now 
follows from the fact that €2, . . . , en and rç2, . . . , rjn both span the orthogonal 
complement of t\. 

LEMMA 7. If (a, 6, ab) ~N {c, abc, ab), then (a, b) ~N (c, abc). 

Proof. If a, by and ab are linearly independent mod F2, then the result 
follows from Lemmas 4 and 6. If they are dependent, we have (a, b) ~N (1, ab) 
by Lemma 5, and similarly, (c, abc) ~N (1, ab). 

By X (or XF if necessary) we mean the set of ~N classes of 3-forms of 
discriminant 1. {Motivation. In characteristic not 2, the isomorphism classes 
of quaternion algebras are in one-to-one correspondence with ^ classes of 
3-forms of discriminant —1 via the mapping Q(a, b) <-> {a, bf —ab).) If the 
elements a, b, and ab are linearly independent over F2, the ~ and ~JV classes 
of (a, &, a&) coincide (Lemma 4) ; in the dependent case, (a, b, ab) ~N (1, 1, 1) 
(Lemma 6). By abuse of notation we will usually write (a, b, ab) for either 
the form or its ~N class. 

We introduce a partially defined addition © on X by decreeing that 
(a, by ab) © (a, c, ac) = (a, be, abc). {Motivation. In the characteristic not 2 
case, the "sum" (a, be, —abc) of (a, b, —ab) and (a, c, —ac) is defined if and 
only if the tensor product of the corresponding quaternion algebras splits at 
least partially, and the two sums then correspond. This follows from an 
unpublished theorem of Albert which asserts that the tensor product of two 
quaternion algebras fails to be a division algebra if and only if the two 
quaternion algebras have a common quadratic subfield.) 

The first urgent task is to show that © is well-defined. We state this as an 
explicit lemma. 

LEMMA 8. Suppose that 

(4) {a, by ab) ~N {d, ef de) 

and 

(5) (a, c,ac) ~N (d,f,df). 

Then 

(6) {a, be y abc) ~N {d} eft def). 
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Proof. We break the proof into three cases. 
Case I. The forms in (4) ~N (1, 1, 1). We shall prove that 

(7) (a, c, ac) ~N (a, be, abc). 

Since, similarly, the forms on the right of (5) and (6) are ~N, this will suffice. 
We apply Lemma 5 to (a, b, ab). If a is a square, then both forms in (7) are 
~JV (1, 1, 1). Otherwise, we have (b, ab) ~ (1, a), which can be multiplied 
by c to yield (be, abc) ~ (c, ac), and (7) follows. 

We may henceforth assume that none of the forms in (4) and (5) are 
~N (1, 1, 1). This means (Lemma 5) that a, b, and ab are linearly independent 
mod F2, and similarly for the three other forms in (4) and (5). Also, by 
Lemma 4, ^N may be replaced by ~ in (4) and (5). 

Case II. a = d. By Lemma 6 we deduce that 

(7) (b, ab) ~ (e, de) 

from (4) and 

(8) (c, ac) ~ (/, df) 

from (5). W7e multiply (7) through by c and (8) by e. The result is 

(be, abc) ~ (ef, aef), 

which verifies (6). 
Case I II . No assumption. 
Since (a, b, ab) represents d, we have x2a + y2b + z2ab = d. Set 

b* = y2b + z2ab. We can suppose that b* ^ 0, for if &* = 0, then d is a 
square times a, covered by Case II. Note, further, that (a, b*) represents d. 
Similarly, we have u2a + b2c + w2ac = d, and we set c* = v2c + w2ac. This 
gives us two chains of equivalences: 

(9) (a, b, ab) ~ (a, &*, aô*) ~ (d, ab*d, ab*) ~ (d, e, de), 

(10) (a, c, ac) ~ (a, c*, ac*) ~ (d, ac*d, ac*) ~ (d,f, df). 

We can apply Case II to the initial pairs of forms in (9) and (10), obtaining 
the following relation: 

(11) (a, be, abc) ~N (a, b*c*, ab*c*). 

Similarly, from the final pairs in (9) and (10) we obtain 

(12) (d, ef, def) ~N (d, b*c*, db*e*). 

