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Abstract

Discrete Interval Encoding Trees are data structures for the representation of fat, i.e. densely

populated sets over a discrete linear order. In this paper, we introduce algorithms for

set-theoretic operations like intersection, union, etc. on sets represented as balanced diets.

We empirically analyse their performance and show that these algorithms can outperform

previously known algorithms on sets, such as the ones implemented in OCaml’s standard

library.

1 Introduction

Many algorithms operate on sets of elements of a certain type. It is therefore desirable

to have efficient data structures that represent sets in a programming language. There

is no natural representation since – mathematically – a set is nothing more than

a collection of elements with no further structure on them. Objects that represent

such elements and that reside in a standard computer memory are naturally ordered

though. That means that any representation of sets in a standard programming

language has to introduce and use some additional structure on these elements.

The simplest examples of such representations are lists, introducing an arbitrary

ordering that is not even a partial order. The price to pay is possibly multiple

occurrences of elements and therefore suboptimal space consumption. Also, lookup

operations have bad running times. Very quick lookup/insert/delete operations can

be performed on boolean arrays as set representations. This way, the elements are

totally ordered by the indices in the array. The disadvantage of this representation

is the fact that best-case space consumption is as bad as the worst case. Hence, such

representations are only useful for small sets, resp. sets over a small domain.

Larger sets or just sets over larger domains are usually stored as binary search trees

(Cormen et al., 1992; Adams,1993). This also requires a total ordering on their ele-

ments, but this ordering is then used in a clever way to perform lookup/insert/delete

operations avoiding the traversal of the entire data structure in the average case

whilst keeping space consumption low as well. The low running times – logarithmic

in the size of the set – can even be guaranteed in the worst-case when the search
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trees remain balanced. This can be achieved with some minor enhancements on the

insert and delete operations and at the expense of a very minor increase in space

consumption: the nodes on the trees have to carry some additional information

about how balanced their subtrees are. There are various types of balanced search

trees for the representation of sets around, the most prominent ones being AVL

trees (Adelson-Velskii & Landis, 1962) and red-black trees (Bayer, 1972; Guibas &

Sedgewick, 1978).

For certain types of sets, this does not yield a space-optimal representation.

Examples include fat sets – the opposite of a sparse set – in which elements tend

to occur in chunks, i.e. in non-trivial intervals of the underlying total order. Erwig

suggested a modified data structure for the presentation of such sets: discrete interval

encoding trees, or diets for short (Erwig, 1998).

Diets are binary search trees in which every node carries two elements of the

underlying total order. These two elements define an interval, being the least and

the greatest element of that interval. All intervals in a diet are maximal, i.e. no

two intervals in it are overlapping and not even touching each other. For instance,

the set {1–3, 6, 7, 9, 11–13} can be represented by the set of maximal intervals [1, 3],

[6, 7], [9, 9], [11, 13]. These intervals can be stored in a binary search tree since the

total odering on the set’s elements extends naturally to non-overlapping intervals

over this domain.

It should be clear that such a representation can be very succinct for fat sets.

The double occurrence of the 9 in this representation indicates though, that this is

potentially wasteful for sparse sets. The space consumed by such a representation is

not predominantly determined by the size of the set but by the number of closed

intervals the set can be decomposed into. This is usually much less for fat sets.

On the other hand, lookup/insert/delete operations on standard binary search trees

have to be modified in order to work on diets. This, however, does not impede

their efficiency under reasonable assumptions about the running times of comparing

operations on the underlying domain, and works as one would expect.

• Lookup operations do not compare their argument with the content of a node

but check for inclusion in the represented interval by performing one or two

comparisons with the interval’s bounds.

• Insert operations are modified like the lookups but, additionally, have to keep

the invariant about maximality of intervals intact. Hence, if an inserted element

extends an existing interval on either side, then this could lead to a merging

of that interval with the next, resp. preceding one.

• Delete operations are modified similarly; removing a single element, for

instance, may split up an interval into two parts which may require a reordering

of the tree’s nodes.

Again, the performance of such operations depends on the trees being balanced.

