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Abstract
If human population growth is not controlled, natural areas must be sacrificed. An alternative is to create more
habitat, terraforming Mars. However, this requires establishment of essential, ecosystem services on a planet cur-
rently unamenable to Terran species. Shorter term, assembling Terran-type ecosystems within contained environ-
ments is conceivable if mutually supportive species complements are determined. Accepting this, an assemblage of
organisms that might form an early, forest environment is proposed, with rationale for its selection. A case is made
for developing a contained facsimile, old growth forest on Mars, providing an oasis, proffering vital ecosystem
functions (a forest bubble). It would serve as an extraterrestrial nature reserve (ETNR), psychological refuge
and utilitarian botanic garden, supporting species of value to colonists for secondary metabolites (vitamins, fla-
vours, perfumes, medicines, colours and mood enhancers). The design presented includes organisms that might
tolerate local environmental variance and be assembled into a novel, bioregenerative forest ecosystem. This
would differ from Earthly forests due to potential impact of local abiotic parameters on ecosystem functions,
but it is argued that biotic support for space travel and colonization requires such developments. Consideration
of the necessary species complement of an ETNR supports a view that it is not humanity alone that is reaching
out to space, it is life, with all its diverse capabilities for colonization and establishment. Humans cannot, and
will not, explore space alone because they did not evolve in isolation, being shaped over aeons by other species.
Space will be travelled by a mutually supportive system of Terran organisms amongst which humans fit,
exchanging metabolites and products of photosynthesis as they have always done.
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Introduction

The United Nations (UN) urges protection and restoration of global ecosystems (UN, 2015). However,
the human population, predicted to exceed nine billion in 2050 (UN, 2017), requires feeding and
c. 37% of the world’s land area is used for agriculture (pasture and arable) (FAO, 2017). Some predic-
tions indicate this will increase by 2050 (Öborn et al., 2011); in less than a century, globally significant
wilderness may not exist (Watson et al., 2016).

Various estimates put Earth’s carrying capacity for Homo sapiens at or below eight billion (UN,
2012), so choices are necessary. If human population growth is not controlled, semi-natural areas
must be sacrificed to food production and urbanization, engendering ecosystem collapse and environ-
mentally forced population reduction. An alternative is to create more living space, e.g., habitats orbit-
ing Earth or on the Lunar or Martian surface. The concept of extraterrestrial (ET) nature reserves
(ETNRs) arises, as envisaged in Douglas Trumbull’s 1972 film ‘Silent Running’.

Such work is portended by the European Space Agency’s (ESA’s) MELiSSA project, envisaging
closed, bioregenerative life-support for human space missions (e.g., Lasseur et al., 2010), and the con-
tained ecosystems of Biosphere 2 (cf., Nelson, 2018). Plants will be critical to human survival outside
Earth (Poulet et al., 2016), as life-support systems, providing food, oxygen (O2) and water purification
(Wolff et al., 2014). Therefore, space exploration requires establishing ecosystem services in ET envir-
onments, for pragmatic, selfish and altruistic reasons.

Terraforming Mars is considered (e.g., Sagan, 1973, McKay, 1982, McKay et al., 1991, Birch, 1992,
McKay and Marinova, 2001, Beech, 2009, Jakosky and Edwards, 2018, Pazar, 2018). Accepting long
time scales, this offers security for Earth life threatened by astronomical or anthropogenic catastrophe.
Eventually, Terran-type ecosystems (TTEs) might be assembled on a modified planet’s surface, though
contained communities may be achievable sooner and as a necessary step.

Mars is therefore proposed as a location for a contained TTE (CTTE). Assuming containment can
provide tolerable conditions, Mars offers gravity, atmosphere, sufficient sunlight for photosynthesis
(Table 1) and water (Rummel et al., 2014), while proximity to Earth allows management.

A Martian CTTE would self-justify, offering refuge, retreat and ecosystem services for astronauts
concerned with exploration, resource harvesting or colonization. It would provide wonder, inspiration,
purpose and a psychological stepping-stone for more ambitious projects. Humanity’s exploration of
space will need a network of such oases, supporting terraforming resources and offering biotic refresh-
ment. Forest ecosystems would be apposite.

Forest environments have health benefits (stress reduction, recovery from fatigue, rehabilitation)
(Karjalainen et al., 2009). Ancient forests have emotional, spiritual and cultural significance (e.g.,
Lowman and Sinu, 2017). Threatened by human impact (Frank et al., 2009; Laurance, 2015), they
are archetypes, visions of arboreal majesty and biotic complexity (e.g., Wirth et al., 2009). Such
TTEs would offer relief from ET sterility.

Facsimile old growth forest could be established over a century on Earth (Smith, 2018), but present-
day Mars’ surface is hostile to Earth-adapted life, with high radiation levels (Nixon et al., 2013), thin
atmosphere and other stressors (e.g., Table 1). TTEs would need shielding.

This account assumes a semi-autonomous, contained environment could be created on Mars, large,
strong and shielded enough to support a forest, hold positive atmospheric pressure, protect it from
meteorites (e.g., Daubar et al., 2019) and exclude harmful radiation (a ‘forest bubble’, McKay 2022
personal communication 20th August) (Fig. 1).

Challenges of constructing, large Martian ‘worldhouses’ have been discussed (Taylor, 1992; 1998).
Acknowledging small containments’ limitations (Taylor, 1998), and flaws in minimum habitat areas
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Table 1. Relative characteristics of Earth and Mars

Earth Mars

Surface gravity (Manzano et al., 2018) 1 g (9.81 m/s2) 0.38 g (cf. Earth’s Moon 0.17 g)
Geomagnetic field <30 to >60 μT at surface

(Occhipinti et al., 2014)
Local, crustal magnetic fields (Acuña et al., 2001)

Solar irradiance (W/m2) (Williams, 2021a) 1361.0 586.2
Relative day length (Williams, 2021a) 1 1.03
Year length (McKay and Marinova, 2001) 365.25 days 687 days
Sunlight relative to Earth 100% 43% (McKay et al., 1991). Sufficient for photosynthesis

(Lehto et al., 2006; Cockell and Raven, 2004; Verseux
et al., 2016)

Ultraviolet light (UV) (McKay and Marinova, 2001) >300 nm >190 nm
Average temperature (mean temperature of body
over entire surface)

288 K (15°C) (Williams,
2021b)

c. 210 K (− 63°C) (Williams, 2021a)

Temperature range (McKay and Marinova, 2001) −60 to 50°C −145 to 20°C (to c. 35°C, NASA, 2007)
Surface atmospheric pressure 101 400 pascals (1014 mbar)

(Williams, 2021b)
636 pascals (6.36 mbar) (Williams, 2021a) (potentially

12.4 mbar seasonally in Hellas basin (Haberle et al.,
2001)

Atmospheric oxygen (O2) 20.95% (Williams, 2021b) 0.16% (Williams, 2021a)
Atmospheric carbon dioxide (CO2) Minor component (415 ppm)

(Williams, 2021b)
95.1% (Williams, 2021a)

Atmospheric nitrogen (N2) 78.08% (Williams, 2021b) 2.59% (Williams, 2021a)
Atmospheric argon (Ar) Minor component (9340 ppm)

(Williams, 2021b)
1.94% (Williams, 2021a)
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Residual atmospheric composition (ppm) (CO as %) H2O (c. 1%); H2 0.55; CH4,
1.7; He 5.24; Kr 1.14; Ne
18.18 (Williams, 2021b)

H2O 210; NO 100; Hydrogen-deuterium-oxygen 0.85;
Kr 0.3; Ne 2.5; Xe 0.08; (CO 0.06%) (Williams,
2021a)

Surface UV flux (W/m2) (average
levels at zenith angle of 0 °
(after Cockell and Andrady,
1999)

UVC (200–280 nm) c. 0 4.1 (at perihelion1)

UVB (280–315 nm) 2.0 9.6 (at perihelion1)
UVA (315–400 nm) 56.8 37.9 (at perihelion1)

1Perihelion: closest point to sun during an elliptical orbit, therefore maximum incident UV flux.
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Fig. 1. Conceptual drawing of 20 ha footprint ‘forest bubble’ (location may constrain shape).
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(e.g., van der Hoek et al., 2015), a hemispherical, environmentally controlled, enclosure of c. 0.25 km
radius is envisaged (20 ha footprint). Many semi-natural Earth woods are smaller (e.g., Peterken, 1993)
and Biosphere 2’s designed rainforest occupies c. 0.2 ha (Nelson, 2018).

Outlining of constraints (cf. Table 1) leads to justification of a concomitant forest design with novel
species complement (cf. Table 2). Discussion of ethics follows.

Environmental constraints

Ionizing particle radiation (IR)

Unlike Earth, Mars lacks a significant global magnetic field to exclude incoming charged particle radi-
ation (e.g., Atri, 2016), its surface subject to solar energetic particles and galactic cosmic radiation that
damage living tissues (e.g., Nelson, 2013, 2016).

