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Abstract

Mountain glaciers and ice sheets often host marginal and subglacial lakes that are hydraulically
connected through subglacial drainage systems. These lakes exhibit complex dynamics that have
been the subject of models for decades. Here we introduce and analyze a model for the evolution
of glacial lakes connected by subglacial channels. Subglacial channel equations are supplied with
effective pressure boundary conditions that are determined by a simple lake model. While the
model can describe an arbitrary number of lakes, we solve it numerically with a finite element
method for the case of two connected lakes. We examine the effect of relative lake size and spa-
cing on the oscillations. Complex oscillations in the downstream lake are driven by discharge out
of the upstream lake. These include multi-peaked and anti-phase filling–draining events. Similar
filling–draining cycles have been observed on the Kennicott Glacier in Alaska and at the conflu-
ence of the Whillans and Mercer ice streams in West Antarctica. We further construct a simpli-
fied ordinary differential equation model that displays the same qualitative behavior as the full,
spatially-dependent model. We analyze this model using dynamical systems theory to explain
the appearance of filling–draining cycles as the meltwater supply varies.

1. Introduction

Ice-dammed and subglacial lakes have been observed to periodically fill and drain. The clas-
sical example of this behavior is the cyclic jökulhlaups from the Grímsvötn caldera lake on the
Vatnajökull Ice Cap, Iceland (Nye, 1976; Fowler, 1999; Björnsson, 2003; Fowler, 2009). The
Grímsvötn jökulhlaup cycle is characterized by a slow filling phase that lasts several years
followed by a sudden draining of water beneath the glacier that results in intense flooding
of proglacial rivers and outwash plains (Björnsson, 2003). Predicting the timing and magni-
tude of jökulhlaups is important for hazard mitigation in many areas (Hewitt and Liu,
2010; Carrivick, 2011; Kingslake and Ng, 2013b).

Glacial lakes are often hydraulically connected through subglacial drainage systems.
Flooding from an upstream lake thereby strongly influences the behavior of the downstream
lake. Synchronous filling–draining cycles have been observed on the Kennicott Glacier in
the Wrangell Mountains of Alaska (Anderson and others, 2005; Bartholomaus and others,
2008, 2011; Bueler, 2014; Brinkerhoff and others, 2016). Hidden Creek Lake sits upstream
of the much smaller Donoho Falls Lake. Hidden Creek drains on a yearly cycle, causing
Donoho Falls to fill and drain in response to subglacial water pressure variations. To first
order, Donoho Falls acts as a pressure gauge that records the passing of the flood
(Anderson and others, 2005).

In Antarctica, hundreds of subglacial lakes have been discovered with satellite altimetry and
ice-penetrating radar (Smith and others, 2009; Wright and Siegert, 2012). Observations of sur-
face elevation changes within subglacial drainage catchments show that subglacial lakes are
hydraulically connected (Wingham and others, 2006; Fricker and Scambos, 2009). These active
subglacial lakes often exist in groups beneath Antarctic ice streams. At the confluence of the
Whillans and Mercer ice streams in West Antarctica, complex oscillations have been observed
where downstream lakes display multiple drainage events per filling–draining cycle of the
upstream lake (Fricker and Scambos, 2009; Siegfried and others, 2016; Siegfried and Fricker,
2018). Draining events have been linked to periods of enhanced ice flow in the Mercer–
Whillans system (Siegfried and others, 2016), Byrd Glacier that drains East Antarctica through
the Transantarctic Mountains (Stearns and others, 2008) and Crane Glacier on the Antarctic
Peninsula (Scambos and others, 2011). However, similar lake drainage events on Thwaites
Glacier suggested no strong connection between drainage and ice flow (Smith and others,
2017). The coupling between lake drainage and ice flow is uncertain partly because these com-
plex filling–draining cycles are not well-understood.

Models for ice-dammed lake drainage were originally proposed to help explain the
Grímsvötn jökulhlaup cycle (Nye, 1976; Fowler, 1999). Fowler’s (1999) model of single-lake
oscillations supplies a modified version of the subglacial channel equations from Nye
(1976) with boundary conditions that are determined by a simple lake model. Subsequent
modeling studies investigated jökulhlaup discharge magnitudes (Ng and Björnsson, 2003),
the effect of seasonal meltwater input (Kingslake, 2015), the coupling between flooding
and basal sliding (Kingslake and Ng, 2013a), jökulhlaup predictability (Fowler, 2009;
Kingslake and Ng, 2013b), ice cauldron formation (Evatt and Fowler, 2007) and applications
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to Antarctic subglacial lakes (Evatt and others, 2006; Carter
and others, 2017). While single-lake systems have been an
active research area, there have been few theoretical studies of
connected lake systems (Peters and others, 2009; Carter and
others, 2017).

Here, we introduce a model for connected glacial lakes that
extends previous single-lake models (Fowler, 1999, 2009). The
aims of this paper are (I) to explore the effect of relative lake
size and spacing on the nature of filling–draining oscillations
and (II) to study how meltwater supply variations lead to the
appearance and disappearance of these oscillations. We use
numerical experiments to address these aims and discuss physical
mechanisms behind the coupled oscillations. We then derive a
reduced ordinary differential equation (ODE) model that has
similar qualitative behavior to the full partial differential equation
(PDE) model but is orders of magnitude faster and more amen-
able to analysis. We use this reduced model to analyze the transi-
tion from periodic flooding to steady water discharge. We
conclude by comparing numerical results with data from natural
lake systems to assess the model and its implications.

2. The model

We assume that a sequence of ice-dammed lakes are hydraulically
connected by subglacial channels (Fig. 1). The mathematical
model consists of two components. The first component is a set
of PDEs that governs the evolution of the subglacial channels.
The second component is a simple evolution equation for the
lakes. Following Fowler (1999, 2009), the lake evolution equations
provide the boundary conditions for the subglacial channels
where they are connected to the lakes. While we only explore
two connected lakes here, we formulate the model for an arbitrary
number of lakes.

2.1 Subglacial channel model

We let S be the cross-sectional area of the semi-circular subglacial
channel, Q the water discharge, Ψ the hydraulic gradient, x the
distance along the channel and t time. We define the effective
pressure N to be the difference between the ice overburden pres-
sure and the water pressure in the channel. We assume that the
water in the channel and the ice at the channel walls are always
at the melting point and we neglect heat advection (Nye, 1976).
We further assume that the ice creeps as a shear-thinning viscous
fluid (Nye, 1953; Glen, 1955; Cuffey and Paterson, 2010).

The magnitude of water discharge through the subglacial
channel is partially determined by the hydraulic gradient

C = c(x) + ∂N
∂x

, (1)

which includes the effective pressure gradient and a background
hydraulic gradient, ψ. We choose the parameterization

c(x) = c0[1− 2 exp(−20x/Lc)], (2)

where Lc is the length of the subglacial channel and ψ0 is the
hydraulic gradient scale. This parameterization is based on a fit
to surface and bed slopes at Grímsvötn (Fowler, 2009). We use
this parameterization because it allows water flow toward the
lake between floods, which has previously been found to promote
long-term stability of filling–draining oscillations (Fowler, 2009;
Kingslake, 2015). Within ∼ Lc/20 km of the lake, the hydraulic
gradient Ψ is strongly influenced by ψ. We expect that other

parameterizations would also allow for stable filling–draining
cycles based on the success of the spatially-uniform model in
‘Simplified model’ section.

Conservation of ice mass is satisfied through a balance of melt-
ing and viscous closure rates at the channel walls. The channel
size evolves according to

∂S
∂t

= 1
ril

QC− 2Ân−nSN|N|n−1, (3)

where ρi is the ice density, l is the latent heat of melting, and Â
and n are the parameters in Glen’s flow law (Glen, 1955; Cuffey
and Paterson, 2010). In Eqn (3), the melt and closure rates are
proportional to QΨ and SN|N|n−1, respectively.

Conservation of mass for water in the channel requires

∂S
∂t

+ ∂Q
∂x

= 1
rwl

QC+ m, (4)

where ρw is the water density and μ is a constant source term for
water that enters the channel through drainage pathways such as
cavities and moulins (Fowler, 1999, 2009; Kingslake, 2015). We
note that μ has a stabilizing effect because it prevents the channel
from closing completely. Combining Eqn (4) with Eqn (3), we
obtain

∂Q
∂x

= 2Ân−nSN|N|n−1 − rw − ri
rwril

QC+ m. (5)

Finally, the Darcy–Weisbach law for turbulent water flow
through pipes provides a relation between channel size, pressure
and discharge through the equation

Q = 2
p

( )1/4
�������
2+ p

rwfd

√
SaC|C|−1/2, (6)

where fd is the friction factor (Clarke, 2003). We list the numerical
values of the above parameters in Table 1.