What is desirable here is a running time logarithmic in the size of the tree rather

than the set. Remember that the size of the tree is the number of maximal intervals

that the represented set can be decomposed into. In order to achieve this, trees need

to remain balanced.
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Erwig, in his introductory paper (Erwig, 1998), has not taken balancing into

account. This has been taken up by Ohnishi, Tasaka and Tamura who showed how

to enhance diets by using AVL trees rather than simple binary search trees for the

structuring of the intervals (Ohnishi et al., 2003). Note that the insert operation on

diets is slightly different from that on simple binary search trees: rebalancing may be

required not only due to the insertion of a new interval but also due to the merging

of two intervals, which then also entails a deletion step.

This is where the algorithmic handling of diets stops in the literature. In particular,

there is no description of efficient set-theoretic (union, intersection, difference, etc.)

let alone functional operations (iteration through all elements, partitioning of a set

according to an arbitrary predicate, etc.) on balanced diets. Ohnishi et al. describe

how to partition a set represented as a diet according to a predicate of the form

“less or equal a given element”, but it is easy to see that this is very similar to a

deletion operation and does not generalise to arbitrary predicates.

We remark that there are several ways to carry out such operations, not all of them

are optimal. For example, there is a balanced diet implementation of sets of integers

as part of the Camomile library (Yoriyuki, 2003). It covers the extensive interface

of the set implementation in the OCaml standard library,1 including partitioning,

iteration and the like on top of the set-theoretic operations. It does not feature

optimal algorithms though. There are of course other data structures which serve

similar purposes whilst storing data in a different way, for example Patricia tries

(Gwehenberger, 1968; Morrison, 1968) which can also be used to represent sets of

data.

In this paper, we describe better algorithms on balanced diets for set-theoretic and

functional operations. An OCaml implementation is publicly available (Friedmann

& Lange, 2010) – the code for handling the AVL trees is borrowed from the Objective

Caml Standard Library Set module (Leroy, 2010).

The paper is organised as follows. Section 2 introduces balanced diets formally.

Section 3 describes three binary functions on trees, namely the union, intersection and

difference of sets and analyses their worst-case running time behaviour. In Section 4,

we show that these algorithms presented here do indeed improve over existing and

alternative ones in practice.

2 Balanced diets

A linear order is a pair (M,�) consisting of a set M and a binary relation � ⊆ M×M

s.t. for all x, y, z ∈ M we have

• if x � y and y � z, then x � z, and

• if x � y and y � x, then x = y, and

• x � y or y � x.

1 http://caml.inria.fr/pub/docs/manual-ocaml/libref/Set.html
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As usual, we write < to denote the strict part of �, i.e. x < y iff x � y and x �= y.

Also, we write � for the maximal element of M if it exists, and ⊥ for the minimal

element likewise.

A discrete linear order is a triple (M,�, succ) s.t. (M,�) is a linear order and

succ : M \ {�} → M is a unary function s.t. for all x ∈ M \ {�}:

• x < succ(x), and

• there is no y s.t. x < y and y < succ(x).

It is easy to see that each discrete linear order induces another function pred which

is defined on M \ {⊥} and behaves like the inverse of succ.

In the following we fix a discrete linear order (M,�, succ) and introduce the entire

theory w.r.t. this fixed one. We will also sometimes speak of M as a discrete linear

order when in fact we mean (M,�, succ).

An interval of M is a non-empty N ⊆ M s.t. for all x, y, z ∈ M:

• if x ∈ N, y ∈ N, x < z, and z < y, then z ∈ N.

A finite interval is such an (non-empty) N that has finitely many elements only.

The minimum of a finite interval N is an x ∈ N s.t. x � y for all y ∈ N. It is

denoted minN. The maximum is defined accordingly. They are unique because M

is linearly ordered and always exist. Furthermore, N is uniquely determined by the

pair [minN,maxN]. Hence, such pairs are therefore legal representations of finite

intervals. We define

[[[x, y]]] := {z | x � z and z � y}
Let Ivl(M) denote the set of all finite intervals over M. In the following we will

always assume intervals to be finite without mentioning this explicitly.2

Two intervals [x0, y0] and [x1, y1] are called independent if succ(y0) < x1 or

succ(y1) < x0. Hence, independent intervals do not overlap, they are not even

adjacent in the sense that their union is not an interval. Independent intervals are

again ordered by an order ≺ defined as [x0, y0] ≺ [x1, y1] iff y0 < x1. It is not hard

to see that 
, its reflexive closure, is again a linear order if restricted to a subset

of pairwise independent intervals. It can be used to store independent intervals in a

binary search tree.