Artificially generated magnetic (e.g., Townsend, 2005; Battiston et al., 2012; Bamford et al., 2014;
Ambroglini et al., 2016), or electrostatic (Tripathi et al., 2008; Joshi et al., 2013) fields, improved pas-
sive shielding, local crustal magnetic fields (e.g., Alves and Baptista, 2004) and/or thick layers of Mars
regolith (e.g., Röstel et al., 2020) might provide solutions.

Dohm et al. (2011) consider cavern refuges. One existing skylight accesses a void at least 37 m deep
(Cushing, 2012). Such places might protect CTTEs from IR. Prisms could refract sunlight into under-
ground chambers (cf. Luxfer prisms, Neumann, 1995), IR bypassing them.

Sunlight (including UV)

Martian day length resembles Earth days, and CTTEs can exploit local sunlight (Table 1). Subterranean
situations might use mirror/fibre optic delivery, augmented by light emitting diodes (Nakamura et al.,
2013). Electric light requires maintenance but sunlight collection is vulnerable to dust storms (e.g.,
Fernández, 1998; Martínez et al., 2017). Self-cleaning, light-harvesting surfaces are needed.
Superomniphobic materials (Sun and Böhringer, 2019) augmented by electrodynamic technology
(Mazumder et al., 2016) or ‘plasma brooms’ (Ticoş et al., 2017) might provide solutions but surface
micro-/nano-coatings are short-lived (Sun and Böhringer, 2019). Vertical light-harvesting surfaces
might shed dust, while light-transmitting plants (e.g., Duckett and Ligrone, 2006) might inspire materials.

Besides diffuse illumination, forest understoreys experience sunflecks (short periods of direct irradi-
ance when sun penetrates canopies) (e.g., Pallardy, 2008). Their nature depends on canopy physi-
ognomy, solar declination and solar time (Chazdon and Pearcy, 1991). Sunflecks are energy sources,
significant to small organisms (including seedlings) and potential stressors (e.g., Leakey et al.,
2004). Photosynthesis during them may provide 30–60% of daily C gain (Chazdon, 1988), plants’
responses involving UVB photoreceptors (Moriconi et al., 2018).

Static, unidirectional lighting in windless CTTEs would not engender sunflecks’ dynamic chiaros-
curos (cf. Way and Pearcy, 2012), so lighting manipulation, exposure to natural solar ecliptic and/or
leaf-animating wind is needed.

Mars’ harsh surface UV flux (Table 1) is sterilizing due to thin atmosphere and lack of significant
ozone (Cockell et al., 2000; Kminek et al., 2010). UV has positive (Juzeniene and Moan, 2012) and
negative (e.g., Lee et al., 2013, Rettberg et al., 2004) effects on organisms. Fortunately glass/plastic
combinations can exclude harmful wavelengths whilst transmitting beneficial UV and visible light
(e.g. (Duarte et al., 2009; Tuchinda et al., 2006), so flux in CTTEs can be controlled.

Some UV is necessary for vitamin D synthesis and other mechanisms in animals (e.g., Juzeniene
and Moan, 2012; Wilson et al., 2012; Baines et al., 2016) and necessary irradiances may be determined
(Cockell and Andrady, 1999). Many, non-human animals have vision in the UV spectrum (e.g., Bennett
and Cuthill, 1994, Cronin and Bok, 2016) including honeybees (Apis mellifera) (Reverté et al., 2016).
Some pollinators use UVA for navigation (Cockell and Andrady, 1999). Human wellbeing and ecosys-
tem function will therefore require modulation, not total exclusion, of Mars’ UV flux.
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Magnetic fields (MFs)

Life evolved within Earth’s geomagnetic field (GMF) (Maffei, 2014). Magnetic guidance mechanisms
exist in some microorganisms, and many animals (Frankel, 1984) and MF changes might impact plant
growth and development (Wolff et al., 2014). So, some behaviours might be compromised on Mars
due to the lack of a GMF. This may affect CTTEs.

Climate, temperature and pressure

Mars’ mean surface temperature is −63°C. While periods above freezing occur, surface atmospheric pres-
sure is so low (Table 1), any water ice that melts usually sublimes to vapour (Lewis, 2003). The limit for
higher plant tissue growth may be 5°C, little occurring at 6–7°C (Körner, 2008). ‘Biologic zero’ relates to
soil temperatures when microorganisms and or plants become inactive, sometimes considered 5°C
(Rabenhorst, 2005). CTTEs must therefore maintain elevated internal air temperature and pressure.

Mars’ equator might offer a thermal advantage over other Arean locations for a CTTE. However, other
factors apply. Haberle et al. (2001) discussed regions where ground temperature and surface pressure can
be favourable for the existence of liquid water, including the Hellas basin. The base of this 9 km deep
impact crater (Ali and Shieh, 2014) potentially experiences 12.4 mbar surface pressure during the nor-
thern summer (Haberle et al., 2001). Such locations might facilitate contained pressure differentials.

CTTEs will require heating and dispersal of excess heat. Inevitably, heat will be lost to the external
environment over time. No insulation is perfect, seals must allow ingress/egress, and dust storms (cf.
Fernández, 1998) will reduce solar benefits but ‘intelligent’ computer-controlled structures (Taylor,
1998) might maintain suitable environments. Biosphere 2’s complex control systems indicate engineer-
ing challenges and power needs (Nelson, 2018).

Solar power has potential (e.g., Delgado-Bonal et al., 2016; Vincente-Retorcillo et al., 2018) but
due to dust storms (Fernández, 1998), hybrid power generation, with rechargeable batteries and/or
nuclear thermoelectric technology (e.g., LaMonica, 2012; NASA, 2019a), may be needed.
Geothermal options might exist (Morgan, 2009; Sori and Bramson, 2019).

Seasons

Biomes change seasonally, so CTTEs require seasons. Temporality determines critical developmental
stages, individual physiologies and interspecific relationships, while timing of abiotic events influences
global nutrient fluxes (Forrest and Miller-Rushing, 2010). Photoperiod and winter chilling are involved
in temperate plants’ phenology (Richardson et al., 2013). Development of many insects is seasonally
synchronized, enabling tolerance of adversity (Danks, 2007). Phenological cycles are fundamental to
ecosystem function (e.g., Stucky et al., 2018) and climate changes can desynchronize critical interac-
tions (Thackeray et al., 2016). Seasons also imbue characteristics critical to psychological restoration,
e.g., autumn colour, winter silence, spring flowers and summer leafiness.

Mars has four seasons, approximately twice duration of Earth’s (e.g., ESA, 2019). These vary in length
due to its elliptical orbit, spring in the northern hemisphere (autumn in the southern) being the longest
(NASA, 2019b). Whether Earth organisms can adapt to Mars seasons, even in containment is unknown.

Conditions on Earth have not selected for tolerance of seasons of such asymmetry and length
(Taylor, 1998). So, CTTEs need artificially controlled seasons (diverging from semi-autonomy) or
to be assembled from species tolerant of seasonal aberrance, the latter if relying heavily on passive sun-
light delivery.

Lunar cycle

Most Earth organisms have circadian clocks, endogenous, molecular timing systems, allowing antici-
pation of Earth’s 24-h light-dark cycle and maintenance of behavioural cycles (Bollinger and Schibler,
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Table 2. Potential integrants for contained Martian TTE

Forest element Taxon Justification Ecosystem services

Canopy layer
Forest structure.
Building materials,
fibres, paper, fuel,
food, medicines
(e.g., FAO, 2014).

Alnus glutinosa
(Betulaceae)

Monoecious tree of wet soils, reproducing by seed (McVean, 1953).
Symbiotic, N-fixing actinomycete Frankia in roots (Dawson
et al., 2005). Actinorhizal plants provide major N source in
terrestrial ecosystems (Dawson, 1986). Schimel et al. (1998)
indicate importance in early successional boreal forest,
contributing N and C to developing soils and facilitating
establishment of soil N-cycle. Exhibits chlorosis on calcareous
soils and intolerant of 6 months mean daily temperature ≤0°C
but seed germination independent of substrate pH (3.5–8.0).

Nitrogen fixation. Tanniferous
wood resistant to decay in
water (McVean, 1953).

Acer saccharum
and Acer spicatum
(Sapindaceae)

A. saccharum: keystone species in North American/Canadian
forests important for birds and invertebrates (Minorsky, 2003).
Withstands cold winters (USDA Hardiness Zones 3–8 (− 34.4
to− 6.7°C)) (Missouri Botanical Garden, 2022a). A. spicatum:
survives average annual extreme minimal temperatures of− 40
to− 45.6°C (USDA Hardiness Zone 2) (see Miller, 2006).

Aesthetics, seasonal colour,
dynamism, low gravity leaf/
fruit fall (winged samaras).
Sugary sap (syrup) (Minorsky,
2003).
Food, alcohol and fuel.

Betula species
(Betulaceae)

Long-lived pioneer species of successional environments.
Atkinson (1992) reviews. B. pendula can live to 180 years
(Mitchell, 1974). B. pubescens ssp. tortuosa forms treeline at
c. 700 m a.s.l. in Sweden (Truong et al., 2007). Betula spp. grow
on nutrient-poor soils and have a wide geographical and edaphic
range while ectomycorrhizal associates sometimes increase zinc
tolerance (Atkinson, 1992).
Extent into Siberia corresponds to c. mean January temperature
of− 30°C for B. pubescens,− 20°C for B. pendula (Atkinson,
1992, referencing Meteorological Office 1978 data). Many
associated insects (e.g., Kennedy and Southwood, 1984). Being
monoecious (Simpson, 2010), managed airflow and anemophily
obviate need for pollinating insects.

