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Hesperidin (Hp), a citrus flavonoid predominantly found in oranges, shows bone-sparing effects in ovariectomised (OVX) animals. In human

subjects, the bioavailability of Hp can be improved by the removal of the rhamnose group to yield hesperetin-7-glucoside (H-7-glc). The aim

of the present work was to test whether H-7-glc was more bioavailable and therefore more effective than Hp in the prevention of bone loss in

the OVX rat. Adult 6-month-old female Wistar rats were sham operated or OVX, then pair fed for 90 d a casein-based diet supplemented or

not with freeze-dried orange juice enriched with Hp or H-7-glc at two dose equivalents of the hesperetin aglycone (0·25 and 0·5 %). In the

rats fed 0·5 %, a reduction in OVX-induced bone loss was observed regarding total bone mineral density (BMD): þ 7·0 % in OVX rats treated

with Hp (HpOVX) and þ6·6 % in OVX rats treated with H-7-glc (H-7-glcOVX) v. OVX controls (P,0·05). In the rats fed 0·25 % hesperetin

equivalents, the H-7-glcOVX group showed a 6·6 % improvement in total femoral BMD v. the OVX controls (P,0·05), whereas the Hp diet

had no effect at this dose. The BMD of rats fed 0·25 % H-7-glc was equal to that of those given 0·5 % Hp, but was not further increased at

0·5 % H-7-glc. Plasma hesperetin levels and relative urinary excretion were significantly enhanced in the H-7-glc v. Hp groups, and the metabolite

profile showed the absence of eriodictyol metabolites and increased levels of hesperetin sulphates. Taken together, improved bioavailability of

H-7-glc may explain the more efficient bone protection of this compound.

Bioavailability: Bone mineral density: Hesperidin: Flavanones: Rats

Nutrition plays an important role in the dietary management
and prevention of osteoporosis, a major public health problem.
While it is established that Ca, vitamin D and micronutrients
are essential for bone health, other compounds such as
polyphenols, found abundantly in fruit and vegetables, show
potential for bone-protective effects. For example, rodent
studies have shown that quercetin and quercetin-3-rhamnoglu-
coside (rutin) from onions(1,2), resveratrol from red wine(3) and
isoflavones from soya(4) inhibit ovariectomised (OVX)-
induced bone loss. Until now, most of the human intervention
studies have been carried out with high levels of soya isofla-
vones (80–90 mg), some studies showing prevention of bone
loss in postmenopausal women(5,6), while others not(7,8). The
level of consumption of soya products is rather low in Western
countries compared with Asian ones, whose daily intakes
average 20–40 mg(9). Therefore, it would be of interest to
identify commonly consumed polyphenols with bone-protec-
tive effects, as soya is not used as a staple in the Western diet.

Hesperidin (Hp), a monomethoxylated flavanone found
abundantly in citrus fruits such as oranges(10), is highly
consumed in Western countries. Indeed, in Finland, Hp con-
sumption was estimated to be 28 mg/d, contributing to 50 %
of total flavonoid intake(11). Hp and metabolites show promis-
ing health benefits due to their antioxidant, anti-inflammatory
and lipid-lowering properties demonstrated in preclinical
models(12 – 14). Furthermore, Hp shows bone-sparing effects
in OVX mice and rats of various ages, when provided in the
diet at 0·5 %(15,16), and citrus juice consumption has been
shown to prevent bone loss in male orchidectomised rats(17).

Flavonoids are commonly conjugated to glycosides when
present in plants. Hp is one such conjugated glycoside consist-
ing of the aglycone hesperetin (40-methoxy-30,5,7-trihydroxy-
flavanone) bound to rutinose (i.e. one molecule of rhamnose
and one molecule of glucose) in the C7-position(18). Hp has
limited bioavailability in human subjects, due to the delayed
action of the colonic microflora needed to release the rutinose
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moiety of Hp before absorption of its aglycone hesperetin.
Indeed, consumption of 1 litre of orange juice containing
450 mg Hp led to circulating plasma concentrations of
hesperetin of approximately 1mM with a peak at 5 h
post-ingestion(19). Monoglucuronides of hesperetin were the
major forms present in plasma after the ingestion of orange
juice(19). We have recently demonstrated that enzymatic
removal of the rhamnose sugar from Hp to yield hesperetin-
7-glucoside (H-7-glc) improves its bioavailability by 3-fold
in human subjects(20). The removal of the terminal rhamnose
sugar changes the absorption site from the colon to the
small intestine, as it has been previously demonstrated with
rutin and quercetin-4-glucoside in onions(21).

