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Abstract. Introduction of Jacobi elliptic functions in planetary, satellite 
and cometary problems of celestial mechanics is a transformation of vari-
ables to present the analytical theories of motion in the more compact form 
as compared with the traditional series in multiples of mean longitudes or 
mean anomalies. 

1. Introduction 

Analytical techniques of celestial mechanics survive now not the best period 
in their history. In relation to the two-century anniversary of Bureau des 
Longitudes, the world-recognized center of analytical celestial mechanics, 
it may be reasonable to discuss once again the role of analytical techniques 
in celestial mechanics. It is true that numerical integration represents now 
the best tool to investigate the empirical evolution of dynamical systems 
and to produce the high accuracy ephemerides of specific bodies. But an-
alytical theories enable one to get a more profound insight into physical 
and mathematical laws of motion. Indeed, analytical techniques of celestial 
mechanics are aimed 

— to obtain a general solution of the equations of motion as explicit 
function of initial values and parameters; 

— to present a solution in the physically adequate form; 
— to be used as a framework to investigate small effects due to extra 

additive forces in the right-hand members of the equations of motion. 
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It should be added that analytical techniques of celestial mechanics con-

tributed a lot into mathematical and natural sciences in such domains as 

special functions, perturbation theory, stability and resonance theory, pe-

riodic solutions, algebraic systems, etc. 

It is of interest to compare the role of numerical integration and ana-
lytical approach in typical problems of celestial mechanics. 

1. Two-body problem 

It is hardly possible to imagine it without the analytical solution in 

spite of the fact that the closed-form time-explicit solution of this 

problem has been actually obtained only quite recently by Osâcar and 

Palaciân (1994) with the use of dilogarithmic function. This is an exam-

ple where analytical treatment due to its simplicity and compactness 

is far beyond numerical integration approach. 

2. Lunar theory 

The most recent semi-analytical theory of the motion of the Moon is 

ELP by Chapront and Chapront-Touze (1995). This theory is used in 

Connaissance des Temps but as compared with numerical integration 

its accuracy is not completely sufficient to analyze the high-precision 

LLR observations. Nevertheless, by its domain of applicability beyond 

the scope of LLR this theory significantly surpasses numerical lunar 

ephemerides. 

3. Planetary theories 

The semi-analytical theories VSOP of the motion of the major planets 

by Bretagnon (1982) are used in Connaissance des Temps and in space 

research as well as numerical planetary ephemerides. Along with this 

they are of great benefit for astrometry, IERS activity and Earth's 

sciences. 

4. Satellite theory 

It is evident that for the analysis of high-precision SLR observations 

one needs numerical ephemerides. But for a large class of research 

problems a simple first-order analytical theory may be quite adequate. 

Kaula's theory is just an example of such wide-purpose analytical the-

ory. 

5. Cometary motion 

In spite of the efforts of Hansen, Gylden and their followers (see below) 

this problem remains to be a challenge for analytical techniques and 

the cometary orbits are computed mostly by numerical integration. 

6. Rotation of celestial bodies 

Analytical solution of this problem like recent theory of precession and 

nutation by Kinoshita and Souchay (1990) is quite competent with 

numerical integration by its accuracy but is much more informative 
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in respect of physical interpretation of different components of the 
solution. 

7. G T M (general theory of translatory-rotational motion) 
At present, most analytical theories representing translatory or rota-
tional motion of celestial bodies are constructed for the sake of com-
pactness with fictitious secular terms. The physically adequate form of 
the solution implies that the angular variables are expressed as linear 
functions of time and the action variables are represented by slowly 
changing quasi-periodic functions of time. Such theory for the solar 
system bodies may be called G T M . Its compactness may be achieved 
by introducing an adequate intermediary (Hill-like type for the trans-
latory motion), separating fast and slow variables in the sense of Zeipel 
and performing a normalizing (Birkhoff-like) transformation to a sec-
ular system. Such a problem is still awaiting its practical solution. 