Pharmaceutical, cosmetic and
dietary applications
(Krasutsky, 2006).
Essential oils for flavouring
and medicine (Demirci et al.
(2004).
Antimicrobial potential of
associate Fomitopsis betulina
(Pleszczyńska et al., 2017).
Winged seeds contribute
dynamism.

Cupressus gigantea
(Cupressaceae)
(potentially a variety of
C. torulosa (Maerki and
Hoch, 2013))

Imposing canopy trees. Native to altitudes >3000 m a.s.l. and
considered endangered (Maerki and Hoch, 2013). Suitable for
USDA Hardiness Zone 7 (Trees and Shrubs online, 2020), i.e.,
tolerates annual extreme minimum temperature of− 17.8 to−
12.2°C (USDA, 2012). Reaching 40 m tall, some groves
protected as ‘sacred forest’ (Farjon, 2010).

Building wood, scented
volatiles, wood-preserving
terpenes and incense (Farjon,
2013). Potential height offers a
sense of wonder and incites
pilgrimage.

(Continued)
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Table 2. (Continued.)

Forest element Taxon Justification Ecosystem services

Ericaceae Heavy metal tolerance for iron-rich Martian regolith. Ericaceous
plants dominate nutrient poor, acidic soils with high levels of
potentially toxic metals. This is attributed to ericoid mycorrhizal
fungi (Daghino et al., 2016). These capture N and P and limit
plant’s accumulation of metals (see Bradley et al., 1982). E.
trimera is a high-altitude canopy species (Hemp, 2006).

Heavy metal tolerance (see also
shrub layer).

Juniperus tibetica,
J. convallium
(Cupressaceae)

Longevity offers continuity, opportunity for legacy. Many oldest
recorded trees are conifers (Rocky Mountain Tree-Ring
Research, undated); drought stress resistance due to xylem
structure (Patten et al., 2010, Choat et al., 2012) might
contribute to longevity (FAO, 2014).
Junipers are long-lived (Ward, 1982, Liang et al., 2012, Rocky
Mountain Tree-Ring Research, undated, Liu et al., 2019). J.
tibetica is a high-altitude treeline species tolerant of extremes of
solar radiation and frost (e.g., Farjon, 2010). Often grows with J.
convallium (Miehe et al., 2003).
Juniper seeds’ adaptation for dispersal by frugivores (Chambers
et al., 1999) necessitates artificial seed dispersal if co-evolved
animal vectors are excluded.

Bazin (2013) notes sacred status
of high-altitude juniper, forests
(‘incense forests’) in Tibetan
Buddhism providing aromatics
and defining sacred spaces.
Invokes connection and
pilgrimage.

Lagarostrobos franklinii
(Podocarpaceae)

Longevity. Tasmanian species, sea level to 1000 m a.s.l. and hardy
to USDA Zone 8 (down to− 12.1°C) (Christian, 2022). Forms
long-lived clonal colonies. Ring counts indicate tree ages >2500
years, pollen analysis indicates a clone >10 000 years old (see
Earle, 2020). Endangered by over exploitation (Fitzgerald and
Line, 1990).

Longevity.
Methyl-eugenol in timber
confers resistance to decay
(Fitzgerald and Line, 1990).

Picea abies Tolerant of shade, dry and wet habitats, monoecious, and
dominates north European boreal forests, reaching 2300 m a.s.l.
(Skrøppa, 2003). One individual 9550 years old (Umeå
University, 2008). USDA Hardiness Zones 2–7 (i.e., to− 45.6°
C) (Missouri Botanical Garden, 2022d).
Anemochorous, numerous mycorrhizal associates and
preference for acidic soils (Caudullo et al., 2016).

Wood for musical instruments
(Caudullo et al., 2016) and
fibres for paper (Skrøppa,
2003). Resin found in propolis
honeybees use to control hive
pathogens (Drescher et al.,
2019).
Potential for art and music,
link with Earth.

Pinus sylvestris Dominates climax vegetation on many nutrient-deficient sites,
planted on wide ranging soil types and tolerating severe cold to
Mediterranean climates (Carlisle and Brown, 1968). Supports

Competitiveness. Resin found in
propolis (Drescher et al.,
2019).
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diverse bryophytes, lichens (Øyen et al., 2006) and arthropods
(Thunes et al., 2004).

Populus species Genus may have potential for perchlorate degradation either
directly (van Aken and Schnoor, 2002) or by root products
driving bacterial perchlorate respiration (Shrout et al., 2006).
P. tremuloides resisted freezing to− 80°C and survived
immersion in liquid nitrogen (− 196°C) (Sakai and Weiser
1973). Has potential to form extensive clonal colonies
(DeWoody et al., 2008).
Successions of Salix, Equisetum, Alnus and Populus facilitate
development of soil nutrient cycles (Schimel et al., 1998).
Populus ecosystems support diverse species (Rogers and
McAvoy, 2018).
Dioecious (Byng, 2014) so both genders needed for fertile seed
but anemophily (Meikle, 1984) allows pollination by air.

Potential for perchlorate
degradation.
Fast-growing, low-flammable
timber (Mabberley, 1987)
Resin of P. balsamifera, P. ×
canadensis found in propolis
(Drescher et al., 2019).
Resin provides seasonal
perfume.

Salix species Possible potential for perchlorate uptake and remediation
(Susarla et al., 2000). Twigs and buds of some species survive
liquid nitrogen immersion if winter-hardened (Stushnoff and
Junttila 1986). Even some tropical species show a high degree of
freezing resistance (Sakai, 1970). Many associated insects (e.g.,
Kennedy and Southwood, 1984).
Predominantly dioecious, examples pollinated by wind and
insects (e.g., Tollsten and Knudsen, 1992). Both genders
needed.

Potential for perchlorate
remediation.
Analgesic. Salix provides
precursor to acetylsalicyclic
acid traded as aspirin (e.g.,
Mahdi et al., 2006).

Shrub layer
Diversifies niches
and products.
Enhances human
experience.

Caragana species C. versicolor is a keystone leguminous, Himalayan shrub;
cushion-like form and thick rootstock adapt it to cold aridity at
3800–5400 m a.s.l. (Kumar et al., 2016). Grazed by animals, it
helps maintain the Trans-Himalayan ecosystem (ibid.).
C. arborescens, hardy down to USDA Hardiness Zone 2 (Reza,
2015) (− 45.6 to− 40°C average annual extreme minimum
temperature). Potential in mine spoil reclamation (e.g., Hensley
and Carpenter, 1986). Shortt and Vamosi (2012) review its
tolerance, including alkaline and saline soils. It invades forest
understorey (Henderson and Chapman, 2006).

N-fixation and salinity
tolerance.
Potential for forest edge or
open conifer woodland.
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Table 2. (Continued.)

Forest element Taxon Justification Ecosystem services

Eleagnus angustifolia Fast-growing temperate Eurasian tree of mountains, plains and
desert (CABI, 2019). Extending to cold, high altitude, Trans-
Himalayan regions (Singh et al., 2008) and surviving frosts of−
30°C (Bartha and Csiszár, 2008). Katz and Shafroth (2003)
review its invasiveness in riparian environments indicating
actinorhizal N-fixation, tolerance of alkalinity and salt,
xerophytic capacity, seeds with three-year dormancy. With
hermaphrodite flowers (Singh et al., 2008), it establishes from
seed, and mycorrhizal inoculum is available (CABI, 2019).

Fragrant, insect-pollinated
flowers (Katz and Shafroth,
2003).
Attractive wood with artisan
potential (Vaughan and
Mackes, 2016).
Edible fruit high in vitamin
C and nectar used by bees to
make honey (Bartha and
Csiszár, 2008). Terrestrial
halophytes may include
colonists tolerant of Mars salty
regolith.

Tamarix ramosissima T. ramosissima–T. chinensis hybrid complex highly invasive in
arid-climate riparian zones (Global Invasive Species Database,
2015). Killed by temperatures below− 33°C (within temperature
range of the North American Great Plains) (Friedman et al.,
2008) but this shows some resilience to cold. Seeds have no
dormancy and germinate immediately (Global Invasive Species
Database, 2015).
A facultative phreatophyte able to switch between groundwater
and unsaturated soil moisture, it invades xeric and saline riparian
habitats (Sun et al., 2016), excreting excess salt through leaf
glands (Global Invasive Species Database, 2015). Will grow in
perchlorate contaminated ecosystems (Urbansky et al., 2000).

Salt (and some perchlorate)
tolerance. Provides nectar and
a useful wood (Global
Invasive Species Database,
2015).