Thus to prove (6) it will suffice to prove the new equivalence of the right-hand 
forms in (11) and (12). This we do as follows. We have (a, b*) ~ (d, dab*), 
hence (ad, b*d) ~ (1, ab*), therefore 

(13) (ad, b*d, ab*) ~N (1, 1, 1). 
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Similarly, 

(14) (ad, e*d, ae*) ~N (1, 1, 1). 

To (13) and (14) we may apply the information obtained in Case I. The 
result is 

(15) (ad, b*c*, adb*e*) ~N (1, 1, 1). 

We also have 

(16) ( l , 6 V , 6 * c * ) ~ ^ (1 ,1 ,1) . 

Apply Lemma 7 to (15) and (16), and we see that 

(17) (ad, adb*c*) ~N (1, b*c*). 

If we multiply (17) by a we obtain: (d, db*c*) ~N (a, ab*e*), which is just 
what is needed to verify new equivalence of the right-hand forms in (11) 
and (12). We have completed the proof of Lemma 8. 

The new equivalence class (1, 1, 1) serves as an identity element for ©, 
therefore we denote it by 0. In certain cases, X is a group. For example, if 
[FiF2] = 1 or 2, then X = 0. We now show that X is a group if [F:F2] = 4. 
If a = (a, b, ab), wre write Va for (a, b, ab). If a, 0 6 X, then a © (3 is defined, 
for either one of a, 13 is 0, otherwise both Va and V$ are three-dimensional, so 
that Va Pi Vfi 5* 0. Furthermore, the operation © is associative, for if 
a, (3, 7 6 X, either one of the three is 0 (making associativity trivial), other­
wise Va, V$j Vy are all three-dimensional and again the intersection 
Va H Vfi O Vy 9e 0. We may write a = (a, b, ab), 13 = (a, c, ac),y = (a, d, ad) 
and we find: a © (0 © 7) = (a © /3) © 7 = (a, bed, abed). 

It is possible by a frontal assault to prove that the associative law for © 
holds when the relevant sums exist, but any further direct verification of the 
properties of © seems to be difficult and inconclusive. We propose instead to 
embed X into a group. More precisely, we establish the existence of a vector 
space W over GF(2) and a one-to-one mapping / from X to W preserving © 
(that is, whenever a © 0 is defined, I (a © ft) = 1(a) + I(/3)). Let us, for 
brevity, call a field favourable if a W and an / exist for it with this property. 
We have seen in the preceding paragraph that F is favourable if [F:F2] ^ 4. 
We will, in due course, prove that all fields are favourable, but we do this 
first under the assumption that [F:F2] is finite. With [FiF2] = 2r, we make 
an induction on r and we may assume that r ^ 3. 

Fix an algebraic closure A of F (the purely inseparable closure F2~œ would 
actually do). Let S be the set of favourable subfields of A which contain F. 
We set W equal to the direct sum of WK, K ranging over S, and we let / be the 
mapping from X to W such that if 11^ is the natural projection from W onto 
WK, UKI(a) = IK(a) for all a Ç X. I t is trivial that / preserves ©. With this 
background, we isolate the next step of the discussion as a lemma. 
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LEMMA 9. If a = (a, b, ab), 0 = (c,d,cd), and 1(a) = 1(13), then 
(a, 6, a&) ^ v c, i.e. there exists e with (a, b, aô) ^ v (c, e, ce). 

Proof. II a. = 0, there is nothing to prove, for a 3-form new-equivalent to 0 
new-represents anything. Thus we assume that a 9^ 0. 

Let Xi, . . . , xr be a 2-basis for F, that is, the elements Xiei . . . xr
er, et = 0 

or 1, form a vector space basis of F over F2. Let 7<\ = .F(xi2-co) be the field 
obtained by adjoining to F all 2wth roots of xi. We leave it to the reader to 
show that the set B consisting of 1 and all Xig, where q = m/2n with m odd 
and less than 2n, is a basis for F\ over F; also, that x2, . . . , xr form a 2-basis 
for the field F\. Note, in particular, that if a square in F± is written as a linear 
sum with respect to B, then the coefficient of 1 is of the form y2 + z2xi, where 
y, z £ F. By induction on r, Fi G S, i.e. T7! is favourable. 