In the following we will deal with binary trees whose nodes are labeled with

intervals of M. The class of all such trees is the smallest class TM s.t.

a. ⊥ ∈ TM (the empty tree), and

b. if l, r ∈ TM and [x, y] ∈ Ivl(M) then ([x, y], l, r) ∈ TM .

Note that we do not pose any restrictions on the intervals in a tree here.

Given a tree t, we call all ⊥-labeled nodes leaf nodes and all other nodes inner

nodes. The top-most node is called root of the tree.

2 It is not difficult to extend everything to infinite intervals of linear order, for example by introducing
� and/or ⊥ as additional symbols and letting [x,�] denote {y | x � y}.
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For a tree t, we write root(t) to denote the interval at its root, i.e. root(t) = [x, y] if

t = ([x, y], l, r) for some l, r ∈ TM . Also, we write nodes(t) for the set of all intervals

occurring in t, i.e.

nodes(t) :=

{
∅ if t = ⊥
{[x, y]} ∪ nodes(l) ∪ nodes(r) if t = ([x, y], l, r)

A discrete interval encoding tree (diet) is a binary tree that is inductively defined

as follows.

• ⊥ is a diet.

• If l and r are diets and [x, y] ∈ M s.t. y′ < pred (x) for all [ , y′] ∈ nodes(l) and

succ(y) < x′ for all [x′, ] ∈ nodes(r), then ([x, y], l, r) is also a diet.

Hence, the intervals occurring in a diet are all independent, and a node that is

left of another one carries an interval that is smaller w.r.t. ≺.

A diet t represents a finite subset of M in a straightforward way: [[t]] :=⋃
{[[[x, y]]] | [x, y] ∈ nodes(t)}. Note that, conversely, each finite subset of M has a

unique decomposition into independent intervals, but not necessarily a unique diet

representation since, in general, there are many ways to build a tree-structure from

a set of pairwise independent intervals. For instance, the set {0, 1, 3, 4, 6, 7} can be

represented by three different trees.

[6, 7]

[3, 4]

[0, 1]

[3, 4]

[0, 1] [6, 7]

[0, 1]

[3, 4]

[6, 7]

The height of a tree t is the maximal length of a path from the root to a leaf:

height(t) :=

{
0, if t = ⊥
1 + max{height(l), height(r)}, if t = ([x, y], l, r)

We now introduce the class of balanced diets by an inductive definition. Every leaf

is a balanced diet. Furthermore, a tree t = ([x, y], l, r) is balanced iff both l and r

are balanced and |height(l) − height(r)| � 1. These kinds of height-balanced trees

are also well-known as AVL trees (Adelson-Velskii & Landis, 1962). The height of

a balanced tree with n nodes is at most �logΦ n� where Φ = 1+
√

5
2

.

We say that a pair (l, r) of two balanced diets l and r is left-right-separate

iff succ(y) < x for every [ , y] ∈ nodes(l) and every [x, ] ∈ nodes(r). Given an

interval [a, b] and a pair (l, r) of two balanced diets l and r, we say that [a, b] is a

separator of (l, r) iff succ(y) < a for every [ , y] ∈ nodes(l) and succ(b) < x for every

[x, ] ∈ nodes(r).

For rebalancing intermediate trees, we will apply two routines that are generally

known as the reroot of balanced trees and the join of balanced trees. The reroot

operation is a binary transformation l � r defined on left-right-separate diets (l, r)

and returns a new balanced diet t = l � r s.t. [[t]] = [[l]] ∪ [[r]]. The join operation is a

ternary transformation l a�b r defined on a pair of diets (l, r) and a separator [a, b],
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and returns a new balanced diet t = l a�b r s.t. [[t]] = [[l]] ∪ [a, b] ∪ [[r]]. It is well-

known that both rebalancing operations require logarithmic time in the worst-case

(Adelson-Velskii & Landis, 1962).