Fallopia (Reynoutria)
japonica

Invasive by vegetative spread, growing on various soil types
including colliery spoil, clays and free-draining mineral soils, at
pHs of 3.0–8.5 (Beerling et al., 1994). Shows tolerance to
heavy metals (Michalet et al., 2017) and salt (Rouifed et al.,
2012). F. japonica colonizes volcanic soils including basaltic
gravels with poor nutrient and water-holding capacity
(Beerling et al., 1994). Range extends to 3800 m a.s.l. (CABI,
2020). Though vulnerable to frost (Beerling et al., 1994),
distributional and climate data indicate geographical extent is
limited by minimum temperatures of− 30.2°C (Beerling, 1993).

F. japonica and F. sachalinensis
provide most of the
resveratrol (anticancer drug)
in nutritional supplements
(CABI, 2020).
Heavy metal tolerance.
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Pueraria spp. Problematic on Earth, due to invasiveness, fast-growing kudzu vine
(various Pueria spp.) (Fabaceae) might provide a forest climber.
Well-known invasive ability (e.g., Harron et al., 2020) but
isoprene emission and high N-fixation capacity (doubling soil
NO fluxes) make P. montana a unique source of tropospheric
ozone precursors (Hickman et al., 2010). This is a pollution
concern on Earth but highly beneficial for Mars terraforming.
Coiner et al. (2018) indicate P. montana var. lobata can
acclimatize to cold, potentially surviving down to− 26°C.
Pueria spp. are problematic on legacy mine sites, interfering
with reforestation (Burger et al., 2013), but P. montana var.
lobata is also a lead hyperaccumulator, considered for
phytoremediation (Schwarzauer-Rockett et al., 2013).

Ozone formation, N-cycle,
fast-growing.

Hippophae rhamnoides Deciduous, dioecious shrub of mountain riversides, sandy gravel
(Gutzeit et al., 2008) and sand dunes (Pearson and Rogers,
1962). Seeds viable after 12 weeks at− 20°C and require low
temperature before germination (ibid., 1962). Tolerates
temperatures of− 45 to + 43°C (Krejcarová et al., 2015). Cold
resistant, drought-tolerant and saline-alkali resistant, will grow
at 60–5200 m a.s.l. and is distributed over arid/semi-arid high
mountain ecosystems of Eurasia (Husain et al., 2018). Frankia
symbionts allow N-fixation and use as a pioneer species (Kato
et al., 2007).

Berries have high vitamin A, C
and E content (e.g., Gutzeit
et al., 2008, Kato et al.,
2007)). Potential use in cancer
therapy (Olas et al., 2018). Oil
has been used in treatment of
radiation burns (Piłat et al.,
2015) and of interest in skin
protection from UV (Gęgotek
et al., 2018). A potential crop
for cold arid regions (Husain
et al., 2018), e.g., Martian
ETNRs.

Adenocarpus foliosus Relatively high-altitude N-fixing component of Macaronesian
heaths.

Diversifies N-fixing component.

Rosaceae Aesthetic value and many deciduous tree and shrub species of
commercial importance for fruits. Cold-hardy cultivars exist
for apples, sour cherries and plums, some considered hardy
down to USDA Hardiness Zone 3 (− 40 to− 34.4°C) (e.g.,
Sutton and Dunn, 2021).

Seasonal fruits of
anthropocentric value and
increasing potential for
possible animal colonists.
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Table 2. (Continued.)

Forest element Taxon Justification Ecosystem services

Shrub layer of Juniperus
tibetica forest

J. tibetica forest is drought and cold tolerant with sparse shrub
layer of Berberis aggregara, Cotoneaster spp., Lonicera spp.,
Potentilla fruticosa, Ribes spp., Rosa omeiensis, Spiraea
mongolica and S. alpina. Caragana (see in table above),
N-fixer, occurs at the driest and coldest extreme (Chen, 2015).

Berberis, Cotoneaster, Lonicera
and Rosa as fleshy fruit-
bearing species contribute to
seasonal food sources for
animals. Need for vitamin C
(e.g., Ribes spp.) necessitates
their presence.

Ericaceae Ericoid mycorrhizas enable Ericaceae to colonize acidic soils
containing high levels of heavy metals (Bradley et al., 1982).
Calluna vulgaris (e.g., Leake et al., 1989) and Vaccinium spp.
(Freedman and Hutchinson, 1980) might thus contribute to an
ericaceous shrub layer beneath open canopy or successional
stage. Mycorrhizal associate Hymenoscyphus ericae confers
some heavy metal resistance to its host (Mitchell and Gibson,
2006).

Food, flavour (e.g., Vaccinium
spp., Sater et al., 2020),
seasonal colour, heavy metal
tolerance (cf. canopy layer).
Nectar (Power et al., 2018).

Herb layer
Diversifies niches
and products.
Enhances human
experience.

C3 and C4 plants Anatomical and biochemical adaptations divide plants into C3 and
C4 types. C4 plants store CO2 as malate and photosynthesize
with closed stomata, thus minimising photorespiratory losses,
and making them better adapted to arid environments than
C3 plants (e.g., Young, 2020). C4 trees are however rare, and
woody C3 vegetation can outcompete lower growing C4
communities (Sage and Sultmanis, 2016).
Most plants, especially of temperate landscapes, are C3. The
efficiency of C3 photosynthesis increases as pO2 falls from
210 to c. 20 mbar (Björkman, 1966). This offers potential
advantages for a high-altitude type of environment with pO2

much less than the Earth’s sea-level value of 213 mbar (e.g.,
Sharma and Hashmi, 2021). In C3 plants, elevated CO2

increases photosynthesis (see Ainsworth and Rogers, 2007).
The need to create a contained atmosphere from the native
Martian high CO2 resource may lead to a higher than Earth CO2

component, so this facet of C3 plants may be beneficial for the
forest. By contrast, C4 plants are in general relatively
unresponsive to elevation of atmospheric CO2 above current
ambient levels (Taub, 2010).

Diverse responses to
atmospheric stressors offers
insurance against unplanned
variation in contained
atmosphere.
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A selection of C3 and C4 plants is therefore proposed for a
contained ETNR, providing a spectrum of tolerance to variance
in water supply, available N and atmospheric O2/CO2 variance.

Herb layer components of
Juniperus tibetica forest

Herb layer of Juniperus tibetica forest includes Andropogon munroi
(Poaceae), Deyeuxia scabrescens (Poaceae), Kobresia spp.,
(Cyperaceae) and species of Anaphalis, Artemisia,
Leontopodium (Asteraceae), Polygonum (Polygonaceae),
Stellera (Thymelleaceae) and Thalictrum (Ranunculaceae)
(Chen, 2015). These offer a potential ready-mix of herb species
for a facsimile high-altitude forest, meriting consideration due
to co-evolution perspectives.

Poaceae and Cyperaceae offer
ground cover, Asteraceae
offer niche opportunities for
insects. In UK, Anaphalis
margaritacea is an invasive
colonist of abandoned coal
waste heaps, with nutrient-
poor mineral soils and low
water-holding capacity.

Myrrhis odorata Native in woodlands (Watson, 2002) and hardy to USDA
Hardiness Zone 5 (− 28.9 to− 23.3°C) (Missouri Botanical
Garden, 2022c), M. odorata would provide ecological structure,
aesthetics (white flowers) and utility (anethole, Ravindran et al.,
2012))
Astronauts’ cravings for spicy foods after periods in
microgravity and comments on the ‘sterile’ smell of spacecraft
(e.g., Romanoff, 2009) could become significant issues on long
space missions. Strongly, but pleasant, smelling plants may
be psychologically beneficial.

Herb substitute for anise or
fennel, containing
trans-anethole (Ravindran
et al., 2012)
Widely used in foods and
beverages, 13 times sweeter
than sugar and with
medicinal properties (Marinov
and Valcheva-Kuzmanova,
2015), botanically derived
anethole provides an option
for ‘Martian sugar’.
Less demanding for high-
altitude facsimile ecosystem
than Saccharum spp.

Digitalis purpurea Species of acidic soils (Smith, 2013), suitable for woodland,
providing colourful flowers and nectar (e.g., Gaffal et al.,
1998). Hardy to USDA Hardiness Zone 4 (− 34.4 to− 28.9°C
(Missouri Botanical Garden, 2022b).

Source of cardiotonic glycosides
(digoxin and digitoxin) used
in treatment of heart disease
(e.g., Patil et al., 2013).
Aesthetics and insect
support.
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Table 2. (Continued.)

Forest element Taxon Justification Ecosystem services

Azorella compacta Surviving extreme high elevation (Atacama Desert), water
scarcity, nutrient limitation, high UV flux, and reaching 3000
years old, compact cushion form allows decoupling of
microclimate inside from surroundings (Pugnaire et al., 2020).
Might be used on forest periphery.

Survivorship.

Arenaria bryophylla,
Sussurea gnapholodes,
Lepidostemon
everestianus, Androsace
khumbuensis, Saxifraga
lychnitis var.
everestianus

Highest vascular plants on Earth; collected at c. 6400 m a.s.l. on
Everest expeditions (Dentant, 2018).

Forest periphery species:
insurance against pressure
loss.

Fabaceae from Canarian,
oligospecific pine
forests

N-fixing legumes of immature soils experiencing climatic and
edaphic drought: Lotus campylocladus, L. spartoides from
forests of endemic Pinus canariensis of dry montane level 500–
2500 m a.s.l. (EEA, 2019). L. campylocladus is nectar source for
insects (Dupont et al., 2004a).