2.2 Lake model

We suppose that the first upstream lake (Lake 1 in Fig. 1) is con-
nected only to a downstream channel. We let h be the lake depth,
H the ice thickness and A the lake surface area. We hold the ice
thickness and lake surface area constant. Alternatively, if the
geometry of the lake is known then one may prescribe the surface
area as a function of the lake depth. We let Qin be the volumetric
rate of meltwater flow into the lake from runoff, englacial storage
and other sources. Below, we denote the water discharged from
the lake through the downstream channel by Qch

out. The lake
depth evolves according to

dh
dt

= 1
A
[Qin − Qch

out]. (7)

Assuming hydrostatic balance, the effective pressure at the
lake is

NL = rigH − rwgh. (8)
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This relation between lake depth and effective pressure in Eqn
(8) leads to the evolution equation

dNL

dt
= rwg

A
[Qch

out − Qin]. (9)

For downstream lakes (e.g., Lake 2 in Fig. 1), there is an add-
itional input Qch

in from the upstream channel. In this case, the
effective pressure at the lake evolves as

dNL

dt
= rwg

A
[Qch

out − Qin − Qch
in ]. (10)

2.3 Boundary conditions

The lake evolution Eqn (10) determines the boundary conditions
for the channel equations everywhere except at the terminus. At
the terminus, we impose the boundary condition N = 0. As dis-
cussed by Evatt (2015), the zero pressure condition at the ter-
minus leads to the problem of a forever-widening channel
there. Although observations suggest that subglacial channels
widen at the terminus (Drews and others, 2017), unbounded
growth is unreasonable. Therefore, we scale the viscous closure
law by

z(S) =
[
1−

(
S
Sf

)1
n
]−n

, (11)

which arises from the assumption of finite ice depth (Evatt, 2015).
The viscous closure rate in Eqn (3) becomes SN|N|n−1ζ(S). For
large Sf, ζ(S)≈ 1 away from the terminus. Most importantly, S
can never exceed Sf (Evatt, 2015). We have found that using Sf
= 8000 m2 in numerical experiments does not alter the solutions
near the lake qualitatively and prevents the channel from growing
without bound.

2.4 Scaling

Here we introduce a scaling for the subglacial channel Eqns (1–6).
We introduce the dimensionless variables

S∗ = S/S̃, N∗ = N/Ñ, Q∗ = Q/Q̃,

c∗ = c/c̃, x∗ = x/x̃, t∗ = t/t̃,
(12)

and choose the scales

S̃ = Q1/a
in

2
p

( )1/4a(
c0

2+ p

rwfd

)1/2a , Ñ = c0Lc, Q̃ = Qin,

c̃ = c0, t̃ = A1Ñ
rwgQin

, x̃ = Lc

,

(13)

where A1 is the surface area of the first (upstream) lake. The scale
S̃ is the channel size at the equilibrium discharge Q =Qin in the
absence of effective pressure gradients. The scale t̃ is the intrinsic
filling timescale of the first upstream lake. Likewise, the melting
timescale for the channel at the equilibrium discharge is

tm = S̃ril
Qinc0

. (14)

The quantity

tc =
1

2Ân−nÑ
n (15)

is the viscous closure timescale for the channel, which depends
strongly on the channel length. We define the dimensionless
parameters

am = t̃/tm / Q
−1

a
in Lc, ac = t̃/tc / Q−1

in Ln+1
c , (16)

which are the melting and closure timescales normalized by the
filling timescale. The parameters am and ac control the magni-
tudes of the melting and closure rates, respectively.

2.5 Generalized connected lake system

Here we complete the formulation of the model by generalizing
Eqns (1)–(6) and the boundary condition Eqn (10). We consider
a system with M lakes and channels on a glacier of length Lc. We
let Lk be the length of the k-th subglacial channel, subject to

∑M
k=1

Lk = Lc. (17)

The scaled length of each subglacial channel is

L∗k = Lk/Lc, (18)

so that the total length of the scaled system is one. Supposing that
the system (1)–(6) holds on each interval (0, Lk*), the scaling
described by Eqns (12–16) leads to the system of partial differen-
tial equations

∂Sk
∂t∗

= amQkCk − acSkNk|Nk|n−1z(Sk), (19)

∂Qk

∂x∗
= bcSkNk|Nk|n−1z(Sk) − bmQkCk + m∗, (20)

Qk = SakCk|Ck|−
1
2, (21)

Ck = c∗ +
∂Nk

∂x∗
, (22)

Fig. 1. Schematic diagram of connected lake model
setup. Upstream and downstream lake depths are
noted by h1 and h2, respectively. The upstream and
downstream channel lengths are noted by L1 and L2.
The meltwater supply rate to the lakes is Qin. Arrows
in the subglacial channels note the water flow
direction.
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for k = 1 . . .M. Above, m∗ = mx̃/Q̃, bm = ((rw − ri)/rwril)Ñ ,
and bc = 2Ân−nx̃S̃Ñ

n
/Q̃. The parameters bm and bc are small

and the associated terms may be neglected, although we do not
do so here. We let Ak be the surface area of each lake. To satisfy
the lake evolution Eqn (10), we enforce the non-dimensionalized
upstream boundary conditions

∂Nk

∂t∗
(0, t∗) =

1
A∗
k

Qk(0, t∗) − 1− Qk−1(L∗k−1, t∗)
[ ]

(23)

for k > 1, where we have defined Ak* = Ak/A1. We refer to Ak* as the
relative size of the k-th lake. For the first lake, the non-
dimensional boundary condition is

∂N1

∂t∗
(0, t∗) = Q1(0, t∗) − 1. (24)

Likewise, the downstream boundary conditions are

∂Nk

∂t∗
(L∗k, t∗) =

1
A∗
k+1

[Qk+1(0, t∗) − 1− Qk(L∗k, t∗)] (25)

for k <M, with the modification at the terminus

NM(L∗M, t∗) = 0. (26)

Above we have assumed that the effective pressure is uniform
across each lake. Moreover, we assume that L∗k � 1/20 so that the
parameterization ψ*(x*) does not dominate the hydraulic gradient
Ψk. Equations (19)–(26) constitute a complete mathematical
model for connected glacial lakes. When discussing single-lake
systems, we will omit the k subscripts on the variables. The system
is solved numerically using a finite element method. We provide
details on the numerical method and implementation in
Appendix A.

3. Results

3.1 Single-lake model

We first study the behavior of a single-lake system (M=1) to
develop physical intuition into the oscillatory nature of the
model before considering the multiple-lake model. We assume
that Qin is constant in time for all experiments. In the figures
and discussion below we denote the discharge out of the lake
by QL =Q(0, t). For clarity, we plot the lake depth h(t) rather
than the effective pressure at the lake N(0, t). These quantities
are related through Eqn (8). The single-lake results outlined
below may be compared to previous modeling studies (Fowler,
1999, 2009; Kingslake and Ng, 2013a; Kingslake, 2015).

The fundamental feature of the model is that the boundary
condition in Eqn (24) forces oscillations in lake depth, effective
pressure, discharge and channel size (Figs 2a, b). The physical
mechanism for single-lake oscillation originates from the coupling
of the melting and closure rates to discharge and channel size.
The lake depth h increases slowly until the channel melts open
enough for rapid drainage to begin (point hmax in Fig. 2b). The
discharge QL grows during the flood, causing the channel to
open rapidly due to melting. The positive feedback between dis-
charge and channel size causes a sharp increase in melt rate. At
the same time, increasing discharge causes the lake level to
decrease rapidly. This melt-opening feedback persists to the
peak of the flood (point Qmax in Fig. 2b). Eventually the channel
begins to collapse once it becomes too large. Water flow through
the channel becomes increasingly constricted as the channel
closes, diminishing the melt rate and ending the flood. The lake
then begins to refill because the channel is small again (Fig. 2b).

The oscillations in h and QL approach periodic functions over
time for a range of meltwater input (Qin) values (Fig. 2a). These
periodic functions define a limit cycle – a closed curve in QL-h
phase space (Fig. 2b). All solutions that start away from equilib-
rium will approach the limit cycle except at higher values of
Qin. The behavior at high Qin is explored in the next paragraph
and in greater detail in ‘Simplified model’ section. The oscillation
frequency is controlled primarily by the meltwater input Qin and
the lake size A because the natural filling timescale for the lake t̃ is
proportional to A/Qin in Eqn (13). Large lakes oscillate slowly
because they take longer to fill at a fixed Qin. Conversely, a higher
meltwater supply results in more frequent cycles.

Once Qin increases past some critical threshold, the oscillations
damp toward equilibrium where the lake drains water continu-
ously at a constant rate (Fig. 2c). In phase space, the damping
appears as a spiral (Fig. 2d). Damping occurs because the filling
timescale t̃ in Eqn (13) becomes too small relative to the melting
timescale tm in Eqn (14) and viscous closure timescale tc in Eqn
(15) for oscillations to be sustainable. Likewise, the melting
strength am and closure strength ac parameters in Eqn (16)
become small and perturbations to the equilibrium solution are
not able to grow. In this scenario, the discharge out of the lake
approaches the equilibrium value QL =Qin (Figs 2c, d). We
explore the transition from oscillation to damping further in
‘Simplified model’ section with a reduced ODE model.