Twenty or thirty years ago it seemed that the desired accuracy of analytical 
theories could be always achieved by using very long Poisson series con-
structed by means of Poisson series processors. Now it became evident that 
the increase of the number of terms in Poisson series cannot be too efficient 
tool for this aim. The main recipe nowadays is to develop compact-form 
analytical theories with the aid of more sophisticated specialized software 
based on some universal computer algebra system (Maple, Mathematica, 
etc.) . A compact-form analytical theory may be understood as a theory 
with the large value of the ratio of the achieved accuracy to the needed 
number of terms (like the commercial quality to price ratio). It is evident 
that the vast arsenal of compression transformations of classical celestial 
mechanics may be used now in combination with present computer software 
facilities. 

2. Compact-Form Series in Classical Celestial Mechanics 

Many analytical techniques of classical perturbation theory are based on 
the two-body problem Fourier expansions in multiples of mean anomaly Μ , 
true anomaly υ or eccentric anomaly g 

oo 

(2.1) 

OO 

(2.2) 

OO 

(2.3) 
s = — O O 
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Expansion (2.1) enables one to represent the coordinates as explicit func-
tions of time. But Hansen coefficients X£>m(e) for moderate and large values 
of eccentricity e decrease not so fast with the increase of |s| so that this 
expansion may be too long. Expansions (2.2) and (2.3) are more compact 
in this respect (moreover, they reduce to finite trigonometric polynomials 
for η < 0 and η > m > 0, respectively). In classical celestial mechanics the 
eccentric anomaly series based on (2.3) were used in particular by Hansen, 
Newcomb and Hill. Later on the true anomaly series based on (2.2) were 
used by Brown and Shook (1933). From time to time expansions (2.2) and 
(2.3) may be met in contemporary papers. But it seems that most peo-
ple share the negative opinion by Zeipel. In his encyclopaedic paper Zeipel 
(1912) comes to conclusion that the advantages of the compact representa-
tion of the disturbing function based on the eccentric anomaly series might 
be lost during the integration by means of the transformation to the mean 
anomalies with the aid of Bessel functions. We shall return below to the 
key problem of integration with different trigonometric arguments. 

The idea to use elliptic functions to find more efficient expansions than 
(2.1)-(2.3) for compression of analytical theories of celestial mechanics was 
suggested by Gylden more than a century ago. His idea is that One views 
the mean (true, eccentric) anomaly ... as the elliptic amplitude of a new 
(independent) variable' (see Nacozy, 1977). Unfortunately, this idea was 
related to the Hansen method of partial anomalies for the analytical rep-
resentation of cometary motion. This method involves the division of a 
cometary orbit into several (at least two) parts with its own independent 
argument for each part. In spite of all efforts of Gylden and his followers 
the partial anomaly technique remained and still remains rather cumber-
some for wide application (Nacozy, 1969; Skripnichenko, 1972). Since then 
the idea of Gylden was regarded only as an attempt to improve the partial 
anomaly technique and numerical integration became the most widespread 
tool for investigation of the cometary motion. 

3. Elliptic Function Expansions as Convergence Accelerators 

In realizing the Gylden's idea one has not to deal with problems admit-
ting a solution in terms of elliptic functions (as the problem of two fixed 
centres, for example). Moreover, one has to do not with elliptic functions 
themselves but rather with their Fourier expansions. The main idea is to 
find, if possible, a transformation of variables 

(*,»)-(M) (3.1) 

reducing a function / ( x , y) of one power (0 < χ < 1) and one trigonometric 
variable (0 < y < 2π) to Jacobi elliptic function g(k, u) with modulus k and 
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argument u. If such transformation (3.1) exists then the ordinary Fourier 

expansion 

y) = Σ e x p i m y (3·2) 

of function / ( # , y) will be replaced by the Fourier expansion 

g(k,u) = Y^gm(q)expimw, w= g ^ (3.3) 

of function #(&, iz). Here ç is Jacobi nome remaining comparatively small 

even for the values of k close to 1. K(k) is the complete elliptic integral of 

the first kind. For large |m| coefficients gm decrease generally much faster 

than coefficients fm and one may expect that series (3.3) will be much more 

compact than series (3.2). 