N-fixation, nectar, aesthetics.

Herbaceous species from
Canarian montane
scrub

Tropical alpine vegetation experiences some of the highest UV-B
irradiances on Earth’s surface and constituent plants show high
levels of UV protection (Barnes et al., 2017), a useful character
for Mars terraforming. Even assuming harmful UV is excluded,
these have other useful adaptations. Las Cañadas (≥2000 m
a.s.l.) (Tenerife) has well-drained, skeletal soils, strong UV, low
precipitation and relative humidity (Dickson et al., 1987).
Subject to great diurnal and seasonal fluctuations in temperature
(Fernandopullé, 1976; Ortuño, 1980), it supports species of
value for an ETNR. Deep-rooted, thick cuticle, N-fixing,
legumes (e.g., Spartocytisus supranubius), and species with
dense, reflective epidermal indumentum (e.g., Echium
wildprettii) have potential for stages of uncontained Martian
terraforming. E. wildprettii produces nectar and is visited by
birds and insects including honeybees (Apis mellifera) (Dupont
et al., 2004b). Spartocytisus supranubius is exploited in honey
production (Bonvehí et al., 2004).

UV resistance, skeletal soil
tolerance, some N-fixers,
nectar.
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Ferns Contained atmosphere is vulnerable to sub-catastrophic events
including drastic humidity change, so biotic insurance requires
inclusion of diverse species with different tolerances.
As seedless vascular plants, ferns inhabit temperate, desert and
tropical environments, showing alternating, independent
sporophyte and gametophyte phases. The latter, despite relative
anatomical simplicity, can show extreme dessication tolerance,
growing where sporophytes cannot and sometimes perennating
and waiting out stressful periods (Pittermann et al., 2013). Fern
gametophytes have even retained viability after storage in
liquid nitrogen (Pence, 2000).
Photosynthetic gametophyte of Trichomanes speciosum can
reproduce vegetatively, showing extreme low-light adaptation,
surviving in norms of <0.01% full sunlight (Johnson et al.,
(2000). Potential sub-catastrophic light loss due to dust storms or
system failure merits its inclusion.
Some ferns tolerate high altitude, e.g., Huperzia saururus at
5200 m (Jacobsen and Jacobsen, 1989) and other high páramo
species (Sánchez-Baracaldo and Thomas, 2014).

Spore production diversifies
propagule range. Alternating
life stage requirements
increases potential to survive
sub-catastrophic
environmental fluctuations.
T. speciosum offers darkness
tolerance (photosynthesis in
periods of light occlusion/
delivery failure). Fern ground
flora enhances visitors’ forest
experience.

Bryophytes Some mosses tolerate extreme environments (Glime, 2017).
Aulacomnium turgidum, Distichium capillaceum, Encalypta
procera and Syntrichia ruralis survived 400 years in glacial ice
(La Farge et al., 2013), Grimmia laevigata 10 years herbarium
storage (Keever, 1957). One Grimmia species survived exposure
to liquid helium (Becquerel, 1951).
Huwe et al. (2019) report limited exposure of Grimmia species
to Mars-like atmospheres did not affect photosynthetic activity,
noting many Grimmia species occur in cold altitudes (to 5000 m
a.s.l.), on basalt or granite, hair points providing protection
against UV and desiccating wind. Such characteristics make
good candidates for an ETNR.
Through reductive simplicity, Japanese moss gardens planted
with Polytrichum commune (e.g., Schenk, 1997) offer ground
cover and psychological restoration.
Poikilohydry, tolerance of freezing or desiccation and ability
to reproduce asexually (Huwe et al., 2019) offer additional
biotic insurance, successful spore formation less critical to
propagation. Inclusion of species with N-fixing cyanobacterial

Psychological restoration,
aesthetics, ground cover,
contribution to N-cycle.
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Table 2. (Continued.)

Forest element Taxon Justification Ecosystem services

associates (e.g., Adams and Duggan, 2008) offers pragmatic
contribution to N-cycle.

Epiphytes and ground
layer

Lichens Many lichens can live and photosynthesize under low temperatures,
aridity and high UV fluxes (de Vera, 2012). Mars Simulation
Chamber experiments with extremophile, Antarctic
Pleopsidium chlorophanum indicate Terran life could adapt to
live on Mars (de Vera et al., 2014).
Cyanolichens incorporating cyanobacteria engage in N-fixation
(Marks et al., 2015). On Earth, cryptogamic covers
(photoautotrophic communities including cyanobacteria, algae,
lichens and bryophytes on surfaces) account for about half
terrestrial biological N-fixation (Elbert et al., 2012).
Lichens will therefore be a valuable functional aspect of the
ETNR, providing N-fixation, photosynthesis, niche diversity,
colour and texture in a contained environment.

Nitrogen fixation, niche
diversification, colour and
texture.

Microbiome Mycorrhizal fungi Fungi’s role in decomposition is discussed in the main text but
mutualisms with plants are also critical. ETNRs require fungal
associates of the constituent plant species, including
heterogeneous mycorrhizal fungi. Associated with roots of
>90% of plant species (Bonfante and Genre, 2010), these are
critical to soil nutrient capture (e.g., Smith and Read, 2008), and
some contribute to decay processes (e.g., Talbot et al., 2008).
Hymenoscyphus ericae is discussed under ‘Ericaceae’.

Root function, plant nutrition
and decomposition.

Bacteria Designing ETNRs’ prokaryotic complement demands empirical
development, experimentation, assembling unique complements
of bacteria, fulfilling essential ecosystem functions, expecting
unknown interactions, and essential redundancy. When planting
a tree on Earth, supporting microbial diversity is expected,
consciously or unconsciously, to be present. In ETNRs this
cannot be assumed. Calculated lack of sterility is needed; the
ETNR design must be ‘down and dirty’. de Vera et al. (2019)
suggest diverse microorganisms may survive (uncontained)

Nutrient cycles, symbioses and
synergies (some unknown),
decomposition.
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Mars-like conditions for minimum 1.5 years, so choice exists.
Lladó et al. (2017) review roles of soil bacteria in forests
including decomposition, N-fixation, C-sequestration,
phosphorus cycling and mycorrhizal function, different forest
types and niches supporting specific communities. Plants are
inhabited by critical microbiomes (including bacteria, archaea,
fungi and protists) important to development, function,
N-fixation, protection against pathogens, growth promotion and
stress alleviation (Hardoim et al., 2015). The importance of
canopy microbes for plant health is not thoroughly investigated
(Nakamura et al., 2017).
Forest bacteria and other microorganisms able to interact and
fulfil these different roles will be needed when, in some cases,
the mechanisms by which this operates is not yet understood.
Mars has resources needed by cyanobacteria with
photosynthetic, N-fixing and lithotrophic abilities; these could
produce food, fuel and O2 for humans, organic matter from their
growth supporting other organisms and aiding soil formation
(Verseux et al., 2016). Assimilation of perchlorate-reducing
proteobacteria (e.g., Nozawa-Inoue et al., 2005) into the ETNR
provides additional insurance against toxic ingress.
Specific microbial integrants will be essential, but regolith
inoculation with diverse Terran soils invites serendipity,
unknown complexity demanding calculated randomness.
Incorporation of N-fixing bacterial symbionts (Rhizobium and
Frankia species for leguminous (Maróti and Kondorosi, 2014)
and actinorhizal plants (Dawson et al., 2005)) will be critical.

Invertebrates Earthworms, generalist
pollinators and
comminutors.

Ethical parameters require species to thrive. As discussed, some
insects learn to fly in microgravity (Nelson and Peterson, 1982;
Vandenberg et al., 1985). Effect of Mars’ gravity on
invertebrates is speculative but possibly less challenging than
microgravity. Experiments will be needed to determine essential
species complement considering seasonality, food sources, life
cycles and containment limitations, as directed by the following:

Soil function, plant pollination,
population control, nutrient
cycling, decomposition,
psychological restoration,
biotic insurance.
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Table 2. (Continued.)

Forest element Taxon Justification Ecosystem services

• Plants and soil biomes are linked by herbivores, pathogens,
symbionts, decomposition and nutrient cycling (Sylvain and
Wall, 2011). Invertebrates mediate decomposition, nutrient
cycling and pollination. Value includes allospecific solace,
inspiration and biotic insurance. However, soil invertebrates
are diverse, sizes ranging across orders of magnitude (Lavelle
et al., 2006) and soil communities broadly (Decaëns et al., 2006)
encompass most terrestrial animal species. Evidence for which
soil invertebrate activities affect plants is incomplete (Griffiths
et al., 2021) but even if all species’ importance was known,
selection would be challenging; deciding synergies and
redundancies critical to TTE establishment.

• Minimal complements of volant, non-specialist pollinators,
earthworms for soil aeration and comminution, ants and
molluscs to contribute and predators to control populations are
essential but assembly of a functioning forest invertebrate fauna
demands experimentation. Estimates of soil biodiversity indicate
thousands of invertebrates per site, plus unknown levels of
microbes and protozoa (Menta, 2012). Lavelle et al. (1997)
discuss invertebrates’ importance as ecosystem engineers with
roles in soil modification and microbial processes, and
contributing to crumb structure, porosity and comminution.
Nematodes, collembola, mites, earthworms and termites are
important for decomposition (Landsberg and Gower, 1997) but
links between soil animal diversity and vegetation are numerous,
intricate and ancient (Sylvain and Wall, 2011).