3.2 Double-lake models

Connected lakes can oscillate in a variety of different ways that are
distinct from the single-lake solutions discussed in the previous
section. However, these double-lake oscillations follow the same
physics of the single-lake system. We explore the amplitudes
and frequencies of these oscillations as the downstream lake sur-
face area, and the spacing between the lakes is varied since these
are easy parameters to estimate in natural systems. We choose the
values of A1 = 1 km2 and Qin = 5 m3s−1 in order to determine

Table 1. Model parameters and physical constants used in simulations. These
values are fixed unless noted otherwise.

Symbol Definition Value Units

Lc Domain length 41 km

H Ice thickness 200 m

h(0) Initial lake depth 100 m

μ Channel water supply 4.5 × 10−5 m2 s−1

ρw Density of water 1000 kg m−3

ρi Density of ice 917 kg m−3

l Latent heat of melting 3.335 × 105 J kg−1

g Gravitational acceleration 9.81 m s−2

ψ0 Hydraulic gradient scale 100 Pa m−1

fd Friction factor 0.1 −

α Darcy–Weisbach exponent 5/4 −

n Ice rheology exponent 3 −

Â Ice rheology coefficient 6.8 × 10−24 Pa−n s−1

A− in the fourth column denotes a dimensionless quantity.
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appropriate values for am and ac. However, these results apply to
systems with other lake sizes and meltwater supply rates if the
ratio A/Qin is similar to what we have chosen. Unless stated other-
wise, we use (am, ac) = (66, 2900). This parameter choice corre-
sponds to the single-lake solution with undamped oscillations
(Figs 2a, b). The scaling shows that the trends outlined below
are due to the relative downstream lake size A2* = A2/A1 and the
magnitude of the meltwater supply rate relative to the lake sizes.
The behavior of the upstream lake always resembles the single-
lake solutions due to the constant meltwater input. The down-
stream lake behavior is modified by the additional time-
dependent water input from the upstream channel, Q1(L1*, t),
and the parameter variations discussed below.

Lake spacing examples
First, we explore the influence of lake spacing on the depth-
discharge oscillations. The length of the whole domain is always
preserved since we set L2* = 1− L1* and vary L1*. In this series of
examples, we keep the size of the second lake constant and
equal to the first lake (A2* = 1). In general, we find that the lakes
oscillate in phase when they are closely spaced (L∗1 & 0.5).
When the lakes are far apart (L∗1 � 0.5), we observe
small-amplitude oscillations in the downstream lake that are
delayed relative to the upstream cycles.

When lakes are closely spaced, both lakes damp toward equi-
librium (Fig. 3a). For our parameter choices this occurs when
L1* < 0.5, but sets in strongly around L1* = 0.1. Damping occurs
in shorter channels because the closure rate becomes small rela-
tive to the melt rate, similar to the transition to damping with
increasing meltwater supply rate. In single-lake systems, the clos-
ure rate decreases strongly as the channel length decreases
because the closure magnitude parameter ac is proportional to
Ln+1
c in Eqn (16). The system approaches equilibrium because

the channel cannot close quickly enough to sustain oscillations.
The same effect occurs in the double-lake system, although the
change is in the length of the subdomains rather than the param-
eter ac. Interestingly, the single-lake solution exhibits undamped
oscillations for the same choice of parameters (am, ac).

When the lakes are far apart (L∗1 � 0.6), draining of the down-
stream lake is consistently delayed and the oscillations have

smaller amplitudes than the upstream lake (Fig. 3c). Delayed
oscillations in distant lakes occur because pressure variations
caused by draining of the upstream lake take longer to reach
the downstream lake. In each cycle, the downstream lake depth
reaches the flotation level h = (ρi/ρw)H and then drains rapidly.
The reduced amplitude of the downstream lake oscillations is a
consequence of the downstream lake draining through a shorter
channel. The downstream lake continuously drains water between
floods because the closure rate is small in the downstream chan-
nel, leading to a large inter-flood channel size. The downstream
lake oscillations are forced by the upstream floods, in contrast
to the self-sustained oscillations in the upstream lake.

If the lakes are evenly spaced (L1*≈ 0.5), they oscillate with
similar amplitudes (Fig. 3b). A common feature in this scenario
is the presence of multiple peaks per cycle in the downstream
depth and discharge timeseries. When the lakes are the same
size, as in this example, the downstream lake may have alternating
double and single peaks (Fig. 3b). Multiple-peaked cycles are
explored further in the following section.

Smaller downstream lake
Now we fix L1* = 0.5 and study the effect of decreasing the relative
downstream lake size A2*. The frequency of downstream lake oscil-
lations increases with decreasing lake size (Fig. 4). In the limit of a
very small surface area (A2*≈ 0.01), the downstream lake behaves
as a manometer that records the mean effective pressure in the
channel (Fig. 4f)(Anderson and others, 2005; Carter and others,
2013). The downstream lake depth is essentially constant except
for when the upstream lake begins to drain. The downstream
lake then fills rapidly and drains in phase with the upstream
lake. Multiple peaks in downstream lake depth per upstream
cycle occur when A2* is larger than ∼0.01 (Figs 4a–e). When mul-
tiple peaks exist in the downstream lake depth timeseries, the final
peak coincides with draining of the upstream lake. The overall
period of the downstream lake’s filling–draining cycle conforms
to that of the first lake due to the periodic arrival of the additional
water input Q1(L1*, t). The upstream floods force the downstream
lake to oscillate at the same overall frequency.

If the lakes were not coupled, the downstream lake would
resemble the upstream one except with higher frequency. The

Fig. 2. Numerical simulations of a single-lake system
for Qin = 5 (a and b) and 15 m3s−1 (c and d). The solu-
tions are plotted over time (a and c) and in QL− h
phase space (b and d). Arrows in panels (b) and (d)
show the direction of the trajectories in phase
space. Maximum lake depth and discharge are
noted by the points labeled hmax and Qmax, respect-
ively. The lake surface area is A = 1 km2. Note that
when Qin = 15 m

3s−1 (panels c and d), the discharge
approaches the equilibrium value QL = Qin. The dimen-
sionless parameters are (am, ac) = (66, 2900) (a and b)
and (am, ac) = (28, 967) (c and d).
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closest example to uncoupled behavior occurs around A2* = 0.49
where the second lake has two large, well-formed peaks
(Fig. 4a). The transition from large to small intervening oscilla-
tions occurs around A2*≈ 0.36 (Fig. 4b). The small intervening
oscillations are not associated with significant discharge out of
the downstream lake. The amplitudes of the intervening oscilla-
tions decrease continuously as lake size decreases (Figs 4b–f).

Larger downstream lake
When the relative downstream lake size A2* is increased above
unity, the lakes cease to oscillate in phase (Fig. 5). There is a
small size range (A2*≈ 2.25) where the lakes demonstrate anti-
phase oscillations (Fig. 5a). If the lakes were uncoupled, the down-
stream lake would oscillate at a lower frequency due to its large
size. The additional input Q1(L1*, t) allows the downstream lake
to oscillate at the same frequency if it is not too large. More pre-
cisely, the downstream lake will oscillate at a frequency similar to
the upstream lake’s frequency if A2/(Qin + �Q1) is similar to A1/
Qin, where �Q1 is the mean of Q1(L1*, t) over one upstream cycle.
Because the additional water input from the upstream flood
must be received during the downstream filling stage, the lakes
must oscillate out of phase. The effect of the additional water
input is reflected in the timeseries (Fig. 5a). Between floods, the
downstream lake level increases slowly at first, ramps up during
the upstream flood, then fills slowly again before draining. The
slow-filling stage represents the natural, uncoupled filling rate of
the downstream lake.

If the downstream lake is much larger than the upstream lake,
it essentially acts as a storage tank (Fig. 5b). The lake level
increases steadily at its natural rate until each upstream flood
when a sharp uptick occurs. The sharp upticks superimposed
on the natural filling rate lead to a staircase-like appearance in
the downstream depth timeseries (Fig. 5b). After several upstream
cycles, the downstream lake finally drains, releasing large volumes
of water.

Meltwater variations
In contrast to the geometrically simple limit cycles in the single-
lake system (Fig. 2b), the downstream lake oscillations (e.g.,
Fig. 6a) can exhibit complex patterns in phase space (Fig. 6b).
As with the single-lake system, damping due to an increase in
meltwater supply also occurs in the double-lake system (Figs 6c,
d). In this scenario, both lakes approach equilibrium simultan-
eously. The physical mechanism for damping is the same as in
the single-lake system. At high Qin, the filling timescale t̃ is too
fast relative to the melting tm and closure tc timescales to support

oscillations. The transition from oscillation to stable equilibrium
is a fundamental feature of the model. We explore this bifurcation
further in the following section.