We will use balanced trees as a synonym for AVL trees throughout the paper.

However, our approach does not rely on AVL tree balancing, any other approach

for maintaining balanced trees could be applied as well.

We also consider a certain subclass of diets that we call streamed trees. Every leaf

is a streamed tree. Furthermore, a tree t = ([x, y], l, r) is streamed if l is balanced and

r is streamed. Note that every balanced tree is necessarily a streamed tree. Consider

the following example: the left tree is balanced (and streamed) while the right tree

is only streamed.

[9, 10]

[3, 4]

[0, 1] [6, 7]

[15, 16]

[12, 13]

[3, 4]

[0, 1] [9, 10]

[6, 7] [15, 16]

[12, 13]

3 Operations on balanced diets

First, we consider the diet decomposition of balanced diets that essentially allows us

to access a diet iteratively as a stream in an efficient manner. Second, we briefly

describe the basic reading and writing operations on balanced diets that have already

been described in Erwig’s paper (Erwig, 1998). Third, we consider binary methods,

namely the union, the intersection and the difference of two sets. We claim that

our methods based on diet decomposition are much more efficient in practice than

the standard implementation, e.g. (Yoriyuki, 2003). Finally, we consider some other

notable set routines.

3.1 Diet decomposition

Most operations combining two balanced trees simultaneously handle related data

in the trees, in the sense that processing a certain node in the first tree comes along

with processing a node in the other tree containing data that are closely related by

the total ordering relation. As related data are not necessarily at related positions in

the tree, it is impossible to process both trees by simultaneous recursion. However,

if the operation on both trees results in a new tree, it turns out to be beneficial in

the average case to process one tree by recursion, since in this case the balanced

structure of one of the input trees can be transferred to some extent.

We utilise a way to extract the elements represented by the tree according to their

ordering without touching nodes of the tree that are not on a path to a node that
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is being extracted. This guarantees that – when this operation is embedded into a

loop for instance – unnecessary operations on the diet are being avoided.

The idea is a well-known trick, linearising the tree in a lazy-evaluation manner:

in order to extract the least element in the tree, we simply do right-rotations until

finally a node with a leaf on the left-hand side comes up. Then, we return the node

and its right subtree. In this manner, we only traverse the path in the tree to the

least node and simultaneously rotate in such a way that extracting the next element

can be either performed at the top of the tree or takes place in a region of the tree

yet unvisited.

The following function extr takes a non-empty stream and extracts the smallest

interval from it, i.e. it returns a pair consisting of this interval and a stream

representing what is left-over after removal of that interval.

extr(α,⊥, r) := (α, r)

extr(α, (β, l′, r′), r) := extr(β, l′, (α, r′, r))

It is then possible to extract a list of the k smallest intervals in a stream t by using

extr iteratively.

extract1(t) := [α]

extractk+1(t) := α :: extract k(t
′)

}
if extr(t) = (α, t′)

The following lemma states that this extraction is more efficient then simply

transforming t into a list of intervals and returning the first k elements of this

list.

Lemma 1 Let t be a stream with n nodes and k � n. The result of extractk(t) can be

computed in time O(max(k, log n)).

This is quite obvious since each path that is traversed by any call of extr has

height O(log n) and contains at most one node already visited, namely the root of

the current tree. The complexity is obviously optimal since extracting one element

clearly takes time O(log n) in the worst-case and extracting the first k elements takes

at least time O(k).

3.2 Basic operations

The basic reading operations that can be performed on sets essentially comprise the

emptyness check, the membership check, the iteration over the elements, the folding

over the elements and the computation of the cardinality of the set. All these routines

are straightforward and well covered in the literature on data structures.

The basic writing operations comprise the insertion of an interval into a balanced

diet, adding a single element to a balanced diet – which is based on the insertion of

a singleton interval – and the removal of a single element from a balanced diet.