• Inclusion of insect pollinators requires supply of year-round
sources of suitable nectar and/or insect dormancy interludes. This
requires sequential anthesis of appropriate nectar-bearing species
during seasons of pollinator activity. Nectar composition varies
between plant species, relating to pollinator species exploited
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(e.g., Dupont et al., 2004a), and its chemistry influences
pollinator behaviour in complex ways (Nepi et al., 2018). Nectar
sources and chosen pollinators must be compatible.

• Generalist invertebrate predators (e.g., spiders) offer population
control. Orthoptera, would contribute restorative aural
distraction. Desiccation and radiation tolerant tardigrades
(Jönsson et al., 2008) offer biotic insurance.

Non-human vertebrates omitted as ability to engage in natural behaviours is not ensured.
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2014). Similarity of day length of Mars and Earth (Table 1) suggests adaptation may occur in CTTEs,
processes according with the same temporal cues (zeitgebers).

However, the lunar cycle is also relevant. Earth’s moon, Luna, is a zeitgeber for many ecological
processes, some pertaining to monthly or half monthly cycles, others to shorter periods (e.g., Raible
et al., 2017). Examples include animals (e.g., Raible et al., 2017; Sinclair, 1977; Dixon et al.,
2006) and plants (e.g., Barlow, 2015; Ben-Attia et al., 2016). Lunisolar tidal force may also influence
plant growth (Barlow and Fisahn, 2012).

Mars’ two moons, Phobos and Deimos, have maximum radii of c. 13.5 km (NASA, 2019c) and
c. 7.5 km (NASA, 2019d) respectively, small compared to Luna’s radius of c. 1737 km (cf.
Williams, 2021c). Rao (2015) speculates there are parts of Mars from which the moons are never vis-
ible due to orbital proximity and Mars’ curvature.

Evidence for organisms’ responses to Earth’s lunar cycle varies from well substantiated to specula-
tion but inevitably Terran species, translocated to Mars, would experience a different lunar influence,
the effects hard to predict.

Soil

TTEs require suitable organic substrate. Freighting constraints require local development. Mars has a
basaltic upper crust, with variable abundances of other materials (Ehlmann and Edwards, 2014).
Basalt-derived soils with volcanic ash are good agricultural soils (e.g., Olowolafe, 2002). Crushed bas-
alt can increase soil pH, while its dissolution releases beneficial nutrients, including phosphorus (P)
(Shamshuddin and Che Fauziah, 2010).

Martian substrate probably contains nutrients to sustain plant growth (e.g., Jordan, 2015). ‘Mars
regolith simulant’, supports angiosperms (Wamelink et al., 2014) and, with added organic matter,
earthworms (Wamelink et al., 2022).

Plants require 16 essential elements, C, hydrogen, O2, nitrogen (N), P, potassium, calcium, magne-
sium, sulphur, iron, zinc, manganese, copper, boron, molybdenum and chlorine (Uchida, 2000). These
are all reported from Mars or Mars meteorites (Jordan, 2015). Cobalt and nickel (e.g., Brown et al.,
1987, López and Magnitskiy, 2011) are also relevant, being involved in biological N-fixation.
Nickel has been detected in Martian substrate (Gellert et al., 2006; Yen et al., 2006) and cobalt in puta-
tive Martian meteorites (Lodders, 1998).

Plant growth requires reactive N, predominantly nitrate (NO3
−); 40–60 ppm NO3

− advised for vege-
table crops (Cantisano, 2000). Evidence suggests up to c. 1100 ppm of NO3

− in Mars’ sedimentary
deposits (Stern et al., 2015).

Phosphates are essential for Earth life (Tirsch and Airo, 2014). Evidence indicates Mars is 5–10
times more phosphate rich than Earth, mineralogical studies (Adcock et al., 2013) suggesting bio-
logical accessibility.

So Martian regolith may contain necessary nutrients for a CTTE, while low organic C, water hold-
ing capacity and cation accessibility might be improved by microbiological weathering (Cockell, 2011).

Cyanobacteria are proposed for in situ resource processing (Verseux et al., 2016). Photosynthetic,
N-fixing Nostoc, will grow on Martian regolith simulant (Arai et al., 2008) and early successional
cyanobacterial communities improve soil moisture retention (Danin et al. (1998).

Toxicity

Martian substrate contains perchlorates (ClO4
−) at concentrations much higher than typically found on

Earth (Davila et al., 2013). These affect thyroid function (e.g., Srinivasan and Viraraghavan, 2009) and
some plant growth experiments with regolith simulant assume remediation (Gibbens, 2017). Other oxi-
dants present at Mars’ surface include hydrogen peroxide and iron oxides (e.g., Lasne et al., 2016).
Mars has over twice as much iron in its outer layers as Earth (Peplow, 2004) and, though an essential
plant nutrient, it can accumulate to become toxic (Connolly and Guerinot, 2002). In combination, iron
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oxides, hydrogen peroxide, perchlorates and Mars’ UV flux, are highly deleterious to living cells
(Wadsworth and Cockell, 2017). Extreme salinity is another potential stressor (e.g., Ramírez et al.,
2017).

Tolerance of such parameters will be desirable in ETNRs, though CTTEs allow remediation. Many
perchlorate-reducing bacteria exist (e.g., Coates and Achenbach, 2004) and bacterial enzymes have
potential to detoxify hydrogen peroxide (Nóbrega and Pauleta, 2019). Perchlorate is also highly soluble
in water (Davila et al., 2013), allowing biotic and/or abiotic decontamination.

Water

Present Mars is a cold desert (McKay, 2010). However, the freshwater content of Mars’ permanent
north polar ice cap is c. 100 times that of the Laurentian Great Lakes (Rummel et al., 2014). Liquid
water may even exist beneath the southern polar ice (Orosei et al., 2018) and ‘recurring slope lineae’
may be active surface brine flows (e.g., Ojha et al., 2015).

Evidence indicates sufficient water reserves for CTTEs (toxin removal possible). Conifer needles
collect cloud drops (Unsworth and Wilshaw, 1989) suggesting delivery options. Atmospheric tempera-
ture gradients with dew points (Lu and Ho, 2019) and microstalactite ceiling materials (condensation
foci) merit exploration for artificial rain.

Di-oxygen (O2) and di-nitrogen (N2)

Mars’ atmosphere is CO2 rich with little O2 or N2 compared to Earth (cf. Table 1). O2 is essential for
aerobic TTEs, while relatively inert N2 is useful in bulking atmospheric pressure. Reactive N is present
in proteins and nucleic acids, so sufficient atmospheric N2 must be available for biological N-fixation
(McKay and Marinova, 2001) and cycling. CTTEs on Mars therefore require increased atmospheric O2

and N2.
Fortunately, Mars’ resources include oxygen bound in perchlorate, carbonate (Bridges et al., 2019)

and nitrate (the latter providing fixed N) that might be harvested. Davila et al. (2013) propose enzymic
release of O2 from perchlorate and N2 might be liberated by bacterial denitrification (e.g., Hart et al.,
2000). Technologies are also developing for mining Martian atmosphere (Finn et al., 1996; Sridhar
et al., 2000) and CTTEs do not necessitate duplication of Earth’s mean atmospheric pressure and com-
position; atmospheric pressure varies altitudinally and species’ tolerances vary.

Klingler et al. (1989) showed some bacteria capable of N-fixation from partial pressures of N2 down
to 5 mbar (25 times current Mars levels). Some plants can utilize O2 levels well below, and tolerate CO2

levels above, current Earth values. Photosynthesis can be enhanced at O2 concentrations below ambient
(e.g., Downes and Hesketh, 1967), due to reduction in photorespiration (e.g., Hagemann et al., 2016).
Some show higher photosynthetic rates under elevated CO2 (e.g., Ainsworth and Rogers, 2007), bene-
fitting from the ‘CO2 fertilization effect’ (Zheng et al., 2018).

Green plant photosynthesis might generate elevated O2 levels in a CTTE. Fogg (1995) considered
root respiration demand could limit plant growth on Mars until atmospheric O2 was raised to 20–100
mbar (>3000 times current levels) but levels in containment could be primed.

Modification of contained Martian atmosphere is therefore conceivable and may be less demanding
than anticipated. As initial O2 levels rise, and biological N-cycle initiates, photosynthetic eukaryotes
may mediate further atmospheric modification, ultimately achieving conditions tolerable by invertebrates.

Gravity

Terran life evolved within Earth’s gravitational field (1 g) and CTTE success depends on development
and function under Mars’ lower gravity (Table 1).

Light and gravity modulate plant development (Vandenbrink et al., 2014). Experiments indicate 0.3 g
(< Mars) sufficient to trigger gravitropic responses, but that meristematic competence can be lost under
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lunar-like (0.17 g) gravity (Manzano et al., 2018). Nevertheless, plants will grow and photosynthesize
even in microgravity (e.g., Monje et al., 2005; Wolverton and Kiss, 2009). Though some biochemical
(Cowles et al., 1988) and anatomical (Hoson et al., 2003) changes may occur, results conflict
(Stanković, 2001).