4. Simplified model

Here we explore an ODE model for the connected lake system in
order to gain insight about lake behavior as the meltwater supply
rate varies. Additionally, solving the ODE model numerically is
significantly more computationally efficient than solving the
PDE model. We assume that S, N and Q are spatially uniform
near each lake. Then, the channel evolution in Eqn (19) and
upstream boundary condition (23) form the dynamical system

dSk
dt∗

= amQkCk − acSkNk|Nk|n−1, (27)

dNk

dt∗
= 1

A∗
k

[Qk − Qk−1 − 1]. (28)

In order to simplify the analysis, we have neglected the closure
rate scale ζ(S) in Eqn (11). Including this leads to better quanti-
tative agreement with the PDE model, but does not change the
qualitative structure of the bifurcations. The first lake’s upstream
boundary condition in Eqn (23) becomes

dN1

dt∗
= Q1 − 1. (29)

Fig. 3. Simulations of equally-sized lakes (A2* = 1) as the scaled upstream channel
length L1* changes. We choose (a) L1* = 0.1, (b) L1* = 0.5 and (c) L1* = 0.75.

Fig. 4. Simulations with smaller downstream lake size. The scaled upstream channel
length is L1* = 0.5. The relative downstream lake sizes are (a) A2* = 0.49, (b) 0.36, (c) 0.25,
(d) 0.16, (e) 0.09 and (f) 0.01.
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We introduce a regularized Darcy–Weisbach law

Qk = (Sk + 1∗)aCk|Ck|−
1
2, (30)

where 1∗ = 1/S̃, for some small parameter ε. Equation (30)
ensures that the channel size is bounded below by some positive
value. Regularization is necessary to produce the limit cycles and
bifurcations that exist in the PDE model. An unregularized
version of the simplified model presented here with ε = 0 and
constant Ψ was studied previously by Fowler (1999) and Ng
and Björnsson (2003). Local stability analysis and numerical
experiments were used to suggest that limit cycles do not exist
in the unregularized model (Fowler, 1999; Ng and Björnsson,
2003). Using an energy argument, we extend this result by show-
ing that all non-equilibrium solutions to the unregularized model
are globally unstable and blow up if α > 1 (Appendix B). However,
for α = 1 all non-equilibrium solutions are periodic orbits that
resemble the limit cycles in the single-lake system. In the case
of α = 1, the level curves of the energy function provide an
approximate algebraic relation between S and N during single-lake
flood cycles (Appendix B).

The governing equations may be stabilized in several other
ways. For example, an equivalent regularization is to modify the
closure term to (S− 1∗)N|N|

n−1 so that the channel ceases to
close at some small size, while keeping the usual Darcy–
Weisbach law. The solutions associated with this regularization
will only differ from ours by the small additive constant 1∗.
A third possible regularization is to add a small parameter to
Eqn (27), which may be interpreted as an opening rate due to
basal sliding (Schoof, 2010). These ‘regularizations’ have the
same stabilizing effect as the channel source term μ in the PDE
model Eqn (4) because they prevent the channel from closing
completely.

To complete the simplified model, we introduce a forward dif-
ference approximation of the dimensional hydraulic gradient
Cd

k = c0 − Nk/Lk. We neglect downstream pressure contribu-
tions to the upstream hydraulic gradient under the assumption
that upstream pressure variations are dominated by upstream
lake activity. With this parameterization, the upstream lake is
completely decoupled from the downstream lake. This may be
inappropriate for closely spaced lakes because the downstream
lake may strongly influence the upstream channel. This

approximation corresponds to the scaled hydraulic gradient

Ck = 1− 1
L∗k

Nk. (31)

The simplified model described by Eqns (27–31) produces
results that are qualitatively consistent with those from the PDE
model. All oscillatory behaviors discussed for the double-lake sys-
tem exist in the simplified model for similar parameter choices
(Fig. 7). Moreover, the oscillations damp as Qin increases past
some critical threshold, as in the PDE model (Appendix C). We
provide a quantitative comparison of the ODE and PDE models
in Appendix D. The advantage of Eqns (27–31) is that they
may be studied using dynamical systems theory (Chicone, 2006;
Kuznetsov, 2004; Strogatz, 2018).

4.1 Bautin bifurcation

Single-lake and multiple-lake systems damp toward equilibrium
once a critical value of the meltwater source parameter is reached
(Figs 2c, d and 6c, d). Based on the numerical experiments,
Fowler (1999) suggested that this transition occurs due to a
Hopf bifurcation. Numerical results show that the transition
occurs because Eqns (27) and (28) undergo a Bautin (generalized
Hopf) bifurcation as Qin varies (Figs 8 and 9). The Bautin bifur-
cation is a combination of a supercritical Hopf bifurcation, sub-
critical Hopf bifurcation and saddle-node bifurcation of cycles
(Kuznetsov, 2004).

The individual bifurcations occur sequentially as Qin increases.
The supercritical Hopf bifurcation is characterized by the appear-
ance of a stable limit cycle at some small Qin≪ 1 (Fig. 9 point i).
As Qin increases, the amplitude of the stable cycle grows (Fig. 8a)
until the subcritical bifurcation occurs. At the subcritical Hopf
bifurcation, an unstable limit cycle appears inside of the stable
cycle (Figs 8b and 9 point ii) and grows rapidly (Fig. 8c). The
unstable limit cycle soon annihilates the stable cycle in a saddle-
node bifurcation of cycles, leaving behind only a stable spiral node
(Figs 8d and 9 point iii). The values of Qin where these bifurca-
tions occur are noted in Figure 9, but depend on ε and the
other parameters that determine am and ac in Eqn (16).

The stability transitions are related to the sign of tr(J), the trace
of the Jacobian of Eqns (27) and (28) evaluated at the equilibrium.
The trace may be written as

tr(J) = aam
(Se + 1∗)1+2a −

am
Se(Se + 1∗)2a

− 1
2
(Se + 1∗)2a, (32)

where Se is the equilibrium channel size (Appendix C). For fixed

ε, we have that 1∗ / Q−1/a
in � 1 as Qin→ 0. Equation (32) then

implies that tr(J) < 0 for sufficiently small Qin, meaning that the
equilibrium becomes stable. This stability transition is a necessary
condition for the supercritical Hopf bifurcation (Fig. 9 point i).

At the subcritical Hopf bifurcation (Figs 8b and 9 point ii), the
equilibrium becomes stable because the meltwater supply
increases past some critical value, as observed in the numerical
results. The sign of tr(J) is equal to the sign of the function

T = 2am(1− Ne) a(1− Ne)1−(1/2a) − ac
am

Nn
e

[ ]
− 1, (33)

where Ne is the equilibrium effective pressure. For a constant ratio
ac/am and fixed ε*, Ne and the quantity in square brackets in Eqn
(29) are also fixed (Appendix C). Thus, varying ac or am at a fixed
ratio changes the sign of T , resulting in stability transitions. In
particular, increasing Qin leads to decreasing am and, eventually,

Fig. 5. Simulations of larger downstream lakes. The scaled upstream channel length
is L1* = 0.5 for both examples. The relative downstream lake sizes are (a) A2* = 2.25 and
(b) 16.
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T , 0. This condition implies that the equilibrium is locally
stable, and, therefore, explains the damping with increasing melt-
water supply. Likewise, T . 0 implies that the equilibrium is
locally unstable. We plot the sign of T in the am-ac plane in

Figure 10a and in the Lc-Qin plane in Figure 10b. Physically,
the equilibrium becomes stable because the filling timescale t̃ in
Eqn (13) becomes small relative to the melting tm and closure
tc timescales. Since the channel evolves too slowly relative to the

Fig. 6. Numerical simulations of a double-lake system
for Qin = 5 (a and b) and 15 m3s−1 (c and d). The rela-
tive downstream lake size is A2* = 1 and the scaled
upstream channel length is L1* = 0.5. The solutions for
the downstream lake are plotted over time (a and c)
and in QL-h phase space (b and d). The solutions for
the upstream lake are not plotted because they are
nearly identical to those in Fig. 2. Note that when
Qin = 15 m

3s−1 (panels c and d), the discharge
approaches the equilibrium value QL = 2Qin. The
dimensionless parameters are (am, ac) = (66, 2900) (a
and b) and (am, ac) = (28, 967) (c and d).

Fig. 7. Numerical results from the simplified model in
Eqns (27 and 28) for double-lake systems compared
with the PDE results from ’Results’ section. For the
ODE results we choose the hydraulic gradient scale
ψ0 = 75 Pa m−1, ε = 0.1 m2 and glacier length Lc =
40 km. The scaled upstream channel length is L1* =
0.5 except in panels (g) and (h). The parameters we
choose are (a) A2* = 0.01, (b) A2* = 0.01, (c) A2* = 0.16, (d)
A2* = 0.16, (e) A2* = 0.81, (f) A2* = 1, (g) A2* = 0.81 and L1*
= 0.75, (h) A2* = 1.0 and L1* = 0.75, (i) A2* = 2.25, ( j) A2* =
2.25, (k) A2* = 16 and (l) A2* = 16.
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meltwater supply rate, perturbations to steady state return to equi-
librium. These stability transitions generalize to systems with arbi-
trary numbers of lakes (Appendix C).