More concretely, given a diet t and an interval [a, b], the operation insert([a, b], t)

returns a new diet t′ s.t. [[t′]] = [[[a, b]]]∪[[t]]. Similarly, given a single element a instead

of an interval [a, b], the operation add (a, t) returns a new diet t′ s.t. [[t′]] = {a} ∪ [[t]],

and the operation remove(a, t) returns a new diet t′ s.t. [[t′]] = [[t]] \ {a}. These

operations are described and analysed in Erwig’s introductory work (Erwig, 1998).
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They are presented as operations on – not necessarily balanced – diets, and it is

straightforward to add rebalancing instructions into the algorithms in order to turn

them into operations being performed on balanced diets (Ohnishi et al., 2003). The

runtime complexities of these operations are logarithmic in the worst-case.

3.3 Binary operations

The binary operations on sets – intersection, union and difference of sets – allow

many approaches to realise them. The intrinsic problem is that an independent

recursive descent on both trees is desired but not easily possible. This is where the

diet decomposition becomes useful.

3.3.1 Intersection

The intersection inter of two diets t and s proceeds by traversing one of the two trees,

say t, from left to right entering deeper levels only if necessary while performing the

intersection of the current interval of t with all appropriate intervals from the other

tree.

Being based on a traversal of t, the structure of the intersection diet of t and s

maintains the already balanced structure of t whenever it is possible.

On the other hand, the balanced structure of s is of no interest. The algorithm

treats s as a stream of ordered intervals with restricted look-ahead knowledge,

meaning that the algorithm is only interested in the currently remaining minimal

interval. Therefore, the algorithm will access s only through the extr function.

Since we will want to call inter recursively to compute the intersection of a tree t

and what is left of s and then proceed with the result of the intersection, we are also

interested in what is left of s after intersecting it with t. More precisely, inter(t, s)

will return a tuple (a, b) with [[a]] = [[t]] ∩ [[s]] and [[b]] = {i ∈ [[s]] | i > j for all

j ∈ [[t]]}.

fun inter(t, s) =

if t = ⊥ or s = ⊥ then (⊥, s)

else let ([x, y], l, r) = t and ([x′, y′], ) = extr(s) in

if x′ � x then interhelp(⊥, [x, y], r, s)

else let (l′, s′) = inter(l, s) in

interhelp(l′, [x, y], r, s′)

The helper function interhelp takes four parameters l, [x, y], r and s, and computes

the union of l with the intersection of ([x, y],⊥, r) and s, and returns the remains

of s in addition. In other words, interhelp assumes that l is a diet left of [x, y] that

already has been computed as the intersection of the original trees and hence simply

attaches it to the intersection of the rest that is to be computed.

fun interhelp(l, [x, y], r, s) =

if s = ⊥ then (l, ⊥)

else let ([x′, y′], u) = extr(s) in
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if y′ < x then

interhelp(l, [x, y], r, u)

else if y < x′ then

let (r′, s′) = inter(r, s) in

(l � r′, s′)

else if y′ � pred (y) then

let (r′, s′) = inter(r, s) in

let i = max(x, x′) and j = min(y, y′) in

(l i�j r′, s′)

else

let l′ = insert([max(x, x′), y′], l) in

interhelp(l′, [succ(y′), y], r, u)

Consider the following two trees for instance. We will follow the intersection

algorithm on them in an implicit way: the right tree will be used as an ordered

interval stream and the left tree will be used both as input and result tree. This

way, it becomes obvious how the overall structure of the left tree is more or less

maintained in the construction of the result tree. From now on, we will call the right

tree ‘stream’ and refer to the left tree simply as the ‘tree’.

[20, 30]

[0, 10] [70, 80]

[40, 50] [90, 99]

[35, 49]

[15, 25] [85, 95]

First, we need to perform a right-rotation on the stream to bring the smallest

interval to the top of it.

[20, 30]

[0, 10] [70, 80]

[40, 50] [90, 99]

[15, 25]

[35, 49]

[85, 95]

Comparing the top intervals, it could be the case that the left subtree of the tree

contains an intersection with the stream, hence the algorithm descends the tree to

the left.

[20, 30]

[0, 10] [70, 80]

[40, 50] [90, 99]

[15, 25]

[35, 49]

[85, 95]
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Since the current interval of the tree lies below the minimal interval of the stream,

we can drop it and return to the higher level of the tree again.