The aim of the present study was to test whether H-7-glc
was more bioavailable than Hp in the OVX rat (as in human
subjects) and whether this correlated with improved efficiency
in prevention of bone loss.

Experimental methods

Animals and diets

The study was carried out in accordance with the recommen-
dations of the Regional Ethical Committee on animal exper-
imentation in France. Fifty-eight adult, 6-month-old virgin
female Wistar rats were purchased from Institut National de
la Recherche Agronomique (Clermont-Ferrand/Theix,
St-Genès Champanelle, France). Five groups of ten rats
were surgically OVX and one group of eight rats was sham
operated (SH) under anaesthesia, using chloral hydrate
(Fluka Chemie AG, Buchs, Switzerland; 80 g/l in saline sol-
ution; 0·4 ml/100 g body weight intraperitonealy). The animals
were housed individually in plastic cages allowing separation
and collection of urine and faeces at 218C with relative humid-
ity of 55 % and under a 12 h:12 h light:dark cycle.

The animals were fed a semipurified standard diet devoid of
any soya proteins (Institut National de la Recherche
Agronomique, Jouy en Josas, France). The control diet con-
tained 150 g casein/kg, 50 g rapeseed oil/kg, 16·8 g
Ca3PO4(2H2O)/kg, 6·5 g NaCl/kg, 11·4 g potassium citrate/
kg, 5 g MgSO4(7H2O)/kg, 10 g trace elements mix/kg, 10 g
vitamin mix/kg and wheat starch quantum satis to achieve
1 kg (here 740 g/kg). The SH group and one OVX group
were fed this non-supplemented control diet. The four remain-
ing OVX groups were given the supplemented diets prepared
on the same basis as the control diet by adding 2·5 g/kg or 5 g/
kg of Hp or H-7-glc, respectively, at the expense of wheat
starch. Hp and H-7-glc were prepared by fortification of
Nestlé Thailand orange juice with 9·2 g/l of orange bioflavo-
noid complex (Nutrafur, Alcantarilla, Spain) containing
90 % Hp, incubation with or without a-rhamnosidase
(Hesperidinase Amans concentrated, Amano Enzymes, Chip-
ping Norton, Oxfordshire, UK) and freeze drying according
to Nielsen et al. (20). The freeze-dried juice-based product
obtained without a-rhamnosidase contained 33 mg/g of Hp
and the product obtained with a-rhamnosidase contained cor-
responding amounts of H-7-glc. Four diets containing 0·25 %
w/w or 0·5 % w/w of Hp or H-7-glc, respectively, were pre-
pared every week and stored at 48C until use.

During the whole experimental period and in order to pre-
vent well-known castration-induced hyperphagia, the quantity

of diet given to each rat per day was adjusted to the mean food
intake registered in SH animals (pair feeding). The animals
had free access to water during the entire study, and their
body weights and food intake were measured weekly. Urine
of each animal was collected over a 24-h period on day 0
and the day before killing, to measure urinary excretion of
deoxypyridinoline (DPD), a marker for bone resorption.

At killing, on day 90, blood samples were collected into ice-
cooled heparinised plastic tubes containing 200 peptidase
inhibitory units of aprotinin (Iniprol, Choay, Paris, France)
per millilitre blood, and centrifuged immediately (3500 g for
5 min at 48C). Then plasma samples were frozen at 2208C
until measurements of osteocalcin (OC), a marker of osteo-
blastic activity. Before freezing at 2208C, plasma samples
dedicated to the analysis of hesperetin metabolites were
acidified with acetic acid (0·1 M, 1 %) in order to protect the
structure of these metabolites. Uterine horns were removed
and immediately weighed. Femurs were separated from adja-
cent tissue, cleaned and used for physical measurements
(mechanical testing and bone mineral density (BMD)).

Bone measurements

Bone mineral density. BMD was assessed by dual-energy
X-ray absorptiometry, with the Hologic QDR-4500 A X-ray
bone densitometer. The total right femur BMD (T-BMD), as
well as the BMD of two subregions, one corresponding to
the metaphyseal zone (M-BMD), rich in cancellous bone,
and the other to the diaphyseal zone (D-BMD), rich in cortical
bone, were determined(22). In each femur scan, distal
(dM-BMD) and proximal (pM-BMD) metaphyseal regions
of interest were positioned at the same distance from the
distal and proximal femur extremity, respectively, and with
the same height. The region of interest between the two
preliminary delimited metaphyseal zones corresponds to the
diaphyseal subregion. Results are given in g/cm2.

