ON VON NEUMANN-JORDAN CONSTANTS

KAZUO HASHIMOTO ${ }^{\boxtimes}$ and GEN NAKAMURA

(Received 7 June 2008; accepted 11 July 2009)

Communicated by G. A. Willis

Abstract

In this note, we provide an example of a Banach space X for which $\tilde{C}_{N J}(X)=1$ that is not isomorphic to any Hilbert space, where $\tilde{C}_{N J}(X)$ denotes the infimum of all von Neumann-Jordan constants for equivalent norms of X.

2000 Mathematics subject classification: primary 46B03; secondary 46B20.
Keywords and phrases: von Neumann-Jordan constant, nth von Neumann-Jordan constant, Hilbert space, isomorphism.

1. Introduction

Let $(X,\|\cdot\|)$ be a real Banach space. The von Neumann-Jordan constant of X, denoted by $C_{N J}(X)$, is the smallest constant C for which

$$
\frac{1}{C} \leq \frac{\|x+y\|^{2}+\|x-y\|^{2}}{2\left(\|x\|^{2}+\|y\|^{2}\right)} \leq C
$$

for all $x, y \in X$ such that $\|x\|^{2}+\|y\|^{2} \neq 0$. Classical results state that:
(i) $1 \leq C_{N J}(X) \leq 2$ for any Banach space X, and X is a Hilbert space if and only if $C_{N J}(X)=1$ (Jordan and von Neumann [2]);
(ii) $\quad C_{N J}\left(L_{p}\right)=2^{2 / t-1}$, where $t=\min \left\{p, p^{\prime}\right\}$ and $1 / p+1 / p^{\prime}=1$ (see [1]).

The constant $\tilde{C}_{N J}(X)$ is defined by

$$
\tilde{C}_{N J}(X)=\inf \left\{C_{N J}(X,|\cdot|):|\cdot| \text { is a norm equivalent to }\|\cdot\|\right\} .
$$

Let Y be a subspace of X. It is easily checked that $\tilde{C}_{N J}(Y) \leq \tilde{C}_{N J}(X)$.
Many results on the constants $C_{N J}(X)$ and $\tilde{C}_{N J}(X)$ for various X have been proved by Kato et al. [3-8]. In particular, Kato and Takahashi [5] showed that $\tilde{C}_{N J}(X)<2$

[^0]if and only if X is superreflexive. Moreover, in [8], they gave the following stronger result: $C_{N J}(X)<2$ if and only if X is uniformly nonsquare.

We are concerned with the question whether a Banach space X with $\tilde{C}_{N J}(X)=1$ is necessarily isomorphic to a Hilbert space. In this note, we provide a negative answer to this question, by giving an example of a Banach space X for which $\tilde{C}_{N J}(X)=1$ that is not isomorphic to any Hilbert space.

We denote ℓ_{2}-direct sums using the \oplus symbol: we write, for example, both $\bigoplus_{n=1}^{\infty} X_{n}$ and $X \oplus Y$.

2. Main results

Definition 2.1 [7]. The nth von Neumann-Jordan constant, where $n \geq 1$, is defined by

$$
C_{N J}^{(n)}(X):=\sup \left\{\sum_{\theta_{j}= \pm 1}\left\|\sum_{j=1}^{n} \theta_{j} x_{j}\right\|^{2} /\left(2^{n} \sum_{j=1}^{n}\left\|x_{j}\right\|^{2}\right): x_{j} \in X, \sum_{j=1}^{n}\left\|x_{j}\right\|^{2} \neq 0\right\}
$$

It is evident that $C_{N J}^{(2)}(X)=C_{N J}(X)$.
THEOREM 2.2. Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be a sequence of Banach spaces satisfying the following conditions:
(i) the dimension of each X_{n} is finite;
(ii) $\sup _{m, n} C_{N J}^{(m)}\left(X_{n}\right)=\infty$;
(iii) $\lim _{n \rightarrow \infty} C_{N J}\left(X_{n}\right)=1$.