[20, 30]

⊥ [70, 80]

[40, 50] [90, 99]

[15, 25]

[35, 49]

[85, 95]

Next, the top intervals intersect and the upper bound of the stream interval is

below the upper bound of the tree interval. Hence, the algorithm computes the

intersection of both intervals, inserts the result into the left subtree, keeps the

remainder of the tree’s top interval and pops the top interval of the stream.

[26, 30]

[20, 25] [70, 80]

[40, 50] [90, 99]

[35, 49]

[85, 95]

As the lower bound of the stream is above the upper bound of the top interval of

the tree, it is safe to remove it and descend to the right subtree. Note that we have

an empty root now which is to be fixed afterwards.

[]

[20, 25] [70, 80]

[40, 50] [90, 99]

[35, 49]

[85, 95]

Since the upper bound of the stream’s smallest interval is below the lower bound

of the current interval of the tree, the algorithm descends to the left subtree.

[]

[20, 25] [70, 80]

[40, 50] [90, 99]

[35, 49]

[85, 95]

Again, the algorithm encounters an intersection of the two intervals that are

currently focussed. Although the upper bound of the tree’s interval is above the

upper bound of the stream, we do not have to keep the remainder of the interval in

this case, because it is only above the stream’s bound by one and since all intervals

in the original trees have to be independent, it cannot be the case that we miss an

intersection by dropping the remainder. We replace the old interval in the tree by
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the intersection of the two intervals, given by the maximum of the lower bounds

and the minimum of the upper bounds.

[]

[20, 25] [70, 80]

[40, 49] [90, 99]

[85, 95]

Since the lower bound of the stream is above the upper bound of the current

interval, we are safe to remove it and descend to the right subtree.

[]

[20, 25] []

[40, 49] [90, 99]

[85, 95]

We compute the intersection of the current interval and the last interval of the

stream.

[]

[20, 25] []

[40, 49] [90, 95]

⊥

Finally, we have to join all subtrees with no root. Technically, this process just

happens whenever the respective recursive calls return. Hence, we first combine the

two subtrees on the right.

[]

[20, 25] [40, 49]

[90, 95]

⊥

As the very last step, we restore the root of the full tree and return it as result of

the intersection of the two original trees.

[40, 49]

[20, 25] [90, 95]

⊥

3.3.2 Difference

The difference diff of two diets t and s is computed in a similar fashion. It proceeds

by traversing the first tree t, from left to right; the other tree s, is treated as a stream

of ordered intervals that will be only accessed via the extr function.
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Again, we need to keep track of all parts of the stream that have not been processed

in recursive calls. Therefore, diff will return a pair, containing the computation of

the difference so far and what remains of the stream. More formally, diff (t, s) returns

a tuple (a, b) with [[a]] = [[t]] \ [[s]] and [[b]] = {i ∈ [[s]] | i � j for all j ∈ [[t]]}.

fun diff (t, s) =

if t = ⊥ or s = ⊥ then (t, s)

else let ([x, y], l, r) = t and ([x′, y′], ) = extr(s) in

if x′ � x then diffhelp(l, [x, y], r, s)

else let (l′, s′) = diff (l, s) in

diffhelp(l′, [x, y], r, s′)

The helper function diffhelp takes four parameters l, [x, y], r and s, and computes

the union of l with the difference of ([x, y],⊥, r) and s, and returns the remains of s

in addition. In other words, diffhelp assumes that l is a diet left of [x, y] that already

has been computed as the difference of the original trees and hence simply attaches

it to the difference of the rest that is to be computed.

fun diffhelp(l, [x, y], r, s) =

if s = ⊥ then (l x�y r, ⊥)

else let ([x′, y′], u) = extr(s) in

if y′ < x then

diffhelp(l, [x, y], r, u)

else if y < x′ then

let (r′, s′) = diff (r, s) in

(l x�y r′, s′)

else if x < x′ then

let l′ = insert([x, pred (x′)], l) in

diffhelp(l′, [x′, y], r, s)

else if y′ < y then

diffhelp(l, [succ(y′), y], r, u)

else let (r′, s′) = diff (r, s) in

(l � r′, s′)

Consider the two diets used to explain the mechanism of the intersection algorithm

above. We will follow the difference algorithm on them, too. The right tree will be

used as an ordered interval stream and the left tree will serve both as input and

result tree. First, we need to perform a right-rotation on the stream again in order

to bring the smallest interval to the top of it.