Femoral mechanical testing. Immediately after collection
in NaCl (9 g/l), the length of the left femur and the mean
diameter of the diaphysis (i.e. the mean of the greatest and
the smallest diaphysis diameters) were measured using a pre-
cision caliper (Mitutoyo, Shropshire, UK). Femoral failure
load was determined using a three-point bending test with a
Universal Testing Machine (Instron 4501; Instron, Canton,
MA, USA). The load at rupture (N) was automatically deter-
mined and recorded by Instron 4501 software. This method
was previously validated by using Plexiglas standard
probes(23).

Bone biomarkers analyses. Plasma OC concentrations
(ng/ml) were measured by RIA, using rat 125I-labelled OC,
goat anti-rat OC antibody and donkey anti-goat second anti-
body (Biochemical Technologies kit, Stoughton, MA, USA).
The sensitivity was 0·01 ng/ml. The intra- and interassay pre-
cisions were 6·8 and 8·9 %, respectively.

DPD was measured in urine by competitive RIA (Pyrilinks
D kit; Metra Biosystems, Mountain View, CA, USA). The
assay requires a rat monoclonal antibody against DPD,
which is coated to the inner surface of a polystyrene tube
and 125I-labelled DPD. In the present experimental conditions,
the sensitivity was 2 nmol/l, and the intra- and interassay vari-
ations were 4·0 and 6·0 %, respectively. Results are expressed
as nmol of DPD/mmol of creatinine to take into account
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interindividual differences of urine concentration(24). The
creatinine assay kit (BioMérieux, Marcy l’étoile, France) is
based on a modified Jaffe’s method in which picric acid
forms a yellow compound in presence of creatinine(25).

Leptin assay

Plasma leptin concentration was assessed by RIA using anti-
rat leptin antibody and rat leptin as a standard (Rat Leptin
RIA kit; Linco Research, Inc., St Charles, MO, USA). The
lowest limit of sensitivity was 0·5 ng/ml, and the intra- and
interassay variations were 1·5 and 2·5 %, respectively.

Analysis of hesperetin and metabolites in plasma and urine

Preparation of plasma and urine samples for HPLC analyses.
HPLC analyses were performed directly or after an hydrolysis
step for which plasma samples (180ml) were acidified to
pH 4·9 with acetic acid, incubated for 5 h at 378C with
b-glucuronidase (1000 units) and sulphatase (forty-five units;
from Helix pomatia, Sigma G0876, L’Isle d’Abeau, Chesnes,
France), mixed with four volumes of methanol–HCl (0·2 M)
and the supernatant analysed after centrifugation (4 min,
14 000 rpm). Urine samples were diluted in acetate buffer
(0·1 M, pH 4·9), mixed with four volumes of methanol–HCl
(0·2 M) and the supernatant analysed after centrifugation as
mentioned earlier.

Analysis of hesperetin metabolites in plasma by HPLC.
Qualitative analysis of hesperetin metabolites and determi-
nation of the respective proportion of hesperetin conjugates
(percentage of total flavanones) were performed in
non-hydrolysed plasma by HPLC with mass spectrometric
detection. Plasma and urine hesperetin concentrations were
obtained after the hydrolysis step described earlier and anal-
ysis by HPLC with detection by CoulArray. For HPLC with
mass spectrometric detection, a YMC-Pack ODS-AM
column (250 £ 3·0 mm inner diameter, 5mm particle size)
was eluted with water–formic acid (99:1, v/v; solvent A)
and acetonitrile–formic acid (99:1, v/v; solvent B): 20 % B
for 2 min; linear gradient to 45 % of B over 20 min; 65 % of
B from 20 to 30 min. Detection was by a diode array detector
and API 2000 mass spectrometer. Liquid chromatography-
electrospray ionisation-MS/MS triple quadrupole MS was
optimised for hesperetin, hesperetin 7-O-glucuronide and

homoeriodictyol. MS and MS2 data were acquired in the
multiple-reaction monitoring mode, with maximum intensity
for the transitions at m/z 301:286 (negative mode), 477:301
(negative mode) and 303:151 (positive mode), respectively.
Hesperetin 7-O-glucuronide was confirmed using an authentic
synthetic standard.

