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A characterization of flat metrics on tori
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Abstract. The Riemannian flat metrics on tori T2 are characterized by a weakly
ergodic property of the geodesic flows.

0. Introduction
Let M be a complete Riemannian manifold with finite volume and SM the unit
tangent bundle. Let g ' : SM -» SM be the geodesic flow and TT : SM -* M the projec-
tion. For any veSM if yv(t) = Tr(g'v) for any te (-oo, oo), then yv:(—<x>, oo)-»Af
is a geodesic. For any integrable function/on SM we define a function/*: SM -»Ru
{-oo, oo} by

/*(«) = limmf-^j /(g'«)d<,

for any v e SM. By the Birkhoff ergodic theorem we know that lim inf = lim sup = lim
for almost all v e SM on the right-hand side, and for those v we write/**(u) instead
of/*(») .

The geodesic flows of non-positively curved compact Riemannian manifolds with
rank 1 are ergodic (see [1]). And any Riemannian metric on tori with non-positive
curvature is flat (see [4], [12]). The torus often plays a distinguished role from other
topological types. Although the geodesic flows of flat tori are not ergodic, they
satisfy the following condition.

(0.1) If / is an integrable function on M, then ( / ° TT)* is constant for almost all
veSM.

If the geodesic flows are ergodic, then they satisfy the condition (0.1). The purpose
of the present note is to prove:

THEOREM. Let T2 be a torus and A the set of all v^ST2 such that yv{t0) has no
conjugate points yv(t), t>t0, along yv for some t0. Suppose vo l (A)>0 and the
geodesic flow of T2 satisfies the condition (0.1). Then T2 is flat.

In § 1 we give the preliminaries and prove our theorem in § 2. In § 3 we discuss the
assumption vol (A) > 0.

1. Preliminaries

(1.1) Riccati equation. Let M be a complete Riemannian manifold with dimension 2
and y:[0, oo)-»M a geodesic. Assume that -y(0) has no conjugate points y(t),
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t > 0, along y. By introducing an orthonormal frame

{E0(t) = y(t),Ex(t)}

along y we can write every Jacobi field Z orthogonal to y as Z = zfj, with

where K(t) is the Gauss curvature of M at y(t) for all r>0. It follows from our
assumption that z(f) 5*0 for any f>Oif z(0) = 0, z'(0)>0. Thus, if s(t) = z'{t)/z(t)
for all t>0, s(t) satisfies the Riccati equation

s'(t) + s(t)2+K(t) = O, (1.1)

for any t > 0.

LEMMA 1.1 (see [7], [11]). If K(t)> -k2 for some k>0 and for all t^O, then s(t)
satisfies

-ks s(t)sfccoth kt,

for all t>0. In particular, s( t)/1 -» 0 as t -> oo.

(1.2) A weakly ergodicproperty. Let SM be the unit tangent bundle of M (dim M = n)
and g':SM->SM the geodesic flow of M. If /J. = 77 A a, where 17 and a are the
volume forms of M and S""1 (resp.), then /A is a volume form of SM and is
preserved by the geodesic flow g'.

LEMMA 1.2. Let M be a complete Riemannian manifold with finite volume. Assume
that the geodesic flow g' satisfies the condition (0.1). Then, there is a set B in SM such
that vol {B) = vol (SM) and (\u ° ir)*(v) >0for any open set U in M and any v e B,
where Xu '• M -> R is the characteristic function of U.

Proof. Let {[/„; n - I, 2, 3,...} be an open base of the topology of M. From the
condition (O.I), we have, for each n,

(Xvn°ir)**(v) = cn,

for almost all v e SM. And, because of the Birkhoff ergodic theorem, cn is not zero.
For each n let Bn be the set of all vectors v e SM such that (xun ° '•.')**(") = <V Put
B = P|"=i #«• Then fi is the set in SM we required.