[20, 30]

[0, 10] [70, 80]

[40, 50] [90, 99]

[15, 25]

[35, 49]

[85, 95]
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Comparing the top intervals, it could be the case that the left subtree of the tree

contains an intersection with the stream, hence the algorithm descends the tree to

the left.

[20, 30]

[0, 10] [70, 80]

[40, 50] [90, 99]

[15, 25]

[35, 49]

[85, 95]

Since the current interval of the tree lies below the minimal interval of the stream,

we can keep it and return to the higher level of the tree again.

[20, 30]

[0, 10] [70, 80]

[40, 50] [90, 99]

[15, 25]

[35, 49]

[85, 95]

Next, the top intervals intersect and the upper bound of the stream interval is

below the upper bound of the tree interval. Hence, the algorithm computes the

difference of both intervals, replaces the top interval of the tree with it and pops the

top interval of the stream.

[26, 30]

[0, 10] [70, 80]

[40, 50] [90, 99]

[35, 49]

[85, 95]

As the lower bound of the stream is above the upper bound of the top interval of

the tree, it is safe to keep it and descend to the right subtree.

[26, 30]

[0, 10] [70, 80]

[40, 50] [90, 99]

[35, 49]

[85, 95]

Since the upper bound of the stream’s smallest interval is below the lower bound

of the current interval of the tree, the algorithm descends to the left subtree.

[26, 30]

[0, 10] [70, 80]

[40, 50] [90, 99]

[35, 49]

[85, 95]
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Again, the algorithm encounters an intersection of the two intervals that are

currently focussed. Since the upper bound of the stream interval is below the upper

bound of the tree interval, the algorithm computes the difference of both intervals,

replaces the current interval of the tree with it and pops the top interval of the

stream.

[26, 30]

[0, 10] [70, 80]

[50, 50] [90, 99]

[85, 95]

Since the lower bound of the stream is above the upper bound of the current

interval, we are safe to keep it and descend to the right subtree.

[26, 30]

[0, 10] [70, 80]

[50, 50] [90, 99]

[85, 95]

Finally, we compute the intersection of the current interval and the last interval

of the stream.

[26, 30]

[0, 10] [70, 80]

[50, 50] [96, 99]

⊥

In this case, we are lucky to be able to maintain the overall structure of the

original tree.

3.3.3 Union

Building the union of two diets t and s is a bit more complicated than computing

their intersection or their difference for the following reason: say that the lower

bound of the current interval of the stream s lies below the lower bound of the

current interval of the tree t. Hence, we would make a recursive call to compute

the union of the left subtree l and the stream s resulting in a new subtree l′

and some remains s′. It may happen now that the subtree l′ intersects with the

current interval of the tree, namely in case that the largest interval in l intersects

with an interval in the stream that intersects itself with the current interval of the

tree.

In order to circumvent this problem, we add a limitation parameter which is just

a value that is not to be exceeded by the left subtree. In this case, the limitation
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parameter would be related to the lower bound of the current interval of the tree.

Assuming again that the largest interval of l intersects with a stream interval that

intersects with the tree’s current interval, we apply a little trick to keep all the data

on the one hand and to stay below the limitation parameter on the other hand.

Instead of adding the union of the largest interval of l and the related interval of s

to l′, we simply push it to the stream again. Therefore, we can deal properly with

the intersection of this interval and the tree’s current interval.

The union of two diets t and s again proceeds by traversing one of the two trees,

say t, from left to right; the other tree, say s, is treated as a stream of ordered

intervals that will be only accessed via the extr function.

As explained before, we need to add a parameter specifying the current limitation.