Let X be the ℓ_{2}-direct sum $\bigoplus_{n=1}^{\infty} X_{n}$. Then $\tilde{C}_{N J}(X)=1$ and X is not isomorphic to any Hilbert space. In particular, $\tilde{C}_{N J}(X)<C_{N J}(X)$.
Example. The following example satisfies conditions (i), (ii) and (iii) above. Suppose that $1 \leq p<2$, and e_{i} are the unit coordinate vectors in ℓ_{p}^{n}, where $1 \leq i \leq n$ and $n \in \mathbb{N}$. Then

$$
\frac{\sum_{\theta_{j}= \pm 1}\left\|\sum_{j=1}^{n} \theta_{j} e_{j}\right\|^{2}}{2^{n} \sum_{j=1}^{n}\left\|e_{j}\right\|^{2}}=\frac{\sum_{\theta_{j}= \pm 1} n^{2 / p}}{2^{n} n}=\frac{2^{n} n^{2 / p}}{n 2^{n}}=n^{2 / p-1}
$$

Hence, $C_{N J}^{(n)}\left(\ell_{p}^{n}\right) \geq n^{2 / p-1}$. When $1 \leq p<2$, we have $\lim _{n \rightarrow \infty} C_{N J}^{(n)}\left(\ell_{p}^{n}\right)=\infty$, and so we can take a sequence $\left\{a_{n}\right\} \subseteq \mathbb{N}$ satisfying $C_{N J}^{\left(a_{n}\right)}\left(\ell_{2-1 / n}^{a_{n}}\right)>n$. We put $X_{n}=\ell_{2-1 / n}^{a_{n}}$, then (i) and (ii) hold. As mentioned in the introduction, (iii) holds since $C_{N J}\left(X_{n}\right)=$ $2^{1 /(2 n-1)}$.

Lemma 2.3. If X is isomorphic to a Hilbert space, then

$$
\sup _{n} C_{N J}^{(n)}(X)<+\infty
$$

Proof. We assume that the Banach space $(X,\|\cdot\|)$ is isomorphic to a Hilbert space $(X,|\cdot|)$. Then there exists $M \geq 1$ such that

$$
\begin{equation*}
\frac{1}{M}\|x\| \leq|x| \leq M\|x\| \quad \forall x \in X \tag{2.1}
\end{equation*}
$$

For all $x_{1}, x_{2}, \ldots, x_{n} \in X$ such that $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2} \neq 0$,

$$
\sum_{\theta_{j}= \pm 1}\left|\sum_{j=1}^{n} \theta_{j} x_{j}\right|^{2}=2^{n} \sum_{j=1}^{n}\left|x_{j}\right|^{2}
$$

by the parallelogram law in Hilbert space. Using this equality and inequality (2.1) above,

$$
\sum_{\theta_{j}= \pm 1}\left\|\sum_{j=1}^{n} \theta_{j} x_{j}\right\|^{2} \leq M^{2} \sum_{\theta_{j}= \pm 1}\left|\sum_{j=1}^{n} \theta_{j} x_{j}\right|^{2}=M^{2} 2^{n} \sum_{j=1}^{n}\left|x_{j}\right|^{2} \leq M^{4} 2^{n} \sum_{j=1}^{n}\left\|x_{j}\right\|^{2}
$$

Hence,

$$
\sum_{\theta_{j}= \pm 1}\left\|\sum_{j=1}^{n} \theta_{j} x_{j}\right\|^{2} /\left(2^{n} \sum_{j=1}^{n}\left\|x_{j}\right\|^{2}\right) \leq M^{4}
$$

and we conclude that $C_{N J}^{(n)}(X) \leq M^{4}$.
Lemma 2.4. Let $\left\{X_{n}\right\}$ be a sequence of Banach spaces; then

$$
C_{N J}\left(\bigoplus_{n=1}^{\infty} X_{n}\right)=\sup \left\{C_{N J}\left(X_{n}\right) \mid n \in \mathbb{N}\right\}
$$