For a range of Qin near the subcritical Hopf bifurcation, there
exists an unstable limit cycle around the stable fixed point (Figs
8b, c). In this region of parameter space, the asymptotic behavior
of the solution depends on the initial condition. In particular,
channels that are far from equilibrium approach the stable limit
cycle. Intuitively, this difference in asymptotic behavior occurs
because trajectories starting far from equilibrium pass through
larger values of S and Q that admit higher melting and closure
rates. Sustained oscillations are then possible since the channel
evolution keeps pace with the filling rate. However, the melting
strength am and closure strength ac parameters are small enough
to also admit solutions that converge to equilibrium. The equilib-
rium and stable limit cycle are very weak attractors in this param-
eter range. Convergence to the limit set can take more than one
hundred years.

5. Discussion

Several natural lake systems exhibit behavior that is qualitatively
similar to our numerical results. The Hidden Creek–Donoho
Falls lake system in Alaska provides an example of a smaller
downstream lake that is in phase with the upstream filling–drain-
ing cycle (Bartholomaus and others, 2008, 2011). Hidden Creek
lake drains on a yearly cycle and the downstream lake (Donoho
Falls) drains in phase with this, but also oscillates intermittently.
Numerical results in Figures 4b–f show similar behaviors where
the downstream lake has several small-amplitude oscillations
between the main draining events that are in phase with the
upstream lake. In this case, smaller downstream lakes may act
as pressure gauges that are sensitive to upstream lake cycles
(Anderson and others, 2005). Observations suggest that ‘through-
flowing’ subglacial lakes may behave in a similar manner (Carter
and others, 2013; Siegfried and Fricker, 2018).

The multiple-peaked downstream cycles explored here (Fig. 4)
are similar in nature to the water pressure doublets studied by
Schoof and others (2014), despite the difference in timescales
and water storage mechanisms. The pressure doublets result

from a distributed storage model forced with time-varying water
input (Schoof and others, 2014). The similarity to the multiple-
peaked lake cycles likely arises because the downstream lake in
our model is forced by time-varying water input from the
upstream channel. If the storage capacity is small relative to the
filling rate, higher oscillation frequencies should be expected in
both models.

Observations of lake systems in Antarctica also support our
model. Delayed filling–draining events have been observed in
East Antarctica (Wingham and others, 2006), the lower
MacAyeal Ice Stream, and Slessor Glacier (Siegfried and Fricker,
2018). The out-of-phase oscillations depicted in Figure 5 are
most similar to these observations. Out-of-phase oscillation
requires the downstream lake to be larger than the upstream
lake in the model. In the case of the MacAyeal Ice Stream, the
downstream lake Mac1 is indeed slightly larger than the upstream
lake Mac3 (Siegfried and Fricker, 2018). Similarly, filling of the
larger lake on Slessor Glacier (Slessor3) during 2005–2015 was
coincident with the draining of the smaller adjacent lake

Fig. 8. Phase portraits of the simplified model in Eqns
(27 and 29) for a single-lake system with varying melt-
water supply. The meltwater supply rates for each
panel are (a) Qin = 5, (b) 8.5, (c) 9 and (d) 15 m3s−1.
Limit cycles are plotted for t > 315 years. We choose
the parameters A = 1 km2, ε = 0.05 m2, ψ0 = 45 Pa m

−1

and Lc = 40 km. The dimensionless parameters are
(a) (am, ac) = (10, 108), (b) (am, ac) = (6.2, 63.4), (c)
(am, ac) = (5.9, 59.8) and (d) (am, ac) = (4, 36).

Fig. 9. Bifurcation diagram for the ODE model of a single-lake system in Eqns (27 and
29) for various values of ε. The bifurcation parameter is Qin. Limit cycle amplitudes
are defined as max (S(t)) for t > 315 years. Unstable limit cycle amplitudes are com-
puted by solving the time-reversed system of equations. We choose A = 1 km2, ψ0 =
45 Pa m−1 and Lc = 40 km. Labeled points correspond to the (i) supercritical Hopf
bifurcation, (ii) subcritical Hopf bifurcation and (iii) saddle-node bifurcation of cycles.
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(Slessor2) (Siegfried and Fricker, 2018). However, in the case that
these are in fact a single lake (Slessor23), as suggested by Siegfried
and Fricker (2018), this analysis is not applicable. An improved
theory of how connected subglacial lakes behave could help clarify
whether or not these are distinct lakes.

For similar-sized lakes, we have shown that double-peaked drain-
age events are possible in the downstream lake. Double-peaked
events have been observed in a lake system at the confluence of
the Whillans and Mercer ice streams in West Antarctica (Fricker
and Scambos, 2009; Siegfried and others, 2016; Siegfried and
Fricker, 2018). Between 2004 and 2008, two downstream lakes,
Mercer Subglacial Lake (SLM) and L7, exhibited double-peaked
filling–draining events that were roughly in phase with the
upstream Subglacial Lake Conway (SLC). Following the first
peaks in the downstream lakes, SLC drained and the down-
stream lakes drained again soon after. The filling–draining
cycle in the Whillans–Mercer system repeated between 2010
and 2015 (Siegfried and others, 2016; Siegfried and Fricker,
2018). During this cycle, both SLM and L7 displayed double
peaks again, although SLM’s second peak was much smaller
than in the first cycle. The SLM cycle is qualitatively similar
to the alternating single–double peak cycles in Figures 6 and 7.

The alternative to oscillation is steady lake drainage. Our ODE
model results suggest that oscillations may not be possible in cases
where the lake filling rate is either much slower or faster than the
channel evolution timescales (Fig. 9). An example of this behavior
may occur at Lake Vostok, which has been inactive for at least a
decade (Richter and others, 2014). However, Evatt and others
(2006) simulated filling–draining cycles in Vostok-sized lakes
with a model similar to the one used here. The oscillation period
of Vostok was estimated to be at least 5000 years (Evatt and
others, 2006). It is possible that Lake Vostok is so large that its
filling rate would be too low for us to detect during quiescent,
inter-flood periods.

While we see similarities between our numerical results and
data from Antarctica, a complete model for subglacial lake drain-
age would include ice deformation over the lake. Inclusion of this
would lead to a different functional relationship between the
effective pressure and the lake depth, or different boundary con-
ditions at the lakes (Evatt and others, 2006; Evatt and Fowler,
2007). This should result in oscillations that are closer in magni-
tude to observations of Antarctic subglacial lake activity. Ice flow
also influences the evolution of the hydraulic gradient around the
lake because filling and draining events lead to changes in surface
slopes. Likewise, changes in ice thickness may also influence sub-
glacial lake drainage events. We leave exploration of such models
for future work but expect that the basic trends outlined here will
hold.

Subglacial flooding in Antarctica has led to enhanced ice flow
on several glaciers (Stearns and others, 2008; Scambos and others,
2011; Fricker and others, 2016; Siegfried and others, 2016). Ice
deformation is usually related to effective pressure at the base
through a sliding law. Understanding basal sliding in a drainage
system during floods requires determining the evolution of effect-
ive pressure in all of the drainage elements. Realistic drainage
basins include interacting channels, cavities, water sheets, canals,
moulins and other drainage pathways (Creyts and Schoof, 2009;
Schoof, 2010; Hewitt, 2011; Werder and others, 2013). Our single-
lake results are similar to those obtained by Kingslake and Ng
(2013a) who included a one-dimensional cavity model. Even so,
it is unclear how a two-dimensional network of drainage elements
would respond to oscillatory lake drainage. In the same vein,
alternative hydrology models like the canal model of Walder
and Fowler (1994) may lead to better quantitative agreement
with observations of Antarctic filling–draining events (Carter
and others, 2017).

An important question is whether infrequent large floods or
frequent small floods lead to longer periods and higher magni-
tudes of enhanced sliding. Large lakes may temporarily shield
the downstream drainage system from frequent upstream floods
(Fig. 5). Counterintuitively, a larger upstream lake may also pro-
tect the downstream glacier from enhanced sliding by forcing
downstream oscillations to occur less frequently (Fig. 4).
However, a more comprehensive model would be required to
test these ideas.

In our analysis, we developed an ODE model in Eqns (27–31)
that agrees with the PDE model in Eqns (19–26) in the sense that
it displays the same oscillation patterns as the meltwater supply
rate, lake sizes and channel lengths are varied (Fig. 7). The simpli-
fying assumptions and parameterizations used to develop the
ODE model provide insight into the nature of the physical system.
We showed that the ε-regularized Darcy–Weisbach law in Eqn
(30) allows for the existence of limit cycles. In some sense, this
regularization substitutes for the stabilizing effect of the back-
ground hydraulic gradient parameterization ψ(x) in Eqn (2) and
channel source term μ in Eqn (4) that allow for filling–draining
cycles in the PDE model. The existence of limit cycles in the
ODE model suggests that oscillations are not uniquely produced
by the particular background hydraulic gradient chosen here
and elsewhere (Fowler, 1999; Kingslake, 2015). Furthermore, the
agreement of the double-lake ODE results obtained with the
‘uncoupled’ hydraulic gradient approximation in Eqn (31) with
the PDE results (Fig. 7) implies that the downstream pressure
has little influence on the upstream system for the set of simula-
tions considered here. We leave a more thorough comparison of
these two models and alternative regularizations for future work.