From such evidence, it is conceivable that some plants (and fungi, cf. Kern, 1999) will tolerate
Mars’ gravity. However, forest function is also influenced. Leaf and propagule fall, leaping, flight,
deadwood collapse, raindrop impact and drainage of water contribute dynamism. On Mars, things
weigh 38% their Earth weight, potentially benefitting trees etiolated by low light, or lacking wind-
induced reaction wood (Groover, 2016) (cf. Biosphere 2, Nelson, 2018).

Many organisms reproduce and disperse by airborne propagules. If these develop normally, greater
dispersal capacity under lower gravity may not be problematic, provided they can disperse. This may
require vectoring to avoid intergenerational competition, so, CTTEs need wind. However, lower gravity
means lighter propagules and thermal gradients might be exploited to generate air currents.

Some plants and fungi exploit ‘splash cups’ from which propagules are dispersed by raindrop
impact (Brodie, 1951). Such structures evolved in response to rain falling under 1 g, their functionality
on Mars unknown but testable.

Potential to leap, climb or fly on Mars with less effort will influence TTE function and some animals
may benefit from positive energy budgets. Some insects learn to fly in microgravity (Nelson and
Peterson, 1982; Vandenberg et al., 1985), so potential exists. Capacity of most animals to adapt is
unknown but 0.38 g is not zero g.

Forest design

Species complement dictates forest appearance, physiognomy and functioning. Limited by the abiotic
environment sustained, this will perforce include an unusual assemblage of species (integrants), toler-
ant of prevailing conditions, comprising a novel ecosystem. On Earth, species niches are limited by
competition and availability. Local environmental parameters in CTTEs will lead to new fitnesses, spe-
cies occupying different roles where niche requirements are provided.

It would be counterproductive to plan replication of a specific forest biome. Earth’s forests owe their
assemblages to environmental and evolutionary pressures that will differ to those in Martian CTTEs.
No single forest food web has been fully mapped, canopies themselves potentially comprising over
100 000 trophic links (Nakamura et al., 2017), challenging duplication. Lack of GMF, reduced sun-
light, aberrant seasons, variant lunar cycle, reduced gravity and pedological peculiarities will engender
novel ecosystem function.

Significant seasonal differences make it unlikely the same palettes of synchronized mutualisms,
which define Earth’s forests, could be established on Mars, though dormancy traits might prove useful
(e.g., Taylor, 1998) and potentially some species would adapt. If so, a forest might be established but it
would only consist of those organisms than can adapt. Design must therefore include planned redun-
dancy, allowing for unknowns.

Mitsch and Jørgensen (2003) indicate that if enough organisms and propagules are delivered, local
conditions will select out the best-adapted assemblage. In Odum’s (1983) terminology, ecosystems
self-organize from the available (Smith, 2018 discusses) and designers must allow ‘self-organization’
since active assembly of complex species networks would demand unattained prescience.

ETNR designers should consider species as ecological cogs that might be assembled into functional
ecosystems. Replication of Earth forests is currently unfeasible but development of new ecosystems,
functioning in unexpected ways, is conceivable. Mars’ forests would not resemble or function exactly
like Earth’s forests but could still deliver wonder; autumn at 0.38 g offering dreamlike leaf fall.

Early ETNRs may be relatively oligospecific, freighting considerations, even for seeds, restricting
initial complement. Selection must acknowledge survivability and ecosystem function, while expedi-
ence requires instrumental value, species producing wood, fibre and important secondary metabolites
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(vitamins, flavours, perfumes, colours, mood enhancers). Species diversity must be built incrementally,
over time, by assisted colonization, monitoring, adjustment and replenishment.

The proposed forest is intended as an expansion of Earth’s ecosystem, a utilitarian botanic garden
and restorative sanctuary. Arboreal communities that can be ‘entered’, offering a sense of ‘escape’ sup-
port the latter, several tree taxa proposed as canopy. The design incorporates some organisms consid-
ered problematic on Earth but exhibiting potential ET adaptability or terraforming value. Heretical
recombination is incited, selecting species from various forest biomes to exploit useful traits, fulfilling
essential roles. On Earth, ecosystems rely on co-existence for services including N-fixation and mineral
breakdown but in a CTTE all needs must be met either artificially or by integrants. Experimentation
will be necessary, knowledge accruing, anticipating subsequent ecosystem modification.

Varietal forests adapted to extreme ambient parameters offer templates of resilience. High-altitude
forests tolerate low atmospheric pressures and temperatures. Early successional forests exploit soils
low in nutrients and sometimes high in heavy metals. Attempted duplication of a specific high-altitude
ecosystem has merit in that species complement can be determined, co-evolution satisfied and incom-
patibilities minimized. However, this does not allow selective assembly, failing to acknowledge prece-
dent diasporic Earth forest (Smith, 2018) and unique Martian exigencies.

Species complement

Mars’ forest complement is designed with reference to local constraints, instrumental value and surviv-
ability (Fig. 2). The assemblage is broadly justified below and detailed in Table 2.

Trees of high altitudes provide the foundation. Earth has elevational limits beyond which trees can-
not grow (Körner, 2012). About 100 species worldwide form trees at the climatic treeline, reducing to
c. 20 (Pinaceae and Betulaceae) at the arctic equivalent, (Körner, 2012). Miehe et al. (2003, 2007) dis-
cuss high-altitude Tibetan forests, including the sacred Reting Forest, where Juniperus tibetica
(Cupressaceae) grows in an open shrub layer of J. pingii var. wilsonii, Potentilla fruticosa, Lonicera
spp. and Caragana spp. Two junipers, Juniperus convallium (3500–4570 m a.s.l) and J. tibetica
(4100–4850 m a.s.l.), are widespread in southern Tibet (Miehe et al., 2003). They form small forests,
sometimes amongst Picea and in open stands of Cupressus torulosa var. gigantea (Farjon, 2010).
J. tibetica forms the highest northern hemisphere treeline (e.g., Miehe et al., 2007), some stands
being pilgrimage sites (Miehe et al., 2003) or religious landmarks (Miehe et al., 2008).

Climatic limits of cold timberlines relate to isotherms of 10°C for warmest month’s mean
temperature (Daubenmire, 1954). Similar mean growing-season temperatures of c. 6.7°C, at climatic,
high-elevation treelines worldwide indicate temperature control (Hoch and Körner, 2005). Rainfall data
suggest the drought limit of juniper trees correlates with annual precipitation of 200–250 mm and
Miehe et al. (2003) argue the high mountain deserts of southern Tibet could be reforested without
irrigation, even lacking a high groundwater table.

Mars’ soils will shape the contained forest, so, early successional colonizers, common to high
altitude environments, e.g., pines (Pinus spp.) and birches (Betula spp.) are included. Substrate pH
constrains species choice. Contained soils may be modified but minimal intervention is expedient.
Phoenix Mars Lander measured an alkaline pH of 7.7 ± 0.5 for substrate (Hecht et al., 2009) whereas
Opportunity rover found evidence of slightly acidic to circum-neutral pH (Arvidson et al., 2014),
so soils of varying pH could be developed allowing species diversity.

Juniperus tibetica grows on rocky soils derived from siliceous and calcareous materials,
experiencing extremes of solar radiation and frost (Farjon, 2010) but CTTEs might also incorporate
canopies from high altitude heaths, i.e., Erica arborea or E. trimera (e.g., Beentje, 2006).
Ericaceous plants’ tolerance of acidic, metalliferous soils (Bradley et al., 1982) may be useful.
N-fixing plants will also be essential. The N-fixing shrub Caragana versicolor, tolerant of
Himalayan cold aridity (Kumar et al., 2016), is proposed for clearings and margins.

Creation of ETNRs as biotic insurance against planetary disaster requires human redundancy,
currently unachievable. A biocentric ideal would be a self-monitoring, self-repairing containment
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able to support a living ecosystem even following human abandonment. However, this would represent
a pyrrhic legacy if the containment survived an event, its ecosystem extirpated. CTTEs should include
some species resilient to sub-catastrophic containment failure, providing opportunity for
re-establishment in the manner of Terran ecosystems post adversity.

Plants categorized in USDA Hardiness Zones 1a to 7b (USDA, 2012) offer potential for survival of
unplanned temperature drops, these covering species able to survive average, annual winter tempera-
tures of −51.1 to −12.2°C. Choice of range is subjective but −12.2°C must offer ‘some’ insurance
against partial containment failure (increasing levels below that). This provides significant opportunity
for the development of boreal forest types, dominated by conifers but with associated broad-leaved
plants.

Long-lived seeds, able to withstand deep cold, O2 starvation, fire and/or decompression and to sub-
sequently germinate, would contribute to recovery from temporary containment failure. Ability to
resprout from hypogeal structures (e.g., James, 1984) would also be useful. A mixture of species, resili-
ent to periods of reduced atmospheric pressure, darkness, desiccation or other extremes, facilitates
biotic insurance, i.e., however severe life support failure is, something will survive.