One should underline two points frequently overlooked, i.e. 

— transformation (3.1) is made in function f(x,y) but not in series (3.2) 
which is not needed at all; 

— compactness of series (3.3) with respect to (3.2) is due mainly to the 

/^-dependent angular variable w and in lesser extent due to the com-

pactness of coefficients gm themselves. Coefficients fm may be com-

puted without power series expansions (Laplace coefficients in plane-

tary problems or Hansen coefficients in satellite problems) or may be 

represented by closed form expressions (coefficients of (2.2) and (2.3) 

series) but this has nothing to do with the slow convergence of series 

(3.2) itself. 

The standard Fourier series for simple combinations of Jacobi elliptic func-

tions may be found in many textbooks. They are collected as (2.5.66)-

(2.5.78) in (Brumberg, 1995). The Fourier series for any rational function 

of Jacobi elliptic functions may be derived by recurrence relations starting 

with these standard expansions. 

As it is well known even more fast converging expansions are provided 

by theta functions. But in using these expansions one meets two difficulties, 

i.e. 

— the absence of such expansion for periodic part of elliptic amplitude 

needed for the inversion and interrelation problem; 

— the necessity to perform operations on rational functions of Poisson 

series. 

The latter difficulty occurs also in applying the Landen transformation 

(k,u) (kuv) 

<2k1/2 

k=ïtk[' tf = + (3·4) 
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enabling one to operate with the Jacobi nome q\ = q2. 

Application of the standard expansions for Jacobi elliptic functions de-
mands a simpler software to perform symbolic operations on trigonometric 
series with rational coefficients. 

4· Elliptic Functions in Planetary Problems 

The starting point of many analytical investigations in planetary problems 
is the expansion of a generating function 

7(n,s,y,i/,a,C) = a n ( l - αζ-ι)*(1 - αζ)"(-ζγ (4.1) 

occurring in the right-hand members of the equations of motion. Here a 

is a real parameter (the ratio of the semi-major axes), ζ is an exponential 
function of the mean longitudes λ and λ ' 

C = exp i (Ä -Y) , (4.2) 

η and ν are integers, χ and y are real numbers or more precisely 

Κ L 
* = " 2 · *— j (4.3) 

where Κ and L are positive odd integers. Traditional Fourier expansion of 
function (4.1) has the form 

oo 

ΐ(η,χ,ν,ν,α,ζ)= Σ) η/σ(η,χ,ν,ν,α)ζσ. (4.4) 
G— — OO 

Functions of type (4.1) and their expansions (4.4) were considered by New-
comb, Cauchy and Gylden (see Zeipel, 1912). Later on this function was 
studied by Brown and Shook (1933) and was intensively used in construct-
ing G P T , general planetary theory (Brumberg, 1995). Quite recently it 
was applied by Laskar and Robutel (1995) to derive a new expansion of 
the planetary disturbing function. The main difficulty in applying (4.4) is 
the slow convergence of this expansion especially for large values of a. The 
possible remedy is to find transformation (3.1) of variables ( α , λ — λ 7 ) to 
elliptic variables (k,u). Indeed, the transformation 

2 a m u = Μ, Μ = π - (λ - λ ' ) (4.5) 

and 

* 2 - ö £ ? < 4 · 6 > 
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reduces function (4.1) to the form 

7 ( n , a , y , ι / , a , C) = 77; T^"^ SUTX f 1 - a C s g n ( * ~ L ) ) ^ (4.7) 
/ v ' ' ' s y [(1 + a ) d n w ] m a x { ^ L > V / v } 

with 
£ = — exp(—i2 am u). (4.8) 

It is easy to see that function (4.7) may be expanded in Fourier series in 

multiples of 

w = m (4·9) 

or in the exponential form 

0 0 

-y(n,x,y,v,a,C) = ησ(η,χ,ν,ν,α)τσ, τ = e x p i w . (4.10) 
Ο — — OO 

The difference in the arguments (3.3) and (4.9) is due to the fact that the 
real periods of function (4.7) and of general elliptic function (3.3) are 2K(k) 

and 4K(k), respectively. Coefficients ησ of (4.10) may be easily found in 
the closed form with respect to Jacobi nome q. Indeed, these coefficients 
are expressed in terms of auxiliary functions l2m,n defined by 