For multichannel electrochemical detection, HPLC analysis
was performed on a 150 £ 4·6 mm Hypersil BDS C18-5mm
column (Touzard et Matignon, Les Ulis, France), with an
eight-channel CoulArray detector (model 5600, Eurosep,
Cergy, France). Mobile phases were 30 mM NaH3PO4 buffer
(pH 3) containing 20 % acetonitrile (A) or 40 % acetonitrile
(B). Separation was achieved using a gradient elution (358C,
0·8 ml/min): 0–3 min, 100 % A; 3–30 min, linear gradient
from 100 % A to 100 % B; 30–35 min, 100 % B; 35·01–
45 min, 100 % A. Potentials were set at 50–350–480–550–
700–760–820–850 mV. Hesperetin was quantified using the
sums of height obtained on the electrodes 2, 3 and 4, 5
and 6, respectively.

Statistical analysis

Results are expressed as means with their standard errors. All
data were analysed using the Graphpad Instat software (Micro-
soft, San Diego, CA, USA). A parametric one-way ANOVA
was first performed to test for any significant difference
among groups. If the results were significant (P,0·05), the Stu-
dent–Newman–Keuls multiple comparisons test was used to
determine the specific differences between means. Parametric
ANOVA was performed when data were sampled from popu-
lations with equal variance. If not, a Kruskall–Wallis test
followed by the Mann–Whitney U test was performed to
compare specific differences between groups. The level of
significance was set at P,0·05 for all statistical tests.

Results

Body and uterine weight changes

Successful ovariectomy was confirmed by marked atrophy of
uterine horns since the mean uterine weight was lower in
the OVX groups compared to sham-operated (SH) groups
(P,0·001; Table 1). No uterotrophic effect was elicited by
consumption of Hp or H-7-glc, since uterine weight was

Table 1. Effects of ovariectomy (OVX), hesperidin (Hp) and hesperetin-7-glucoside (H-7-glc) on food consumption (g/d), body and uterus weights (g)
and plasma leptin (ng/ml)

(Mean values with their standard errors for eight rats in sham operated (SH) control group and ten rats per group in all other groups)

SH OVX 0·25 HpOVX 0·5 HpOVX 0·25 H-7-glcOVX 0·5 H-7-glcOVX

Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

Food intake, day 30 16·33 0·51 16·55 0·54 17·16 0·32 17·55 0·02 17·44 0·23 17·34 0·35
Food intake, day 60 15·74 0·62 16·83 0·46 16·93 0·39 17·52 0·11 15·79 1·53 17·06 0·48
Initial body weight 277·4 5·6 274·2 6·1 271·3 5·3 284·2 6·1 278·4 4·8 282·1 6·5
Final body weight 309·6* 11·0 356·2 7·6 351·8 5·7 358·2 9·7 366·2 6·8 371·1 9·9
Uterus weight 0·689 0·056 0·116† 0·011 0·102† 0·006 0·133† 0·030 0·131† 0·017 0·115† 0·013
Plasma leptin 8·07 1·5 11·41 0·96 10·64 0·72 9·50 1·12 11·07 1·08 12·76 0·89

* Mean values were significantly different from those of all OVX groups (P,0·01).
† Mean values were significantly different from those of SH control group (P,0·001).
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unaffected by these treatments at both doses and was similar
to that of the OVX control rats (Table 1).

Despite the pair feeding (during the whole experimental
period, the daily mean food intake in each group was 16·9
(SEM 0·17) g), a significantly lower weight in SH animals
was reported (P,0·01), from day 21 up to the end of the
experimental period (day 90). No differences in body weight
among the control and treated OVX groups were observed
(Table 1). Furthermore, no significant difference in plasma
leptin levels between groups was detected at day 90 (Table 1).
Thus, either Hp or H-7-glc consumption, at either dose,
influenced neither the body weight nor the body composition,
as suggested by leptin assay.

Bone mineral density

Concerning BMD, similar patterns were observed for T-BMD,
D-BMD, pM-BMD and distal metaphyseal (dM-BMD)
femoral mineral densities. As expected, ovariectomy induced
a significant decrease in BMD at all femoral sites in OVX con-
trol rats (T-BMD: OVX control: 27·4 % v. SH, P,0·01,
Fig. 1; data not shown for D-BMD, pM-BMD and dM-BMD).