Fig. 10. Sign of tr(J) evaluated at equilibrium for a
range of am and ac for the single-lake ODE model.
The positive region (red) corresponds to an unstable
equilibrium and the negative region (blue) corresponds
to a stable equilibrium. We hold ε* = 0.05 constant. For
panel (b), we choose the parameters ψ0 = 45 Pa m−1

and A = 1 km2 to compute T (am(Qin, Lc), ac(Qin, Lc))
in Eqn (33), where the equilibrium pressure Ne depends
on am and ac through solution of the non-linear Eqn
(C5). Note that this stability diagram is for fixed ε* so
that the stability transition at small Qin with fixed ε
(Fig. 9 point i) is not observed.

754 Stubblefield et al.

https://doi.org/10.1017/jog.2019.46 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2019.46


6. Conclusions

Here, we introduced a generalized model for hydraulically con-
nected ice-dammed lakes that extends previous work on single-
lake systems (Fowler, 1999; Ng and Björnsson, 2003; Fowler,
2009; Kingslake and Ng, 2013a; Kingslake, 2015). Using this
model, we explored how lake size and spacing influence the
coupled depth-discharge oscillations in double-lake systems. We
found that the downstream lake

• oscillates in-phase with the upstream lake and exhibits multi-
peaked cycles if it is moderately smaller (A∗

2 & 1),
• acts like a pressure gauge for the upstream lake if it is much
smaller (A∗

2 ≪ 1),
• oscillates out-of-phase with the upstream lake if it is moderately
larger (A∗

2 � 1),
• fills in a stepwise manner if it is much larger (A∗

2 ≫ 1), and
• exhibits delayed and low-amplitude oscillations if it is far from
the upstream lake (L∗1 . 0.5).

These oscillations are distinct from the single-lake oscillations and
have features that are qualitatively similar to several natural lake sys-
tems. While we assumed that the meltwater supply rate to each lake
was the same, other trends are likely to arise if the meltwater supply
rates are different.We derived a simplified ODEmodel that is a good
approximation of the PDE system near the lakes in the sense that it
reproduces all of the same qualitative behavior. Using the simplified
model, we explained how limit cycles appear and vanish as the melt-
water supply varies. The simplified model is a useful tool for future
work aiming to understand the complex coupling between subglacial
lakes, drainage systems and ice-sheet flow.

7. Acknowledgments. AGS is grateful for discussions with participants and
instructors from the University of Alaska’s International Summer School in
Glaciology (June 2018), and, in particular, the excursion to Donoho Falls
Lake. AGS also thanks M. Nettles (LDEO) for helpful discussions about this
work. Partial support for this work was provided by NSF EAR-1520732
(MS) and a graduate fellowship from Columbia University’s Department of
Earth and Environmental Sciences (AGS). TTC was supported by a Vetlesen
Foundation grant, NSF-1643970, and NASA-NNX16AJ95G. Comments
from Scientific Editor I.J. Hewitt and two anonymous reviewers greatly
improved the quality and clarity of the manuscript.

References

Alnæs MS (2015) The FEniCS project version 1.5. Archive of Numerical
Software, 3(100), 9–23 (doi: 10.11588/ans.2015.100.20553).

Anderson RS, Walder JS, Anderson SP, Trabant DC and Fountain AG
(2005) The dynamic response of Kennicott Glacier, Alaska, USA, to the
Hidden Creek Lake outburst flood. Annals of Glaciology 40, 237–242,
ISSN02603055. doi: 10.3189/172756405781813438.

Bartholomaus TC, Anderson RS and Anderson SP (2008) Response of gla-
cier basal motion to transient water storage. Nature Geoscience 1(1), 33–37,
ISSN17520894. doi: 10.1038/ngeo.2007.52.

Bartholomaus TC, Anderson RS and Anderson SP (2011) Growth and col-
lapse of the distributed subglacial hydrologic system of Kennicott Glacier,
Alaska, USA, and its effects on basal motion. Journal of Glaciology 57
(206), 985–1002, ISSN00221430. doi: 10.3189/002214311798843269.

Björnsson H (2003) Subglacial lakes and Jökulhlaups in Iceland. Global and
Planetary Change, 35(3-4), 255–271, ISSN09218181. doi: 10.1016/
S0921-8181(02)00130-3.

Brinkerhoff DJ, Meyer CR, Bueler E, Truffer M and Bartholomaus TC
(2016) Inversion of a glacier hydrology model. Annals of Glaciology 57
(72), 84–95.

Bueler E (2014) Extending the lumped subglacial–englacial hydrology model
of bartholomaus and others (2011). Journal of Glaciology 60(222), 808–810.

Carrivick JL (2011) Jökulhlaups: geological importance, deglacial association
and hazard management. Geology Today 27(4), 133–140, ISSN02666979.
doi: 10.1111/j.1365-2451.2011.00800.x.

Carter SP, Fricker HA and Siegfried MR (2013) Evidence of rapid subglacial
water piracy under Whillans Ice Stream, West Antarctica. Journal of
Glaciology 59(218), 1147–1162, ISSN00221430. doi: 10.3189/
2013JoG13J085.

Carter SP, Fricker HA and Siegfried MR (2017) Antarctic subglacial lakes
drain through sediment-floored canals: theory and model testing on real
and idealized domains. Cryosphere 11(1), 381–405, ISSN19940424. doi:
10.5194/tc-11-381-2017.

Chicone C (2006) Ordinary Differential Equations with Applications. Springer
Science & Business Media, New York, New York.

Clarke GKC (2003) Hydraulics of subglacial outburst floods: new insights
from the Spring–Hutter formulation. Journal of Glaciology 49(165), 299–
313.

Creyts TT and Schoof CG (2009) Drainage through subglacial water sheets.
Journal of Geophysical Research: Earth Surface 114(4), 1–18,
ISSN21699011. doi: 10.1029/2008JF001215.

Cuffey KM and Paterson WSB (2010) The Physics of Glaciers. Academic
Press, Cambridge, Massachusetts

Drews R (2017) Actively evolving subglacial conduits and eskers initiate ice
shelf channels at an Antarctic grounding line. Nature Communications 8,
1–10 (doi: 10.1038/ncomms15228).

Evatt GW (2015) Röthlisberger channels with finite ice depth and open chan-
nel flow. Annals of Glaciology 56(70), 45–50, ISSN02603055. doi: 10.3189/
2015AoG70A992.

Evatt GW and Fowler AC (2007) Cauldron subsidence and subglacial floods.
Annals of Glaciology 45, 163–168, ISSN02603055. doi: 10.3189/
172756407782282561.

Evatt GW, Fowler AC, Clark CD and Hulton NR (2006) Subglacial floods
beneath ice sheets. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 364(1844), 1769–1794,
ISSN1364503X. doi: 10.1098/rsta.2006.1798.

Fowler AC (1999) Breaking the seal at Grímsvötn, Iceland. Journal of
Glaciology 45(151), 24–29, ISSN0022-1430.

Fowler AC (2009) Dynamics of subglacial floods. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences 465(2106),
1809–1828, ISSN14712946. doi: 10.1098/rspa.2008.0488.

Fricker HA and Scambos T (2009) Connected subglacial lake activity on lower
Mercer and Whillans Ice Streams, West Antarctica, 2003–2008. Journal of
Glaciology 55(190), 303–315, ISSN00221430. doi: 10.3189/
002214309788608813.

Fricker HA, Siegfried MR, Carter SP and Scambos TA (2016) A decade of
progress in observing and modeling Antarctic subglacial water systems.
Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 374(2059), 1–20 (doi: 10.1098/rsta.
2014.0294).

Glen JW (1955) The creep of polycrystalline ice. Proceedings of the Royal
Society of London. Series A. Mathematical and Physical Sciences 228
(1175), 519–538.

Hewitt IJ (2011) Modelling distributed and channelized subglacial drainage:
the spacing of channels. Journal of Glaciology 57(202), 302–314,
ISSN00221430. doi: 10.3189/002214311796405951.

Hewitt K and Liu J (2010) Ice-dammed lakes and outburst floods, Karakoram
Himalaya: historical perspectives on emerging threats. Physical Geography
31(6), 528–551, ISSN0272-3646. doi: 10.2747/0272-3646.31.6.528.

Kingslake J (2015) Chaotic dynamics of a glaciohydraulic model. Journal of
Glaciology 61(227), 493–502, ISSN00221430. doi: 10.3189/2015JoG14J208.

