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Abstract

Following T. H. Chan, we consider the problem of approximation of a given rational fraction a/q by sums
of several rational fractions a1/q1, . . . , an/qn with smaller denominators. We show that in the special
cases of n = 3 and n = 4 and certain admissible ranges for the denominators q1, . . . , qn , one can improve
a result of T. H. Chan by using a different approach.
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1. Introduction

Chan [1] has recently considered the question of approximating real numbers by sums
of several rational fractions a1/q1, . . . , an/qn with bounded denominators.

In the special case of n = 3 the result of Chan [1] can be reformulated as follows.
Given two integers a and q > 1, for any Q > q there are integers ai and qi with
1 6 qi 6 Q1/2+o(1), i = 1, 2, 3, and such that∣∣∣∣a

q
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1

q Q1+o(1)
.

We remark that the numerators a1, a2, a3 can be negative.
In this paper we use a different approach to show that when Q is large enough, that

is, when Q > q2+ε, the same result holds with 1/3 instead of 1/2. We also obtain
more explicit constants.

Similarly, for n = 4, we see from [1] that for any Q > q there are integers ai and qi
with 1 6 qi 6 Q2/5+o(1), i = 1, 2, 3, 4, and such that∣∣∣∣a
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In this case, under the same condition Q > q2+ε we replace 2/5 with 1/4.
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Our approach is based on a result of [3] about the uniformity of distribution in
residue classes of rather general products. More precisely, it is shown in [3] that for any
set X ∈ [1, X ] of integers x with gcd(x, q) = 1 and for any interval [Z + 1, Z + Y ],
for the number Mu,q(X ; Y, Z) of solutions to the congruence

u ≡ xy (mod q), x ∈X , y ∈ [Z + 1, Z + Y ],

we have
q∑

u=1

∣∣∣∣Mu,q(X ; Y, Z) − #X Y

q

∣∣∣∣2

6 #X (X + Y )qo(1). (1)

2. Approximation by three rationals

THEOREM 1. Let a and q > 1 be integers with gcd(a, q) = 1. For any fixed ε > 0
and sufficiently large q, for any integer Q > q2+ε there are integers ai and qi with
1 6 qi 6 2Q1/3, i = 1, 2, 3, and such that∣∣∣∣a

q
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∣∣∣∣ 6
1

q Q

holds.

PROOF. We note that it is enough to show that there are positive integers q1, q2, q3
6 2Q1/3 with

q1q2q3 > Q, (2)

such that

gcd(q1, q2) = gcd(q1, q3) = gcd(q2, q3) = 1, (3)

and

aq1q2q3 ≡ 1 (mod q). (4)

Indeed, from (4) we conclude that aq1q2q3 = 1 + bq for some integer b. Since (3)
implies that

gcd(q1q2, q1q3, q2q3) = 1,

then

b = a1q2q3 + a2q1q3 + a3q1q2,

for some integers a1, a2, a3. Thus∣∣∣∣a

q
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q1
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∣∣∣∣ =
1

qq1q2q3
6

1
q Q

.

Let us put R = b2Q1/3
c. We may assume that R < q since otherwise we simply

choose a1 = 1, a2 = a3 = 0, q1 = q , q2 = q3 = 1.
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We now consider:
• the set S consisting of integers s ∈ [R/3, R/2);
• the set P consisting of primes p ∈ [R/2, 3R/4) with gcd(p, q) = 1;
• the set L consisting of primes ` ∈ [3R/4, R] with gcd(`, q) = 1.

Since q may have at most O(log q) prime divisors, by the prime number theorem
we see that

#S, #P, #L> R1+o(1).