Consumption of 0·5 % Hp led to a significant improvement
in T-BMD in the HpOVX group compared with OVX controls
(T-BMD: þ7·0 % v. OVX, P,0·05; Fig. 1). In other bone
regions, similar levels of improvement in BMD were observed
with this dose of Hp (D-BMD: þ6·7 %; dM-BMD: þ7·0 %;
and pM-BMD: þ7·9 % v. OVX, P,0·05; data not
shown). The lower Hp dose (0·25 %) failed to prevent the sig-
nificant ovariectomy-induced loss of BMD (compared with
SH control group), as no differences were observed at any
of the bone sites compared to OVX control group.

In the H-7-glcOVX groups, T-BMD was significantly
improved (compared with OVX control group) at both doses
of 0·25 % (T-BMD: þ6·6 %, P,0·05; Fig. 1) and 0·5 %
(T-BMD: þ6·6 %, P,0·05; Fig. 1). BMD at diaphyseal and
metaphyseal femoral sites was increased to the same extent
than T-BMD with dose of 0·25 % (D-BMD: þ7·0 %, P,0·01;
dM-BMD: þ6·9 %; pM-BMD: þ6·9 %, P,0·05; data not
shown) as well as dose of 0·5 % (D-BMD: þ7·8 %, P,0·01;
dM-BMD: þ6·1 %; pM-BMD: þ7·0 %, P,0·05; data not
shown). Actually, compared with OVX controls, the 0·25 %

dose H-7-glcOVX group showed an equivalent improvement
in BMD to that of the 0·5 % dose HpOVX group and
achieved the same T-BMD (Fig. 1), D-BMD or M-BMD
(data not shown). However, no further increase in T-BMD, D-
BMD or M-BMD was seen with the higher dose of
H-7-glc (0·5 %) compared to the lower one (0·25 %). Thus, H-
7-glc exhibited similar BMD-sparing effects to Hp but at a
lower dose.

Bone size and ultimate load

No significant differences among groups were demonstrated
for femoral length and femoral diameter at day 90 (Table 2).
Femoral strength was assessed by the femoral failure load.
Ovariectomy significantly decreased this parameter compared
with SH animals (OVX: 26·5 % v. SH, P,0·05; Table 2).
Consumption of Hp at 0·5 % inhibited this OVX-induced
loss of strength (0·5 % HpOVX: þ10·0 % v. OVX, P,0·05;
Table 2). The magnitude of the effect (percentage of
change) was quite similar for the two groups fed with
H-7-glc (0·25 % H-7-glcOVX: þ7·4 % v. OVX, P,0·05;
0·5 % H-7-glcOVX: þ14·7 % v. OVX, P,0·05; Table 2). In
the 0·25 % Hp group, there was a trend to increase femoral
strength, however, without reaching significance (Table 2).
Thus, as shown for BMD mentioned earlier, both Hp and
H-7-glc helped to restore the OVX-induced loss of femoral
strength, but H-7-glc achieved the same effect as Hp (0·5 %)
at the lower dose (0·25 %).

Bone turnover markers

Ovariectomy resulted in a significant increase in OC plasma
levels in control rats (OVX control: þ62·5 % v. SH,
P,0·001), probably due to enhanced bone turnover following
ovariectomy, and this level was unaffected by the consump-
tion of Hp or H-7-glc at either dose (Fig. 2(a)).

An increase in urinary DPD excretion was observed
following ovariectomy (OVX control: þ145 % v. SH,
P,0·001), which was partially, but significantly, inhibited
by Hp and H-7-glc consumption (0·25 % HpOVX: 233·0 %
v. OVX, P,0·05; 0·5 % HpOVX: 241·7 % v. OVX,
P,0·01; 0·25 % H-7-glcOVX: 248·4 % v. OVX, P,0·01;
0·5 % H-7-glcOVX: 229·4 % v. OVX, P,0·05; Fig. 2(b)).

Hesperetin analyses and metabolite profile in plasma
and urine

Plasma and urine concentrations (compared with food intake).
Total hesperetin concentrations in plasma, measured by multi-
channel electrochemical detection after an enzymatic hydroly-
sis, are shown in Fig. 3(a). A dose-dependent increase was
observed between 0·25 and 0·5 % doses of the individual treat-
ments (i.e. 1·13mM from 0·25 % Hp; 2·06mM from 0·5 % Hp;
2·30mM from 0·25 % H-7-glc; and 4·91mM from 0·5 % H7glc).
However, intake of H-7-glc at either dose led to higher
(approximately 2-fold) circulating plasma levels of
hesperetin than with equivalent doses of Hp. Indeed, similar
plasma hesperetin concentrations were observed with 0·25 %
H-7-glc (2·30mM) as 0·5 % Hp (2·06mM; Fig. 3(a)).