Kingslake J and Ng F (2013a) Modelling the coupling of flood discharge with
glacier flow during Jökulhlaups. Annals of Glaciology 54(63), 25–31,
ISSN02603055. doi: 10.3189/2013AoG63A331.

Kingslake J and Ng F (2013b) Quantifying the predictability of the timing of
jökulhlaups from Merzbacher Lake, Kyrgyzstan. Journal of Glaciology 59
(217), 805–818, ISSN00221430. doi: 10.3189/2013JoG12J156.

Kuznetsov YA (2004) Elements of Applied Bifurcation Theory. Springer
Science & Business Media, New York, New York.

Logg A, Mardal KA and Wells GN (2012) Automated Solution of Differential
Equations by the Finite Element Method. Springer, Berlin Heidelberg. (doi:
10.1007/978-3-642-23099-80).

Ng F and Björnsson H (2003) On the Clague-Mathews relation for
jökulhlaups. Journal of Glaciology 49(165), 161–172, ISSN00221430. doi:
10.3189/172756503781830836.

Nye JF (1953) The flow law of ice frommeasurements in glacier tunnels, labora-
tory experiments and the Jungfraufirn borehole experiment. Proceedings of

Journal of Glaciology 755

https://doi.org/10.1017/jog.2019.46 Published online by Cambridge University Press

https://dx.doi.org/10.1158
https://dx.doi.org/10.1038/ncomms15228
https://dx.doi.org/10.1098/rsta.2014.0294
https://dx.doi.org/10.1098/rsta.2014.0294
https://dx.doi.org/10.1007/978-3-642-23099-80
https://dx.doi.org/10.1007/978-3-642-23099-80
https://dx.doi.org/10.3189/172756503781830836
https://dx.doi.org/10.3189/172756503781830836
https://doi.org/10.1017/jog.2019.46


the Royal Society A: Mathematical, Physical and Engineering Sciences 219
(1139), 477–489, ISSN1364-5021. doi: 10.1098/rspa.1953.0161.

Nye JF (1976) Water flow in glaciers: Jokulhaups, tunnels, and veins. Journal
of Glaciology 76(17), 181–207. doi: https://doi.org/10.1017/
S002214300001354X.

Peters NJ, Willis IC and Arnold NS (2009) Numerical analysis of rapid water
transfer beneath antarctica. Journal of Glaciology 55(192), 640–650,
ISSN00221430. doi: 10.3189/002214309789470923.

Richter A and 12 others (2014) Height changes over subglacial Lake Vostok,
East Antarctica: insights from GNSS observations. Journal of Geophysical
Research: Earth Surface 119(11), 2460–2480. doi: 10.1002/2014JF003228.

Scambos TA, Berthier E and Shuman CA (2011) The triggering of subglacial
lake drainage during rapid glacier drawdown: Crane Glacier, Antarctic
Peninsula. Annals of Glaciology 52(59), 74–82, ISSN02603055. doi:
10.3189/172756411799096204.

Schoof C (2010) Ice-sheet acceleration driven by melt supply variability.
Nature 468(7325), 803–806, ISSN00280836. doi: 10.1038/nature09618.

Schoof C, Rada CA, Wilson NJ, Flowers GE and Haseloff M (2014)
Oscillatory subglacial drainage in the absence of surface melt. Cryosphere
8(3), 959–976, ISSN19940424. doi: 10.5194/tc-8-959-2014.

Siegfried MR and Fricker HA (2018) Thirteen years of subglacial lake activity
in Antarctica from multi-mission satellite altimetry. Annals of Glaciology
59, 1–14, ISSN0260-3055. doi: 10.1017/aog.2017.36.

Siegfried MR, Fricker HA, Carter SP and Tulaczyk S (2016) Episodic ice vel-
ocity fluctuations triggered by a subglacial flood in West Antarctica.
Geophysical Research Letters 43(6), 2640–2648, ISSN19448007. doi:
10.1002/2016GL067758.

Smith BE, Fricker HA, Joughin IR and Tulaczyk S (2009) An inventory of
active subglacial lakes in antarctica detected by icesat (2003–2008).
Journal of Glaciology 55(192), 573–595.

Smith BE, Gourmelen N, Huth A and Joughin I (2017) Connected subglacial
lake drainage beneath Thwaites Glacier, West Antarctica. Cryosphere 11(1),
451–467, ISSN19940424. doi: 10.5194/tc-11-451-2017.

Stearns LA, Smith BE and Hamilton GS (2008) Increased flow speed on a
large east antarctic outlet glacier caused by subglacial floods. Nature
Geoscience 1(12), 827–831, ISSN17520894. doi: 10.1038/ngeo356.

Strogatz SH (2018) Nonlinear Dynamics and Chaos with Student Solutions
Manual: With Applications to Physics, Biology, Chemistry, and
Engineering. CRC Press, Boca Raton.

Walder JS and Fowler A (1994) Channelized subglacial drainage over a
deformable bed. Journal of Glaciology 40(134), 3–15.

Werder MA, Hewitt IJ, Schoof CG and Flowers GE (2013) Modeling chan-
nelized and distributed subglacial drainage in two dimensions. Journal of
Geophysical Research: Earth Surface 118(4), 2140–2158, ISSN21699011.
doi: 10.1002/jgrf.20146.

Wingham DJ, Siegert MJ, Shepherd A and Muir AS (2006) Rapid discharge
connects Antarctic subglacial lakes. Nature 440(7087), 1033–1036,
ISSN14764687. doi: 10.1038/nature04660.

Wright A and Siegert M (2012) A fourth inventory of Antarctic subglacial
lakes. Antarctic Science 24(6), 659–664, ISSN09541020. doi: 10.1017/
S095410201200048X.

Appendix A

Here, we outline a finite element method for solving the non-dimensional gov-
erning equations (19)–(21) with x*∈ [0, 1] and t*∈ [0, T]. For simplicity, we
consider a single-lake system. Extension to the case of multiple lakes is
straightforward. We make the spatial approximation (S*, Q*, N*)∈ (ℙ1 ×
ℙ1 ×ℙ1) for each t*∈ [0, T], where ℙ1 is the space of piecewise linear func-
tions. We define the homogeneous subspace

P1,0 = { p [ P1| p(0) = 0 = p(1)}, (A1)

to account for the Dirichlet boundary conditions on N. Multiplying Eqs (19–
21) by test functions (St, Qt, Nt)∈ (ℙ1 ×ℙ1 ×ℙ1,0) and integrating generates
the linear forms

F1 =
� 1

0

∂S∗
∂t∗

− amQ∗C∗ + acy

[ ]
St dx∗, (A2)

F2 =
� 1

0
[bmQ∗C∗ − bcy− m∗]Nt − Q∗

∂Nt

∂x∗
dx∗, (A3)

F3 =
� 1

0
[Q∗|Q∗| − S2a∗ C∗]Qt dx∗, (A4)

y = S∗N∗|N∗|n−1z(S∗). (A5)

We integrated the left side of Eqn (20) by parts and the boundary term
[Q∗Nt]x=1

x=0 vanished because Nt∈ℙ1,0. We define F = F1 + F2 + F3 and solve
the nonlinear variational equation

F(S∗,N∗,Q∗; St,Nt,Qt) = 0

+ boundary conditions on N∗,
(A6)

using the finite element package FEniCS (Logg and others, 2012; Alnæs and
others, 2015). The boundary conditions are described in the main text. For
spatial discretization we choose the uniform mesh spacing Δx* = 1/1500. We
integrate Eqn (A2) in time with a trapezoidal scheme and choose a dimen-
sional step size of Δt≈ 0.65 d. We update the effective pressure boundary con-
dition at the lake Eqn (24) explicitly:

N∗(0, tℓ+1) = N(0, tℓ) + Dt∗[Q(0, tℓ) − 1]. (A7)

Given initial conditions, we solve equation (A6) using Newton’s method
and then compute the boundary condition at the new time step with Eqn (A7).