Proof. We first show that

$$
\begin{equation*}
C_{N J}\left(\bigoplus_{n=1}^{\infty} X_{n}\right) \leq \sup \left\{C_{N J}\left(X_{n}\right) \mid n \in \mathbb{N}\right\} \tag{2.2}
\end{equation*}
$$

To prove this, it is sufficient to show that when $C>0$,

$$
\sup \left\{C_{N J}\left(X_{n}\right) \mid n \in \mathbb{N}\right\} \leq C \Longrightarrow C_{N J}\left(\bigoplus_{n=1}^{\infty} X_{n}\right) \leq C
$$

Moreover, it suffices to show that this assertion holds for the case of two terms:

$$
\max \left\{C_{N J}\left(X_{1}\right), C_{N J}\left(X_{2}\right)\right\} \leq C \Longrightarrow C_{N J}\left(X_{1} \oplus X_{2}\right) \leq C
$$

For all $x, y \in X_{1} \oplus X_{2}$, we write $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$, and then

$$
\begin{aligned}
\|x+y\|^{2}+\|x-y\|^{2} & =\left\|x_{1}+y_{1}\right\|^{2}+\left\|x_{1}-y_{1}\right\|^{2}+\left\|x_{2}+y_{2}\right\|^{2}+\left\|x_{2}-y_{2}\right\|^{2} \\
& \leq 2 C\left(\left\|x_{1}\right\|^{2}+\left\|y_{1}\right\|^{2}\right)+2 C\left(\left\|x_{2}\right\|^{2}+\left\|y_{2}\right\|^{2}\right) \\
& =2 C\left(\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}\right)+2 C\left(\left\|y_{1}\right\|^{2}+\left\|y_{2}\right\|^{2}\right) \\
& =2 C\left(\|x\|^{2}+\|y\|^{2}\right),
\end{aligned}
$$

and hence

$$
\frac{\|x+y\|^{2}+\|x-y\|^{2}}{2\left(\|x\|^{2}+\|y\|^{2}\right)} \leq C
$$

In the same way,

$$
\frac{1}{C} \leq \frac{\|x+y\|^{2}+\|x-y\|^{2}}{2\left(\|x\|^{2}+\|y\|^{2}\right)}
$$

Thus, $C_{N J}\left(X_{1} \oplus X_{2}\right) \leq C$ and hence (2.2) holds.
The other inequality is obvious as $\bigoplus_{k=1}^{\infty} X_{k} \supseteq X_{n}$ for all $n \in \mathbb{N}$.
Corollary 2.5. For any two Banach spaces X and Y,

$$
\tilde{C}_{N J}(X \oplus Y)=\max \left\{\tilde{C}_{N J}(X), \tilde{C}_{N J}(Y)\right\}
$$

Proof. We first show that

$$
\begin{equation*}
\tilde{C}_{N J}(X \oplus Y) \leq \max \left\{\tilde{C}_{N J}(X), \tilde{C}_{N J}(Y)\right\} \tag{2.3}
\end{equation*}
$$

By the definition of $\tilde{C}_{N J}$, for any $\varepsilon>0$, there exist Banach spaces X^{\prime} and Y^{\prime}, isomorphic to X and Y, such that

$$
C_{N J}\left(X^{\prime}\right) \leq \tilde{C}_{N J}(X)+\varepsilon \quad \text { and } \quad C_{N J}\left(Y^{\prime}\right) \leq \tilde{C}_{N J}(Y)+\varepsilon
$$

Using Lemma 2.4,

$$
\begin{aligned}
\max \left\{\tilde{C}_{N J}(X), \tilde{C}_{N J}(Y)\right\}+\varepsilon & \geq \max \left\{C_{N J}\left(X^{\prime}\right), C_{N J}\left(Y^{\prime}\right)\right\} \\
& =C_{N J}\left(X^{\prime} \oplus Y^{\prime}\right) \\
& \geq \tilde{C}_{N J}(X \oplus Y)
\end{aligned}
$$

As $\varepsilon>0$ is arbitrary, (2.3) holds.
As mentioned in the introduction, the opposite inequality to (2.3) can easily be derived from the inclusion of both X and Y in $X \oplus Y$.