Relative urinary excretion (Fig. 3(b)) increased between the
0·25 and 0·5 % Hp doses (relative increase from 2·4 to 3·6 %),

Fig. 1. Effects of ovariectomy (OVX), hesperidin (Hp) and

hesperetin-7-glucoside (H-7-glc) on total femoral BMD (g/cm2), measured on

day 90. Results are expressed as means with their standard errors per group.

* Mean values were significantly different from those of SH control group

(P,0·01). ** Mean values were significantly different from those of SH

control group (P,0·05). †† Mean values were significantly different from

those of OVX control group (P,0·05).
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but was significantly higher in the 0·25 % H-7-glc group (10·9
in 0·25 % H-7-glc v. 2·4 in 0·25 % Hp) and did not further
change in the 0·5 % H-7-glc group (10·8 %). Comparing
equivalent doses of Hp and H-7-glc, it was clear that the
a-rhamnosidase treatment of orange juice converting Hp to
H-7-glc clearly resulted in enhanced relative urinary excretion
of hesperetin, indicative of increased absorption.

Metabolic profile. In all plasma samples, hesperetin-7-O-
glucuronide and two hesperetin sulphate conjugates were
detected (Fig. 4). Quantitatively (results are expressed in

percentage of total flavanone metabolites), hesperetin 7-O-glu-
curonide was the major circulating form in plasma whatever the
treatment or dose (54–66 %; Table 3). Conjugates with glycine
and glutathione were not present, and free hesperetin aglycone
was present only at very low levels in all samples.

For rats fed Hp in untreated orange juice, hesperetin-30-O-
glucuronide, homoeriodictyol-40-O-glucuronide and homoer-
iodictyol-7-O-glucuronide (all tentatively identified using
MS fragmentation pattern of the aglycone standards) were
observed in plasma. These compounds have been detected pre-
viously at similar levels(26). Total homoeriodictyol glucuro-
nides (38·0 and 36·9 % for both 0·25 and 0·5 % doses,
respectively; Table 3) were the second most abundant metab-
olite group in rats fed Hp. For rats fed H-7-glc in orange juice

Table 2. Effects of ovariectomy (OVX), hesperidin (Hp), hesperetin-7-glucoside (H-7-glc) on femoral length (mm), femoral mean diameter (mm) and
femoral failure load (N) measured on day 90

(Mean values with their standard errors for eight rats in sham operated (SH) control group and ten rats per group in all other groups)

SH OVX 0·25 HpOVX 0·5 HpOVX
0·25 H-7-
glcOVX 0·5 H-7-glcOVX

Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

Length 35·95 0·30 35·70 0·22 36·33 0·24 36·92 0·27 36·34 0·33 36·89 0·35
Diameter 3·63 0·04 3·61 0·05 3·56 0·03 3·72 0·06 3·72 0·05 3·74 0·05
Femoral failure load 111·3 3·2 104·1* 2·7 108·7 3·1 114·5† 3·9 111·8† 2·4 119·4† 5·1

* Mean values were significantly different from those of SH control group (P,0·05).
† Mean values were significantly different from those of OVX control group (P,0·05).

Fig. 2. Effects of ovariectomy (OVX), hesperidin (Hp) and

hesperetin-7-glucoside (H-7-glc) on (a) plasma osteocalcin (ng/ml) and (b)

urinary deoxypyridinoline (nmol/mmol), measured on day 90. Results are

expressed as means with their standard errors per group. * Mean values

were significantly different from those of SH control group (P , 0·001).

† Mean values were significantly different from those of OVX control group

(P,0·01). †† Mean values were significantly different from those of OVX

control group (P,0·05).

Fig. 3. (a) Plasma hesperetin concentrations (mM) and (b) relative urinary

excretion of hesperetin (%) measured on day 90 in ovariectomised (OVX)

groups supplemented with hesperidin (Hp) or hesperetin-7-glucoside (H-7-glc)

at both doses 0·25 and 0·5 %. Results are expressed as means with

their standard errors per group. * Mean values were significantly different

from those of all other groups (P,0·01). †† Mean values were

significantly different from those of the 0·25 HpOVX group (P,0·05). ‡‡ Mean

values were significantly different from those of HpOVX groups (P,0·001).
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Fig. 4. Liquid chromatography-electrospray ionisation-MS/MS mass spectra for hesperidin (Hp) and hesperetin-7-glucoside (H-7-glc) circulating metabolites.
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pretreated with a-rhamnosidase, plasma hesperetin sulphates
(38·5 and 29·3 % for both 0·25 and 0·5 % doses, respectively;
Table 3) were much higher than in the groups fed Hp in untreated
orange juice. Hesperetin-30-O-glucuronide, homoeriodictyol-40-
O-glucuronide and homoeriodictyol-7-O-glucuronide were all
absent from plasma in the group fed H-7-glc.