2. Proof of theorem
Let X:T-»R be the Gauss curvature. By the Gauss-Bonnet formula and the
condition (0.1), we have

(XoW)**(«)=0,

for almost all v e ST2. Hence, we can find a vector v e SM such that
(1) (*u ° 77-)*(u)>0 for any open set U in T2;
(2) (K°TT)**(D) = 0;

(3) if y: [0,00)^ T2 is the geodesic with y(0) = u, then y(0) has no conjugate
points along y.
From this we want to prove that K(p) = 0 for any p e T2. Assume that

s(t)2+K{t) = 0 (2.1)
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is the Riccati equation along y constructed as in 1.1. Then, by lemma 1.1 and
condition (2), we have

Km —
r-oo T Jo
lim - s(tfdt = O.
T-oo T Jo

Let p be a point in T2 and Bp(l) the convex ball with centre p and radius /. We
first prove:

ASSERTION. There exists a sequence {fn}c[0, oo) such that

(2)* ifsn:[0, /]-»R is given by sn{t) = s(tn + t), then \'0sn(t)
2 dt->0 as n -»oo, and

sn(0 -» 0 /or almost all t e [0, /] as n -» oo,
(3)* i/ yn: [0, /]-» T2 is given by yn(t) = y(tn +1), then yn converges to a geodesic

yo:[0,1]-* T2 through p= y{l/2) as n^oo.

Proof of assertion. Let fc s 4 be an integer. Since Bp(l/k) is convex, y~1(Bp(l/k)) is
the union of intervals whose lengths are less than or equal to 2//fc, say (a[, b[),
( a ' 2 , b ' 2 ) , . . . , (a'n b\),...; a[< b[<a'2< b'2< • • • <a\< b\< »oo. Put

for each i = 1, 2, Then, y[at, b j c Bp(l) and y(a{), y(bt)i Bp(l/k). Suppose

f6'
liminf s(t)2 dt>a>0.

'•^°° J a,

For any 7 > 0 with y(T)£ Bp(l), we have

- s(t)2dt>-\ I s(t)2dt\
1 Jo i L i = l Ja, J

^ I s ( 0 2 * + - I (ft,-a,.)
i L • = 1 J o , J ' • ' i = m+l

a FI(T-)

^7= Z (fc!-fli)

where n(T) and m are chosen so that bn(T)< T< an(T)+1 and inf,=,m Ja'. s(t)2 dt> a.
This implies that

0= lim ^ [ T s(t)2 dt>(a/l)(XBp(l/k)° ir)*(t>),

contradicting (1). Thus we can find an integer i'(fc) such that

1
ai(k) + bi(k))/2)eBp{l/k) and „,. , _ . _ f c .

If tfc = aHk) for all fc>4, the sequence {tk} satisfies the condition (1)* and the first
part of (2)*. For the second part of (2)* and (3)* we have only to choose a suitable
subsequence {(„} of {tk} if necessary.
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We return to the proof of the theorem. Rewriting (2.1) in terms of (2)*, we get for
each n

(t)2+Kn(t) = 0 (2.2)

for any te[0, /], where Kn(t) = K(tn + t). Suppose K(p)*O, say K(p)>0. Then,
there exist a<be[0,1] such that Ko(t) = K(yo(t))>0 for any t<=[a, b] and sn(a),
sn(b)->0 as «-»oo. On the other hand, by integrating (2.2) on the interval [a, b]
and taking n to infinity, we have

•b

Ko(t)dt = 0,

a contradiction. This completes the proof of the theorem.

3. Geodesic rays without conjugate points
In the present section we discuss the assumption vol (A) > 0.

The case of tori of revolution. Let T2= S1 x S1 be the torus and let / : S1 -»U be a
positive function with minimum at y0. We consider a Riemannian metric, ds2 =
f(y)2 dx2+dy2, (x, y)eS1x S\ on T2. It is proved in [3], [5], [8] and [10] that all
points p at which / assumes its minimum are poles, i.e. p has no conjugate points
along any geodesic ray emanating from p. We know that vo l (A)>0 from the
following argument. The Clairaut theorem implies that f{a(t)) cos da(t) is constant
for any geodesic a:(-00,00)-» T2, where 6a(t) is the angle of d(t) and the curve
y = const. Hence, if a geodesic a : (-00,00) -» T2 satisfies that

/ (a(0))cos6»Q(0)<min/ (3.1)

then a[0, 00) intersects the curve y = y0, and, therefore, contains poles. This proves
that d(0)e A for each such geodesic. Since the set of those vectors which satisfy
(3.1) has a positive measure, it follows that vol (A)>0 .

The case of generic tori. The author does not know whether the assumption of our
theorem, vol (A) > 0, holds in general. We can only have, as a straightforward
modification of a result stated by V. Bangert, (see [2]):

PROPOSITION 3.1. Let T2 be the torus with Riemannian metric and M be the universal
covering of T2. Then, there exist uncountably many minimizing geodesies emanating
from each point p of M. In particular, SPM n A has the cardinal number of the
continuum.
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