Appendix B

Here we study an unregularized single-lake model that is equivalent to those
studied by Fowler (1999) and Ng and Björnsson (2003). In particular, we
study global stability and the existence of periodic solutions. The results
below extend previous notions of stability and demonstrate the need for a reg-
ularized ODE model. We let ε* = 0 and set the non-dimensional hydraulic gra-
dient Ψ≡ 1. Under these assumptions, the non-dimensional ODE model in
Eqns (27–28) reduces to

dS∗
dt∗

= amS
a
∗ − acS∗N∗|N∗|n−1, (B1)

dN∗
dt∗

= Sa∗ − 1. (B2)

We make the change of variables S* = eΦ, which is bijective because S* > 0.
The transformed system is

dF
dt∗

= ame
(a−1)F − acN∗|N∗|n−1 =: f1, (B3)

dN∗
dt∗

= eaF − 1=: f2. (B4)

Below, we will write

ẋ(t∗) = f(x) (B5)

x(t∗) =
F(t∗)
N∗(t∗)

[ ]
(B6)

f(x) = f1(x)
f2(x)

[ ]
. (B7)
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The only equilibrium point xe of Eqns (B3) and (B4) is

Fe = 0, (B8)

Ne =
am
ac

( )1/n

. (B9)

First, we compute the divergence of f and see that

∇ · f = am(a− 1)e(a−1)F . 0 (B10)

for all x∈ℝ2 provided that α > 1. Since the divergence does not change sign in
the plane, the Bendixson–Dulac theorem states that no periodic solutions to
Eqn (B5) exist when α > 1 (Chicone, 2006). Now we introduce the convex,
radially unbounded function

Ha(x) = −amN∗ +
ac

n+ 1
|N∗|n+1 + 1

a
eaF −F

( )
+ C, (B11)

where C is chosen such thatHa(xe) = 0. We note thatHa(x) � 1 if and only
if ||x||→∞. The time derivative of Ha along solution trajectories is

d
dt∗

[Ha(x(t∗))] = ∇Ha · f (B12)

= am(eaF − 1)(e(a−1)F − 1). (B13)

For α = 1, we see that the system is Hamiltonian, meaning that solutions to
(B5) exist on the level curves ofH1. SinceH1 is radially unbounded, every level
curve is closed. The family of periodic orbits defined by the level curves of H1

closely resemble the limit cycles of the full non-linear system (Fig. 11). In this
way, the level curves of H1 furnish an approximate non-linear algebraic rela-
tion between S and N during single-lake flood cycles.

For α > 1, the system (B3) and (B4) is globally unstable. We see that

d
dt∗

[Ha(x(t∗))] . 0 (B14)

for all Φ≠Φe if α > 1, since Eqn (B13) is minimized at Φ =Φe.
Furthermore, Eqn (B10) implies that the equilibrium is locally unstable.
Since F � Fe asymptotically,

sup
t∗.0

Ha(x(t∗)) = 1, (B15)

which implies that

sup
t∗.0

‖x(t∗)‖ = 1. (B16)

Appendix C

Single-lake systems

Here we study the transition from oscillation to damping as the external melt-
water supply Qin varies. For a single-lake system, we write the non-dimensional
ODE model (27)–(31) as

dS∗
dt∗

= am(S∗ + 1∗)a|1− N∗|
3
2 − acS∗N∗|N∗|n−1 (C1)

dN∗
dt∗

= (S∗ + 1∗)a(1− N∗)|1− N∗|−
1
2 − 1. (C2)

In the analysis below, we assume that N* < 1. At equilibrium, Eqn (C2)
implies

(Se + 1∗)a(1− Ne)
1
2 = 1. (C3)

Substituting the identity (C3) into Eqn (C1) and solving for Se, we have

Se = g
1− Ne

Nn
e

, (C4)

where γ = am/ac. Substituting this expression for Se into Eqn (C3), we see that
Ne solves the non-linear equation

g(1− Ne)N−n
e + 1∗

( )a(1− Ne)
1
2 − 1 = 0. (C5)

Now we study the Jacobian J of the right-hand side of Eqns (C1) and (C2)
evaluated at the equilibrium. Taking derivatives and using Eqn (C3) several
times,

J = JSS JSN
JNS JNN

[ ]
(C6)

JSS = aam
1− Ne

Se + 1∗
− acN

n
e , (C7)

JSN = −am
3
2
− nacSeN

n−1
e , (C8)

JNS =
a

Se + 1∗
, (C9)

JNN = − 1
2

1
1− Ne

. (C10)

The eigenvalues {l, �l} of the Jacobian are assumed to have non-zero imagin-
ary part in the analysis below. Complex conjugate eigenvalues are guaranteed for
some range of parameters around the bifurcation point where tr(J) = 0 because
det(J) > 0. Using Eqn (C3), tr(J) may be written in terms of Ne as

tr(J) = ama(1− Ne)1−
1
2a − acN

n
e − 1

2
1

1− Ne
. (C11)

Using Eqns (C3) and (C4), it may also be written in terms of Se as

tr(J) = aam
(Se + 1∗)1+2a −

am
Se(Se + 1∗)2a

− 1
2
(Se + 1∗)2a. (C12)

Fig. 11. Level curves of the Hamiltonian H1(F, N∗) in Eqn (B11) plotted in the (S*,
N*)-plane. We choose (am, ac) = (30, 150). The fixed point is noted by the black star.
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As discussed in ‘Bautin bifurcation’ section of the main text, Eqn (C12)
implies stability of the equilibrium at small Qin for fixed ε. The sign of tr(J)
in Eqn (C11) is equal to the sign of the function

T = 2am(1− Ne) a(1− Ne)1−(1/2a) − g−1Nn
e

( )
− 1. (C13)

We note that γ and Ne are related through solution of Eqn (C5). We will
consider any fixed value of γ such that T + 1 . 0. Otherwise, the equilib-
rium is unconditionally stable and no bifurcations occur. More explicitly,
we require

g−1 , a(1− Ne)1−(1/2a)N−n
e . (C14)

We proceed under the assumption that T + 1 . 0 because all examples so
far have satisfied this bound. Now we fix γ and ε* so that Ne is also fixed due to
Eqn (C5). Equation (C13) then implies that varying am or ac at the fixed ratio γ
changes the sign of T , resulting in the equilibrium gaining or losing stability.
The stability transition characterized by tr(J) changing sign is a necessary con-
dition for the Hopf bifurcation. Since this transition occurs for arbitrary γ sat-
isfying inequality (C14), the implicit relation T = 0 traces a curve in the am-ac
plane that characterizes the bifurcation for fixed ε* (Fig. 10a). Since
am / Q−1/a

in and ac / Q−1
in are decreasing functions of Qin in Eqn (16), this

analysis shows that the equilibrium becomes stable as the external meltwater
supply increases (Fig. 10b). From numerical experiments, we know that the
transition to stable equilibrium with increasing Qin corresponds to the subcrit-
ical Hopf bifurcation in the larger Bautin bifurcation (‘Simplified model’ sec-
tion, Figs. 8b and 9 point ii). From equation (16), we see that ac / Ln+1

c and
am∝ Lc. Therefore, decreasing the channel length leads to a large decrease in
the relative strength of the closure term. This in turn leads to stability transi-
tions (Fig. 10b).

Multiple-lake systems

Here we show that the stability transitions described above generalize to
higher numbers of lakes. The Jacobian J of a M-lake system decribed by

Eqns (27–28) has the form

J =

J1 O · · · O

C2 J2
. .
. ..

.

..

. . .
. . .

.
O

O · · · CM JM

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦, (C15)

where O∈ℝ2 × 2 is a matrix of zeros. The Jk blocks arise from derivatives with
respect to Sk and Nk, analogous to J above. The Ck blocks arise from the deri-
vatives with respect to Sk−1 and Nk−1. Each diagonal block is itself 2 × 2 block
triangular, so the spectrum σ of J is

s(J ) =
⋃M
k=1

s(Jk). (C16)

If we adopt the scaling in Eqn (13) but replace A1 with Ak, then the Jk block
is equal to J in the previous section. Therefore, the k-th lake-channel system
will undergo the same stability transitions discussed for the single-lake system.

Appendix D

Here we compare the PDE model Eqns (19–26) with the ODE model Eqns
(27–31) for a single-lake system. For this comparison, we modify the ODE
model to include the function ζ(S) in Eqn (11) that scales the viscous closure
rate in the PDE model. This function was neglected in the main text to sim-
plify the bifurcation analysis, but leads to better quantitative agreement with
the PDE results. The ODE model includes a parameter ε* > 0 that controls
the amplitude and period of the limit cycles. For some optimal ε*, we wish
to measure how well the limit cycles from both models agree. In natural sys-
tems, the period of the filling–draining cycles is typically the easiest parameter
to estimate. Therefore, we define the optimal value of ε* as

1w = argmin|Pp −Po(1∗)|, (D1)

where Πp and Πo are the periods of the PDE and ODE solutions, respectively.
We note that Πo depends on ε* through solution of Eqns (27–28). With this
choice of 1w, the limit cycles from the two models can agree quite well,
depending on the choice of am and ac (Figs 12b–d). However, for small values
of am and ac near the subcritical Hopf bifurcation, the ODE limit cycle has a
smaller ampltiude (Fig. 12a).

Fig. 12. Limit cycles from the non-dimensional PDE
Eqns (19–26) and ODE Eqns (27–31) models. Equation
(27) is modified to include the closure rate scale ζ(S)
in Eqn (11) with the parameter Sf = 2000× S̃. The par-
ameter 1∗ = 1w is chosen to minimize the misfit
between the periods of the ODE and PDE solutions
in Eqn (D1). The parameters for each panel are (a)
(am, ac, 1w) = (10, 136, 0.0252), (b) (am, ac, 1w) =
(12, 164, 0.0282), (c) (am, ac, 1w) = (14, 205, 0.0248)
and (d) (am, ac, 1w) = (16, 235, 0.0201).
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