First suppose that a = 0 when viewed as a form over T̂ i. Then there exist 
u, v, w £ Fi, not all zero, so that 

(18) u2a + v2b + w2ab = 0. 

We can assume, without loss of generality, that when u2a is written as a linear 
sum with respect to B, the coefficient of 1 is non-zero, for if necessary we can 
multiply both sides of (18) by a power of Xi, which is always a square. Since 
the coefficient of 1 in the linear expression of u2a + v2b + w2ab is 0, we obtain 
the existence of Ui, u2, Vi, v2l W\, w2 6 .Fwith (u\2 + u2

2Xi)a -+- (^i2 + v2
2X\)b + 

(wi2 + w2
2Xi)ab = 0, 

(19) U\2a + Vi2b + Wi2ab = (u2
2a + v2

2b + w2
2ab)xi. 

Since each side of (19) must be non-zero (otherwisea = 0), we can solve for Xi, 
and find that in this case Xi £ (1, a, 6, ab). 

Next suppose that a 9e 0 over Fi. Then a, b, and ab are linearly independent 
over TV and the equality of IFI(OC) and IFI(P) makes (a, b, ab) ~ (c, d, cd) 
(and not just ~N). Thus there exist u, v, w G Fi such that 

(20) u2a + v2b + w2ab = c. 

Again we can write both sides of (20) as linear combinations of elements of B. 
Equating the coefficients of 1 we find that uu u2l vu v2, wlf w2 Ç F with 
(ui2 + u2

2Xx)a + (vi2 + v2
2Xi)b + (wi2 + w2

2Xi)ab = c, 

(21) U\2a + Vi2b + Wi2ab + c = (u2
2a + v2

2b + w2
2ab)xi. 

If both sides of (21) vanish, we have established that (a, b} ab) ~ c over F, 
as required. Otherwise we can solve for xi and find: 

(22) Xi £ (1, a, b, ab, ac, be, abc). 

We put this together with the earlier case where we had found that 
Xi G (1, a, b, ab), and see that if our conclusion fails then (22) must hold. 

However, we could just as well have used x2, xz, Xix2> XiXd, x2x3 or #i#2#3 
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throughout the argument in place of Xi, and have reached the same conclusion. 
Hence 

(1, xi, X2, x3, Xix2, X1X3, X2X3, X1X2X3) £ (1, a, b, ab, ac, be, abc), 

a contradiction since on the left we have a space spanned by eight linearly 
independent elements, and on the right a spaced spanned by seven elements. 

We have proved Lemma 9, and with it at hand, we can quickly complete 
the proof that F is favourable. Given a = (a, b, ab) and ft — (c, d, cd) with 
1(a) = 1(0), we must prove that a ~N ft. By Lemma 9 we can replace (a, b, ab) 
by (c, e, ce). Thus a © /3 exists and equals (c, de, ede) ; call it 7. The hypothesis 
1(a) = I(fi) now becomes I(y) = 0. Apply Lemma 9 again, this time to 7 
and 0. The conclusion is 7 ~N 1, whence 7 = 0, i.e. a ® ($ = 0. From this we 
have to conclude that a = ft. If a = 0, then 0 0 £ = 0, thus 0 = 0. If a, 0 5* 0, 
we have ct = (e,f, ef), ft = (e,g,eg), (e,fg,efg) = 0. Then there exist 
x, y, s G F (x ^ 0 since 0 7e 0) with x2e + y2fg + z2efg = 0. Multiplying 
by / we obtain ef G (g, eg), thus (/, e/ ) ~ (g, eg), hence a = p. 

We proceed to prove JP favourable even when [F: F2] is infinite. For this 
we find it advisable to introduce the "universal" W. First, it is clear what one 
means by a homomorphism / from X to a vector space over GF(2); / is a 
mapping on X and satisfies f(a ® ft) = f(a) + f(fi) whenever a ® ft is 
defined. Now let Y be the vector space over GF(2) with basis X, and note 
that any homomorphism defined on X extends uniquely to F. Let Z be the 
subspace of Y consisting of all elements annihilated by all homomorphisms 
on X. Let W = Y/Z. When necessary, we decorate X, W, Y, Z with the 
subscript F. There is a natural map JF from XF to WF, and the statement 
that F is favourable is equivalent to saying that JF is one-to-one. 