Individual longevity is desirable in certain integrants. Initiating ancient tree development would pro-
vide visionary opportunity. Intangible though such issues are, ancient trees may ultimately engender
historical connection between CTTE designers, facilitators and future visitors, potential for legacy, a
harnesser of political and financial support.

Junipers are long-lived. J. communis can live c. 200 years (Ward, 1982), J. pingii var. wilsonii >300
years (Liang et al., 2012). Dendrochronological analysis provides ages >2000 years for J. occidentalis
(Rocky Mountain Tree-Ring Research, undated) and >2230 and 1265 years for J. przewalskii and
J. tibetica respectively (Liu et al., 2019). By vegetative reproduction, some trees persist as clonal
organisms for centuries. A Populus tremuloides clone in North America, extending over 43.6 hectares
(DeWoody et al., 2008), is potentially of great age (Rogers and McAvoy, 2018).

Fecundity is important in future proofing. Rapidly reproducing plant species can repopulate in the
event of non-critical losses. Less fecund species may be vulnerable to vicissitudes of population
decline, entering extinction debt in the event of partial catastrophe. Rapidly propagating species
(e.g., Betula spp.) should therefore be included.

ET ecosystem design philosophy is nascent. Just as some plants develop winter hardiness, surviving
freezing (e.g., Vitasse et al., 2014), unexpected phenotypic adaptations to other stressors might be
expressed in ETNRs. Such unpredictable phenomena make the difference between success and failure,
so adaptability is important and ‘invasiveness’ on Earth may be a valuable trait in ET environments.

To facilitate ecosystem construction, some understorey species are selected with consideration to
natural occurrence alongside canopy integrants. Necessity to avoid allelopathic incompatibility moti-
vates this, though, notably, some invertebrates require multiple plant species for life cycle completion.
Such niche requirements could be difficult to fulfil but experiment may reveal unknown tolerances and
suitabilities, while selection of some naturally co-occurring plant species may assist.

Use of extremophiles from Mars-like, high-altitude deserts on Earth is not emphasized. Though rep-
lication of cold desert ecosystems might be easier to achieve on Mars than forests and would offer
biotic insurance, it is arguable whether similar psychological and inspirational benefits would ensue.
Recreation of non-forest ecosystems on lifeless planets is laudable, a responsibility inherent to human-
ity’s burgeoning space-faring ability, but the creation of wonder and incitement to pilgrimage require a
physically imposing plant community; this demands trees.

Acknowledging the issues above, Table 2 presents a forest-like assemblage incorporating biodiver-
sity, resilience and functionality. Human psychological restoration requires interest and distraction, vari-
ation in colour, hue and form, species variety and opportunity for haptic exploration, so these are
integrated. Ecosystem services that integrants could supply, relating to human life support and life qual-
ity are listed.

ET forest (ETF) survival requires future proofing against system failures. Political support dwindles
less if such failure is only partial. Trial and error will shape the species palette, but that presented plans
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Fig. 2. Selection factors for Mars’ forest species complement based on local constraints, instrumental value and survivability.
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for unmitigated success and limited catastrophe. Since all photosynthetic plants provide O2 and absorb
CO2, this major ecosystem service is common throughout. Designers must note that dioecy sometimes
demands two genders.

Decomposition

Decomposition must occur in CTTEs. Without breakdown of dead biological material, nutrients
become sequestrated, atmospheric CO2 depleted and ecosystem cycling ceases (e.g., Chapin et al.,
2002). Table 2, therefore includes decomposers.

Organic litter fall is crucial in biogeochemical cycling (e.g., Krishna and Mohan, 2017). Arthropod
communities mediate its degradation (e.g., Berg et al., 1998). Litter and deadwood are also C sources
for forest soil microbes (e.g., Lladó et al., 2017). Kjøller and Struwe (1992) discuss microfungi’s key
role in degrading diverse complex molecules. Bacteria are also important, especially in the soil N-cycle
(e.g., Takai, 2019).

CTTE designers must provide suitable biota able to carry out decomposition processes (disassem-
bly, fragmentation, trituration, digestion, solution and N-cycle steps from ammonification to denitrifi-
cation). The risk of N-cycle dysfunction requires monitoring and proactive correction technology may
be necessary, diverging from ideals of human redundancy. With Earth’s functional biogeochemical
cycles, creation of a forest ecosystem is readily conceivable but incorporation of such support into
CTTEs poses challenges.

Ethics

Whether an ETNR is ecologically effective depends on scale. Optimal size of Earth nature reserves is
debated (e.g., Diamond and May, 1981; Higgs, 1981) and ETNRs demand similar scrutiny. Size of
CTTEs may be limited by engineering constraints, but ‘minimum-area requirements’ and ‘minimum
viable population’ sizes will be relevant, as per the SLOSS debate (i.e., whether a single large reserve
will conserve more species than several small, e.g., Tjørve, 2010).

To provide biotic insurance ETNRs require assemblages from all Kingdoms of living things includ-
ing animals. This raises ethical issues, ecosystem dysfunction potentially leading to suffering through
system failures, unsuitable design or intolerances.

In facilitating psychological recovery of space workers, animals would be beneficial. Woodland
without birdsong or butterflies is a poor TTE. Such lack may exacerbate homesickness. However,
when creating habitats on Earth, many animals can elect to inhabit or leave by their own volition.
This choice is denied in a CTTE. Introduction of species unable to engage in natural behaviours should
be avoided, consideration of the ‘five freedoms’ (Farm Animal Welfare Council, 1993; Webster, 2016)
will be necessary and human management may be essential.

Consequences of contact between biospheres is also a consideration, as reflected in the UN’s Outer
Space Treaty of 1967 (United Nations, 1967) and the International Council for Science’s Committee on
Space Research (COSPAR) Planetary Protection Policy (COSPAR, 2002 (amended 2011), Rummel
et al., 2014). Creation of contained biospheres reduces risk of ecosystem contamination but, since
no containment is perfect, protection of Mars’ ‘Special Regions’ (Rummel et al., 2014) influences
location choice.

Conclusions

Creating a contained ETF is more complex than establishing woodland plants in a protected environ-
ment. Even gardens rely on natural nutrient cycling, soil disturbance and irrigation. CTTEs should be
almost self-sustaining with propagule dispersal vectors, internal weather and replication of the myriad
changes that forests exploit. The designers’ task is daunting but, if survival of Earth life is to be
ensured, challenges must be overcome.
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Humanity does not know if life exists elsewhere in the universe. Mars may support native organ-
isms, but even if it does, Earthly life may be endemic to Earth. Perhaps, life only exists on Earth.
In either of which cases, Homo sapiens as the local sentient, technologically empowered species,
has responsibility.

From a biocentric perspective, world leaders should be concerned about the future of life in the
Universe and humanity’s role in its protection and promulgation. On a planet of limited habitability,
this is a significant duty. The survival of life, in any form, is the ultimate biocentric priority.

The global ecosystem changes and its conservation requires imagination. Evidence indicates that a
contained ETF could be established on Mars. A partially human-redundant protection system would be
needed but, like the juniper forests of Tibet, the forest’s existence would incite pilgrimage, embolden-
ing efforts for space travel. It is easier enter a desert, knowing it contains an oasis.

This paper does not consider economics. Sending humans into environments without ecosystem ser-
vices adds to space travel’s cost (e.g., Glenn Smith and Spudis, 2015). ESA’s MELiSSA project indi-
cates that humans should not think of travelling alone but with a supporting biosphere. We travel
through space every moment, sustained by Earth’s biodiversity. Our planet carries a self-supporting,
bioregenerative ecosystem that, accepting Lovelock’s (1979) Gaia hypothesis, modifies and sustains
its own life supporting qualities. So, spacecraft should be reimagined as symbiotic communities.

The sailing ships of past explorers were not sterile. They carried animals for food and as living cargo
(e.g., Blancou and Parsonson, 2007), for companionship (Mäenpää, 2016) and as pests (e.g., Atkinson,
1973). Sometimes, animals were released or escaped onto foreign shores where some thrived or became
problematic (e.g., Campbell and Donlan, 2005; Harper and Bunbury, 2015), examples of accidental, inci-
dental and deliberate dispersal of Terran species. Goats were once purposely liberated on remote islands
by mariners, as a self-renewing food resource (Dunbar, 1984). Such attitudes may become necessary dur-
ing space exploration, creating oases on barren but habitable planets. Spacecraft will carry multiple spe-
cies complements, contributing life support for long journeys and on arrival at lifeless destinations.

ETNR design will be inspired by human dependency on ecosystem services, even in purely utilitar-
ian fashion, because, despite technology, that dependence cannot be shed. We need plants as chemical
factories, producing secondary metabolites with greater ease and more autonomy than industry.
Ultimately, humans must take Earth’s ecosystem with them, acting as the medium through which it
colonizes the planetary archipelago of space. We will not travel alone because we did not evolve in
isolation. Homo sapiens was shaped, over aeons, by other species and will travel with a mutually sup-
portive system of Terran organisms amongst which we fit, exchanging metabolites as we have evolved
to do. It is not humanity that is reaching out from Earth, it is life, with all its diverse capabilities for
colonization, humanity the ineluctable vector.
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