= e x p ( i P a m . ) 
F' (dnu)n 

and for ρ = 2m (integer m) these functions are easily expanded in r-series 
by means of the recurrence relations (see, for example, Howland, 1988). 
The most difficult case in the planetary problems is provided by the pair 
Venus-Earth. For this pair one has α = 0.723, k = 0.987 and q = 0.215. 
Even for this pair the r-expansion (4.10) of generating function (4.1) is 
much more compact than traditional ^-series (4.4). 

Relationship with time is realized with the aid of (4.5). This relation 
represents the Lagrange implicit function equation of the form 

oo 

w + ^2 dm(q) sin mw = M (4.12) 
m=l 

with 

( 4 · 1 3 ) 

The inversion of this equation has the form 

oo 

w = M + cm(q) sin mM . (4.14) 
m = l 
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Recent results by E.Brumberg (1995) for the analogous relations for high 

eccentricity orbits show that coefficients decrease with large \r\ much 

faster than coefficients E^s\ 

Transformation (4.5) and (4.6) known already in classical celestial me-
chanics was applied by Richardson (1982) in his research on planetary in-
termediate orbits constructed by Lie transforms. Later on the same trans-
formation has been used by Williams et al. (1987) in the attempt to rep-
resent the first-order classical planetary theories in u variables. At the 
same time Chapront and Simon (1988) have developed a first-order C P T 
(compact planetary theory). Replacing mean longitudes λ and λ ' by linear 
function of time / and elliptic argument u 

(4.17) 

they have compared the traditional perturbation theory series 

(4.18) 

(4.19) 

with the elliptic argument series 

It turned out that series Sk(l,w) are much shorter than series 5&(λ, λ ' ) for 
all couples of the major planets. Series (4.18) and (4.19) were computed in 
the semi-analytical form by application of FFT (fast Fourier transform) to 
the equations of motion. This work is still awaiting its completion. 

Transformation (4.5) and (4.6) has been intensively used in elaborat-
ing G P T , a planetary theory without fictitious secular terms (Brumberg, 
1995). G P T is constructed by the series in powers of the eccentricity and 
inclination variables with the coefficients depending on the differences of 
the mean longitudes of the planets. These series reduce the original equa-
tions of motion to an autonomous secular system. In dependence on the 
representation of the G P T series one may distinguish three forms of G P T , 
i.e. 

and 

Moreover, for any real s (E.Brumberg et al., 1995) 

(4.15) 

(4.16) exp is M 

expisw -
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(a) ^-series form as (4.4) extended for the JV-planet case 

Cü = exp ί(λ,· - λ,·), «', j = 1 , 2 , . . . , Ν. (4.20) 

(b) first-order closed form in terms of Jacobi elliptic functions with argu-
ments Uij and modulii 

2 am inj = Mij , M{j = ττ - (λ,· - λ,·), *?· = 4 ° * ° \ 2 , (4.21) 

at-, aj being the semi-major axes. This form involves also the elliptic 
quadratures, for example, 

<& n (amîi,fc,s,a) = exp( iaamw) J Is-a^n-i(u)du (4.22) 

with integer η and θ and real a. These quadratures admit a closed form 
representation only for integer a. For real α one has to use different 
approximations as integration by parts (with respect to the fractional 
part of s — α ) , series expansion, etc. 

(c) r-series form as (4.10) with 

Tij = explWij , wij = K^k,.^ · (4·23) 

Actual computation of the intermediate orbits for all major planets 
(Brumberg and Klioner, 1995) demonstrates the compactness of r-
series with respect to ("-series. 

Construction of the second-order theory by means of r-series involves the 
quadratures of the form 

1= j f(uia,uik)dt, (4.24) 

/ being a trigonometric series in multiples of Wij and Wik. One may use 
three ways to take these quadratures, i.e. 