If the field G is contained in the field H, there are natural induced maps: 
first from XG to XH, then YG to YH. The latter is readily seen to carry ZG to ZH. 
There is thus finally an induced map from WG to WH, but we shall not make 
use of it. 

Now given our field F with [F: F2] = 00 , we introduce still another subspace 
Z0 of YF. We let K range over the subfields of F finitely generated over the 
prime field GF(2). Note that every such field satisfies [K:K2] < 00 . We define 
Z0 to be the (set-theoretic) union of the images of ZK in the maps from ZK to ZF. 
I t is easy to see that Z0 is a subspace of YF (any two K's are contained in a 
third one, etc.). We do not attempt to identify Z0 and ZF. I t suffices for us to 
prove that the induced map i" from XF to YF/Z0 is a homomorphism and one-
to-one. 

/ is a homomorphism. Let a, ft G XF and suppose that 7 = a © 0 exists. 
If we write ua, u$, and uy for the corresponding basis elements of YF, our 
problem is to prove that ua + Up + uy G Z0. Take representatives 
a = (a, b, ab), ft = (a, c, ac) so that 7 = (a, be, abc). We drop to the subfield 
K generated by a, b, and c. If we write va, v$, and vy for the analogous basis 

https://doi.org/10.4153/CJM-1969-134-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-134-5


ABSTRACT QUADRATIC FORMS 1231 

elements of YK, we have that va + vp + vy lies in ZK and is mapped into 
ua + up + uy, which therefore lies in Zo. 

I is one-to-one. Given a, $ G -XV with / (a ) = 7(0), we must prove that 
a ~N 0. The statement / (a ) = I{$) means that ua + up G Z0. This can be so 
only if w« + up comes from some va + vp in the ZK of a finitely generated sub-
field K. But we have proved that K is favourable. Hence a ~N (3 in K and 
all the more so in F. 

As this long discussion nears its end, we state our main result as a formal 
theorem. 

THEOREM. Let F be any field of characteristic 2. On the non-singular non-
alternate finite-dimensional symmetric bilinear forms over F introduce new 
equivalence as above. Let X be the set of equivalence classes, under new equivalence, 
of three-dimensional forms of discriminant 1. Introduce on X, as above, the 
partially defined operation ©. Then there exists an embedding I of X into a vector 
space W over GF(2). Let F* be the multiplicative group of non-zero elements in F 
and G = F*/(F*)2. We define a V-form Q: G X G-> Was follows. Let a0,b0 G G, 
pick representatives a, b in F*y let a be the new equivalence class of (a, b, ab), and 
set Q(a0, bo) = I (ex). Then: equivalence with respect to this V-form coincides 
with new equivalence. 

That Q is well-defined, symmetric, and bilinear is immediate. That Q 
correctly describes new equivalence of 2-forms follows from Lemma 7. There 
is one more thing to prove: that new equivalence satisfies Witt 's theorem on 
piecewise equivalence. We shall do better and prove the (manifestly stronger) 
statement that piecewise equivalence works for ordinary equivalence. 

Let (ai, . . . , an) ~ (bi, . . . , bn). We must establish the existence of a 
chain of equivalences, starting at (#i. . . . , an) and ending at (6i, . . . , bn), 
such that at every step only two elements get changed, and the change on 
those two is by equivalence of 2-forms. The proof is by induction on n. 

Write V for the underlying vector space, 0 for the form, Vi, . . . , vn for the 
basis that gives us (ai, . . . , an). Thus <j>(vu vt) = at and <f>(vu Vj) = 0 for 
i 9^ j . Let wi, . . . , wn analogously be the basis that leads to (&i, . . . , bn). 
Choose notation so that W\ = e\V\ + . . . + ervr with et 5* 0. We make a 
second induction on r. If r — 1, then b\ is a multiple of a± by a square and 
we may suppose that b± = ax. The subspaces {v2y . . . , vn) and (w2, . . . , wn) 
are identical, since each is the orthogonal complement of V\. Thus ( a 2 , . . . , an) 
~ (&2, . . . , bn) and our induction on n is applicable. 