Discussion

Presently, the OVX rat model is the most widely used animal
model for studying postmenopausal-induced osteopenia(27).
We, and others, have previously reported that OVX-induced
osteopenia was more severe in adult (6–9 months old) than
growing (3–6-months old) rats, leading to greater loss of tra-
becular and cortical bone density as well as femoral bone
strength(1,28). In the present study, we chose the adult rat as
the present model for postmenopausal osteoporosis. As
expected, ovariectomy, validated by uterine atrophy
(Table 1), induced significant osteopenia at all femoral sites
(T-BMD: 27·4 % OVX control v. SH; Fig. 1). Both cancel-
lous and cortical bones were affected by bone loss. Femoral
mechanical properties, determined by the femoral diaphysis
failure load, were impaired by OVX (Table 2). Similar to
that observed in postmenopausal women(29), bone turnover
was increased following OVX as indicated by a higher urinary
DPD excretion and an increase in plasma levels of OC in
OVX rats compared with SH (Fig. 2). Thus, the OVX adult
rat used in the present study may be considered as an appro-
priate model for postmenopausal bone loss(30,31).

In accordance with our previous study in young and adult
OVX rats(16), the data shown here confirm that consumption
of Hp at 0·5 % in the diet leads to a prevention of
OVX-induced bone loss in adult rats, without a uterotrophic
effect and with no effect on body weight. The BMD-sparing
effect (T-BMD: þ7·0 % v. OVX control; Fig. 1) was associ-
ated with a partial inhibition of OVX-induced DPD excretion
(241·7 % v. OVX; Fig. 2) and a significant improvement in
femoral failure load (þ10·0 % v. OVX; Table 2). These data
on the bone-sparing effects of Hp are further supported by
the work of Chiba et al. (15), who showed that 0·5 % Hp in
the diet of young OVX mice was able to inhibit OVX-induced
trabecular bone loss and thickness at the femoral metaphysis
accompanied by a reduction in the number of osteoclasts,
and Deyhim et al. (17), who showed that citrus juice prevented
bone loss in male orchidectomised senescent rats accompanied
by a decrease in urinary excretion of hydroxyproline.

The new finding reported here is the greater efficiency of
H-7-glc compared with native Hp, in preventing OVX-induced
bone loss. Indeed, in terms of hesperetin aglycone equivalents,
the doses of 0·25 % H-7-glc and 0·5 % Hp showed similar

protection against OVX-induced bone loss as shown by the
improvement of BMD (þ6·6 and þ7·0 %, respectively, for
T-BMD compared with OVX controls, P,0·05; Fig. 1) and
femoral failure load (þ7·4 and þ10·0 %, respectively, com-
pared with OVX controls, P,0·05; Table 2). The higher
dose (0·5 %) of H-7-glc did not result in any further improve-
ment in BMD or femoral failure load, suggesting a threshold
effect at a certain concentration of hesperetin. The BMD
and femoral failure load changes were accompanied by a
partial but significant inhibition of the OVX-induced
bone resorption (Fig. 2(b)). However, there was not a dose–
response relationship of Hp or H-7-glc to this marker, and
no significant change was seen in the OVX-induced OC levels.

Fig. 5 summarises the main findings on the metabolism of
Hp based on literature data and our new finding reported
here. Hp intake by human subjects showed that hesperetin is
absorbed in the colon after cleavage of the rhamnoglucoside
moiety. Subsequently, the main circulating forms observed
are conjugates of hesperetin with glucuronic acid and/or sul-
phate(19). After enzymatic removal of the rhamnose sugar to
give H-7-glc, the level of hesperetin in blood from healthy
volunteers was increased(20). The results reported here in
rats also show that the nature of the sugars attached to hesper-
etin is critical in determining the site and extent of absorption,
and, in agreement with the human studies, show that more is
found in the plasma after consumption of H-7-glc compared
with Hp (Fig. 3(a)). Indeed, the circulating plasma levels
were approximately 2-fold higher in the H-7-glc groups
compared with the Hp groups at each dose, and the 0·25 %
H-7-glc dose resulted in the same plasma hesperetin levels
as the 0·5 % Hp dose (Fig. 3(a)). These higher plasma levels
were accompanied by significantly higher urinary excretion
levels of hesperetin in the H-7-glc groups (Fig. 3(b)). Compar-
ing equivalent doses of Hp and H-7-glc, it was clear that the
a-rhamnosidase treatment of orange juice converting Hp to
H-7-glc resulted in enhanced relative urinary excretion of
hesperetin (Fig. 3(b)). All together, these results show an
increased bioavailability of H-7-glc compared with Hp.