- to express integrand / in terms of Mij and Af^, to perform the inte-
gration and to return to variables Wij and W{k\ 

— using the three-anomaly relation 

2(am uij + am Ujk + am Uk%) = 3π (4.25) 

to reduce integral (4.24) to the form 

1= J g(u,u')du (4.26) 
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with the relation 

2 a m « ' = 2 p a m « + c, c — const, \p\ < ^ (4.27) 

and to apply the Hansen's device expressing w1 in terms of w and 

w* = ptü + c (Brumberg, 1995); 

— to integrate (4.26) by parts resulting at step k in the integral of the 

same type with factor pk. 

Analytical integration of (4.24) by any of these ways may be rather cumber-

some. In constructing a semi-analytical theory with numerical coefficients 

one may combine these tools with the FFT technique. Anyway, the use of 

elliptic function expansions permits to reduce the number of terms of the 

first-order theories and it remains to find the most efficient way for the 

higher-order theory. 

5 . Elliptic Functions in Satellite Problems 

The main difficulty in analytical treatment of highly eccentric orbits is due 

to the slow convergence of traditional M-series like (2.1) for large values 

of eccentricity e. It turns out (E.Brumberg, 1992) that transformation of 

variables (e, M) —> (fc,w) 

(5.1) 

might be a possible remedy to overcome this difficulty. Classical expansions 

(2.1)-(2.3) are replaced therewith by rather compact expansion in multiples 

of the elliptic anomaly w 

(5.2) 

Most simply the coefficients of (5.2) may be computed from the recurrence 

relations (E.Brumberg and Fukushima, 1994). 

This technique was first applied to extend for highly eccentric orbits 

the first-order Kaula's theory of the satellite motion in the field of the non-

spherical primary (E.Brumberg et al., 1995). Later on (E.Brumberg, 1995) 

this technique was extended to include the third-body perturbations and 

was improved by using expansions (4.16) instead of (4.15). 

It should be added that similar elliptic anomalies based on the trans-

formation of the true anomaly ν instead of the eccentric anomaly g were 

introduced earlier by Bond and Janin (1981) and Nacozy (1977) to improve 

the efficiency of the numerical integration of highly eccentric orbits. In such 

a way all suggestions by Gylden mentioned above are now realized. 
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6. Elliptic Functions for Nearly Intersecting Orbits 

For analytical investigation of nearly intersecting orbits (of comets, some 

asteroids and space probes) one may apply the elliptic function expansions 

in combination with the development of the disturbing function elaborated 

by Boda (1931), Brown and Shook (1933), Petrovskaya (1970, 1972) and 

Yuasa and Hori (1979). As suggested in the last paper one may introduce 

as the initial approximation for the mutual distance Δ between two bodies 

Al = r2 + r'2 - Irr1 μ cos (W - W') (6.1) 

with the orbital longitude 

W = Ω + ω + ν (6.2) 

and the inclination factor 

μ = (ce' — ss')2 , s = sin ^ , c = cos ̂  . (6.3) 

All designations are evident. Primed quantities are referred to the disturb-

ing body. For any integer η the power expansion 

converges everywhere excepting the points of the actual collision. The neg-

ative powers of Δ ο may be expanded in trigonometric series 

oo 
Δ ο η = Σ ( Δ ο η ) . cos j(W - W) (6.5) 

i=o 3 

with coefficients depending on r and r' by means of hypergeometric poly-

nomials of different arguments (Brumberg, 1995). Any function / ( r , r ; ) oc-

curring in (6.4) may be expanded in the symbolic form 

'<'·''>= (S)'(?)""'OX), D - £ , D' = a'±. (6.6) 

Further expansions in terms of Jacobi nome q of the disturbed body and 

eccentricity e' of the disturbing major planet are performed with the aid 

of (5.2) and (2.1) with replacing integer index η by symbol D or D\ re-

spectively. One returns to the classical problem of calculating Newcomb 

operators but in combination with elliptic anomaly expansion (5.2). 
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