We assume that r ^ 2. Let s = exvi + e2v2. If <l>(s, s) 9e 0, the subspace 
(vi, v2) can be given a new basis s, t with / orthogonal to s. After we make this 
change we find that the length of W\ has decreased to r — 1 and our induction 
on r applies. Therefore, we may assume that <j>(s, s) = 0, which has (as a 
consequence): a\ and a2 are the same (up to a square, as always). We can 
make the same argument on each etVi + ejVj. Thus, further activity is only 
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needed in the following circumstances: a\, . . . , ar are all equal (we can take 
them to be 1) and W\ = Vi + . . . + vr. In particular, r is odd. 

We next dispose of the extreme case: r = n. Then the a's are all l 's, the b's 
might as well be all l 's, and there is nothing to prove. 

Suppose that n > r + 1. We work within the even-dimensional space 
S — (v\, . . . , vr+i). The orthogonal complement of W\ in 5 cannot be alternate 
since its dimension is odd. Thus we may complete W\ to an orthogonal basis 
of 5 and (by induction on n) we may pass to this basis from Vi, . . . , vr+i 
piecewise. We complete the transition to W\, . . . , wn by using the overlapping 
vector W\ (the case r = 1). 

There remains the case n = r + 1. The a's look as follows: 1, . . . , 1, a, 
where we are writing aT+\ = a. The orthogonal complement of W\ consists of 
vT+\ and the alternate orthogonal complement of Wi inside (vi, . . . , vr). Using 
(1, Theorem 5) we complete W\ to an orthogonal basis with diagonal elements 
(1, a, . . . , a). Thus this final case simplifies to the following problem: exhibit 
piecewise equivalence for the forms (1, 1, 1, a) and (1, a, a, a). We shall do 
this explicitly, using the abbreviations c = 1 + #, d = a + a2 and we have: 

(1, 1, 1, a) ~ (1, 1, c, d) ~ (1, a, d, d) ~ (a, a, c, d) ~ (a, a, 1, a). 

We have completed the proof of the theorem and we conclude with several 
remarks. 

Remarks. (1) Perhaps the most interesting corollary is the existence of a 
Witt invariant, which is indeed invariant under new equivalence, and all the 
more so under equivalence. 

(2) When [FiF2] ^ 4 it is immediate that 4-forms represent 0. We can 
then argue (just as in § 2) that the discriminant and Witt invariant charac­
terize new equivalence. Examples of such fields are polynomials or power 
series in two variables over a perfect field and their algebraic extensions. 

(3) If [F:F2] > 4, the discriminant and Witt invariant cannot suffice. For 
instance, if a, b, and c are part of a 2-basis, then (1, a, b, ab) and (c, ac, be, abc) 
are not ~N but have the same discriminant and Witt invariant. We can 
amplify this example to the 8-forms 

(1, a, b, ab, 1 + c, a + ac, b + be, ab + abc) 

and 

(c, ac, be, abc, 1 + c, a + ac, b + be, ab + abc) 

which have the same discriminant, same Witt invariant, and same subspace 
spanned over F2, yet are not ~N. 

(4) We conclude with a note on quadratic forms over a field F of charac­
teristic 2. Let us stick to those whose attached alternate form is non-singular. 
Then there is a decomposition into 2-dimensional summands (which can be 
taken in the form ax2 + xy + by2). With these as building blocks, piecewise 
equivalence can be proved. However, the setup (and the Arf and Witt 
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invariants that go with it) does not seem to be expressible in terms of a 
V-form. Nevertheless, there is a certain V-form lurking in the background: 
send the pair a, b into ax2 + xy + by2 ; this V-form is defined on the additive 
group of F (which can be divided by the subgroup of elements x2 + x) to the 
Grothendieck group of quadratic forms. The abstract quadratic form theory 
accompanying this V-form does not seem to be pertinent for quadratic forms 
over F. 
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