Proof of Theorem 2.2. By Corollary 2.5, for all $n \in \mathbb{N}$,

$$
\begin{aligned}
\tilde{C}_{N J}(X) & =\tilde{C}_{N J}\left(\bigoplus_{k=1}^{n} X_{k} \oplus \bigoplus_{k=n+1}^{\infty} X_{k}\right) \\
& =\max \left\{\tilde{C}_{N J}\left(\bigoplus_{k=1}^{n} X_{k}\right), \tilde{C}_{N J}\left(\bigoplus_{k=n+1}^{\infty} X_{k}\right)\right\} \\
& \leq \max \left\{\tilde{C}_{N J}\left(\bigoplus_{k=1}^{n} X_{k}\right), C_{N J}\left(\bigoplus_{k=n+1}^{\infty} X_{k}\right)\right\} .
\end{aligned}
$$

Since $\bigoplus_{k=1}^{n} X_{k}$ is finite-dimensional, it is isomorphic to a Hilbert space and thus $\tilde{C}_{N J}\left(\bigoplus_{k=1}^{n=1} X_{k}\right)=1$. Further, by Lemma 2.4 and condition (iii),

$$
\lim _{n \rightarrow \infty} C_{N J}\left(\bigoplus_{k=n+1}^{\infty} X_{k}\right)=1
$$

Hence $\tilde{C}_{N J}(X) \leq 1$ and so $\tilde{C}_{N J}(X)=1$.
On the other hand, $X_{n} \subseteq X$ for each $n \in \mathbb{N}$ and condition (ii) holds, so

$$
\sup \left\{C_{N J}^{(m)}(X) \mid m \in \mathbb{N}\right\} \geq \sup \left\{C_{N J}^{(m)}\left(X_{n}\right) \mid m, n \in \mathbb{N}\right\}=\infty
$$

Thus from Lemma 2.3, X is not isomorphic to any Hilbert space.

References

[1] J. A. Clarkson, 'The von Neumann-Jordan constant for the Lebesgue space', Ann. of Math. (2) $\mathbf{3 8}$ (1937), 114-115.
[2] P. Jordan and J. von Neumann, 'On inner products in linear metric spaces', Ann. of Math. (2) 36 (1935), 719-723.
[3] M. Kato, L. Maligranda and Y. Takahashi, 'On James and Jordan-von Neumann constants and normal structure coefficient of Banach spaces', Studia Math. 144(2) (2001), 275-295.
[4] M. Kato and Y. Takahashi, 'Uniform convexity, uniform non-squareness and von Neumann-Jordan constant for Banach spaces', RIMS Kokyuroku 939 (1996), 87-96.
[5] M. Kato and Y. Takahashi, 'On the von Neumann-Jordan constant for Banach spaces', Proc. Amer. Math. Soc. 125 (1997), 1055-1062.
[6] M. Kato and Y. Takahashi, 'Von Neumann-Jordan constant for Lebesgue-Bochner spaces', J. Inequal. Appl. 2 (1998), 89-97.
[7] M. Kato, Y. Takahashi and K. Hashimoto, 'On n-th von Neumann-Jordan constants for Banach spaces', Bull. Kyushu Inst. Technol. Pure Appl. Math. 45 (1998), 25-33.
[8] Y. Takahashi and M. Kato, 'Von Neumann-Jordan constant and uniformly non-square Banach spaces', Nihonkai Math. J. 9 (1998), 155-169.

KAZUO HASHIMOTO, Hiroshima Jogakuin University, 4-13-1 Ushita Higashi Higashi-ku, Hiroshima 732-0063, Japan
e-mail: hasimoto@gaines.hju.ac.jp
GEN NAKAMURA, Matsue College of Technology, 14-4 Nishi-ikuma, Matsue, Shimane 690-8518, Japan
e-mail: nakamura@matsue-ct.ac.jp

[^0]: (C) 2009 Australian Mathematical Publishing Association, Inc. 1446-7887/2009 \$16.00