Clearly, if we take q1 = s ∈ S , q2 = p ∈ P and q3 = ` ∈ L then (3) is satisfied and we
also have (2). Thus it is enough to show that the congruence

sp` ≡ 1 (mod q), s ∈ S, p ∈ P, ` ∈ L,

has a solution. For an integer u ∈ [1, q] we denote by N (u) the number of solutions to
the congruence

sp ≡ u (mod q), s ∈ S, p ∈ P . (5)

Let U be the set of integers u ∈ [1, q] for which the above congruence has a solution,
that is, N (u) > 0. It is enough to show that the congruence

u` ≡ 1 (mod q), u ∈ U , ` ∈ L, (6)

has a solution.
Also let V be the set of remaining integers u ∈ [1, q] with N (u) = 0. It follows

from [3] that

q∑
u=1

∣∣∣∣N (u) −
#S#P

q

∣∣∣∣2

6 R2qo(1)
;

see (1). Hence

#V
(

#S#P
q

)2

6 R2qo(1),

which implies that #V 6 R−2q2+o(1). Recalling that R > 2Q1/3
− 1 > q2/3+ε/3, we

see that

#L− #V = R1+o(1)
− R−2q2+o(1) > 0,

provided that q is large enough. Therefore the congruence (6) has a solution, which
concludes the proof. 2
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3. Approximation by four rationals

We now use a similar approach for approximations by four rational fractions.

THEOREM 2. Let a and q > 1 be integers with gcd(a, q) = 1. For any fixed ε > 0
and sufficiently large q, for any integer Q > q2+ε there are integers ai and qi with
1 6 qi 6 2Q1/4, i = 1, 2, 3, and such that∣∣∣∣a

q
−

a1

q1
−

a2

q2
−

a3

q3
−

a4

q4

∣∣∣∣ 6
1

q Q

holds.

PROOF. We proceed as in the proof of Theorem 1. In particular, we see that it is
enough to show that there are positive integers q1, q2, q3, q4 6 2Q1/4 with

q1q2q3q4 > Q, (7)

such that

gcd(qi , q j ) = 1, 1 6 i < j 6 4, (8)

and

aq1q2q3q4 ≡ 1 (mod q).

Let us put R = b2Q1/4
c. As before, we remark that we may assume that R < q

since otherwise the result is trivial.
We now consider:

• the set S consisting of integers s ∈ [R/4, R/3);
• the set P consisting of primes p ∈ [R/3, 2R/3) with gcd(p, q) = 1;
• the set L consisting of primes ` ∈ [2R/3, 3R/4) with gcd(`, q) = 1;
• the setR consisting of primes r ∈ [3R/4, R] with gcd(r, q) = 1.
Again, by the prime number theorem,

#S, #P, #L, #R> R1+o(1).

Clearly, if we take q1 = s ∈ S , q2 = p ∈ P , q3 = ` ∈ L and q4 = r ∈R then (8) is
satisfied and we also have (7). Thus it is enough to show that the congruence

sp`r ≡ 1 (mod q), s ∈ S, p ∈ P, ` ∈ L, r ∈R,

has a solution.
As in the proof of Theorem 1 we note the set V of integers u ∈ [1, q] for which the

congruence (5) does not have a solution is of cardinality #V 6 R−2q2+o(1).
LetW be the set of integers w ∈ [1, q] which are of the form w ≡ `r (mod q) with

` ∈ L and r ∈R. We note that #L#R= R2+o(1) products `r are distinct integers in
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the interval [1, R2
]. Since there are at most R2/q + 1 integers t ∈ [1, R2

] in the same
residue class modulo q, we obtain

#W > R2+o(1)(R2/q + 1)−1.

Since R2 > (2Q1/4
− 1)2 > Q1/2 > q1+ε/2 (provided q is large enough) we see that

R2/q + 1 6 2R2/1. Hence #W = q1+o(1). We now see that

#W − #V = q1+o(1)
− R−2q2+o(1) > 0,

provided that q is large enough. The desired result now follows. 2

We remark that in both Theorems 1 and 2 the coefficient 2 in the bound on the
denominators can be replaced by any constant c > 1.

4. Comments

It is natural to try to use (1) to improve the corresponding bound from [1] for larger
values of n too. Although some results can be obtained in this way, for n > 5 we have
not been able to achieve this. In fact, it seems quite plausible that for n > 5, instead of
using the bound (1) from [3], one can study the solvability of the congruence

q1 · · · qn ≡ 1 (mod q),

with ‘small’ q1, . . . , qn by using bounds of multiplicative character sums in the same
style as in [2, 4].
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