In addition to the higher overall levels of hesperetin in
plasma after consumption of H-7-glc, the profile of conjugates
and metabolites is changed (Table 3). Shifting the absorption
from the colon to the small intestine increases the percentage
of sulphated metabolites. This could be due to the site of
absorption and/or to flavanone-mediated induction of UDP-
glucuronosyltransferases (UGT1A1)(32). The change in
absorption site from the colon to the small intestine also
decreased the formation of eriodictyol conjugates to
undetectable levels. The latter are derived from microbial
metabolism, consistent with this altered site of absorption,
since rat gut microflora is able to transmethylate hesperetin

Table 3. Identification and quantification of hesperidin (Hp) and hesperetin-7-glucoside (H-7-glc) metabolites in plasma analysed by liquid
chromatography-electrospray ionisation-MS/MS

Respective proportion of metabolites (percentage of total flavanones)

Hesperetin Hesperetin-7-O-glucuronide Hesperetin sulphate Homoeriodictyol Homoeriodictyol glucuronides

0·25 Hp 1·9 54·0 2·7 3·0 38·4
0·5 Hp 3·8 55·0 2·0 2·7 36·5
0·25 H-7-glc 1·5 60·0 38·5 – –
0·5 H-7-glc 4·7 66·0 29·3 – –
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to form homoeriodictyol (from ZOCH3 at 40-position
and ZOH at 30-position in hesperetin to ZOCH3 at 30-position
and ZOH at 40-position in homoeriodictyol)(33). Rat colonic
microflora can also hydroxylate and/or dehydroxylate and
methylate naringenin to hesperetin and isosakuranetin(34).

Conclusions and perspectives

In conclusion, in the present study, both Hp and H-7-glc were
able to elicit protective effects on bone loss in adult animals,
probably via an inhibition of bone resorption and without
uterotrophic effects. The H-7-glc form achieved the same
level of protection as Hp but at the lower dose of 0·25 %
compared with 0·5 % Hp, but showed no further increase in
bone protection at 0·5 % in the diet, suggesting a threshold
effect linked to hesperetin availability. Taken together with
the analysis of the hesperetin plasma and urine metabolites,
these results may be explained by the difference in bioavailabil-
ity between these two compounds. The enzymatic conversion of
Hp to H-7-glc leading to both a higher level of total hesperetin at
the lower dose and an increased level of hesperetin sulphates
could contribute to the more efficient bone-sparing effect of
H-7-glc. On the other hand, the absence of the homoeriodictyol
metabolites following H-7-glc consumption suggests that these
metabolites are not involved in the bone-sparing effect of Hp. Hp
or H-7-glc metabolites could reach bone tissues, or possibly be
deconjugated at the target site, as reported for other conjugated
flavonoids in target tissues under stress conditions(35,36).

The exact molecular mechanism of action of hesperetin or
its metabolites on bone cells is not yet elucidated, although
some insight from its antioxidant and anti-inflammatory prop-
erties suggest that at least some of the important pathways
include NF-kB and its related signal transduction pathways,
NF-kB-inducing kinase/inhibitor of NF-kB kinase, extracellu-
lar signal-regulated kinase, p38 and c-Jun N-terminal kinase as
well as the redox-regulating transcription factors thioredoxin/
redox factor-1(37). As these pathways are also implicated in the

bone resorption process, they may help to explain the antire-
sorptive effect of Hp. The higher bioavailability of hesperetin
from H-7-glc, together with the different metabolite profile,
may strongly influence the cellular signalling responses in
bone and other tissues and may help to explain the higher effi-
ciency in bone protection by H-7-glc shown here.

The identification of a commonly consumed polyphenol,
Hp, together with its more potent metabolite, H-7-glc, which
help to prevent OVX bone loss, opens up perspectives for
the dietary management of women’s health in relation to
menopause or osteopenia.
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