There is no bound as initial limitation, hence we can use the value � which

is either the maximal element of the underlying domain or a natural extension

thereof.

fun union(t, s) =

let (t′, s′) = unionhelp(t, s,�) in

t′ � s′

We will call a helper function unionhelp accepting three parameters t, s and the

limitation parameter max[[t]] < ε that returns a pair (t′, s′) s.t. [[t′]] ∪ [[s′]] = [[t]] ∪ [[s]],

max[[t′]] < min[[s′]], max[[t′]] < ε and x ∈ [[s′]] with x < ε implies succ(x) ∈ [[s′]] (in

other words, if the minimum of s′ is below ε, then the lowest interval in s′ contains

ε) for the reasons explained in the first paragraphs.

This particularly implies that calling unionhelp with the initial t and s with

limitation � yields a pair (t′, s′) with s′ being not necessarily empty. We only know

that if s′ is not empty then it lies above t′. Therefore, we simply need to rebalance

s′ (remember, we are using it as a stream) and combine it with t′.

fun unionhelp(t, s, ε) =

if t = ⊥ or s = ⊥ then (t, s)

else let ([x, y], l, r) = t and ([x′, y′], ) = extr(s) in

if x′ � x then unionhelp2 (l, [x, y], r, s, ε)

else let (l′, s′) = unionhelp(l, s, pred (x)) in

unionhelp2 (l′, [x, y], r, s′, ε)

The helper function unionhelp2 takes five parameters l, [x, y], r, s and ε assuming

that max[[l]] < x, max[[l]] < min[[s]], y < ε and max[[r]] < ε, and returns a pair

(t′, s′) s.t. [[t′]] ∪ [[s′]] = [[l x�y r]] ∪ [[s]], max[[t′]] < min[[s′]], max[[t′]] < ε and x ∈
[[s′]] with x < ε implies succ(x) ∈ [[s′]]. In other words, unionhelp2 assumes that

l is a diet left of [x, y] that already has been computed as the union of the

original trees and hence simply attaches it to the union of the rest that is to be

computed.

fun unionhelp2 (l, [x, y], r, s, ε) =

if s = ⊥ then (l x�y r, ⊥)

else let ([x′, y′], u) = extr(s) in
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if y′ < pred (x) then

let l′ = insert([x′, y′], l) in

unionhelp2 (l, [x, y], r, u, ε)

else if x′ > succ(y) then

let (r′, s′) = unionhelp(r, s, ε) in

(l x�y r′, s′)

else if y � y′ then

let i = min(x, x′) in

unionhelp2 (l, [i, y], r, u, ε)

else if y′ � ε then

let i = min(x, x′) in

(l, ([i, y′], u))

else let i = min(x, x′) in

let (r′, s′) = unionhelp(r, ([i, y′], u), ε) in

(l � r′, s′)

Consider the diets of the two examples from above again. We will follow the

union algorithm on them in the same way: the right tree will be used as an ordered

interval stream and the left tree will be used both as input and result tree.

[20, 30]

[0, 10] [70, 80]

[40, 50] [90, 99]

[35, 49]

[15, 25] [85, 95]

First, we need to perform a right-rotation on the stream to bring the smallest

interval to the top of it.

[20, 30]

[0, 10] [70, 80]

[40, 50] [90, 99]

[15, 25]

[35, 49]

[85, 95]

Comparing the top intervals, it could be the case that the left subtree of the tree

contains an intersection with the stream, hence the algorithm descends the tree to

the left.

[20, 30]

[0, 10] [70, 80]

[40, 50] [90, 99]

[15, 25]

[35, 49]

[85, 95]
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Since the current interval of the tree lies below the minimal interval of the stream,

we can keep it and return to the higher level of the tree again.

[20, 30]

[0, 10] [70, 80]

[40, 50] [90, 99]

[15, 25]

[35, 49]

[85, 95]

Next, the top intervals intersect and the upper bound of the stream interval is

below the upper bound of the tree interval. Hence, the algorithm computes the

union of both intervals, replaces the top interval of the tree with it and pops the top

interval of the stream.

[15, 30]

[0, 10] [70, 80]

[40, 50] [90, 99]

[35, 49]

[85, 95]

As the lower bound of the stream is above the upper bound of the top interval of

the tree, it is safe to keep it and descend to the right subtree.

[15, 30]

[0, 10] [70, 80]

[40, 50] [90, 99]

[35, 49]

[85, 95]

Since the upper bound of the stream’s smallest interval is below the lower bound

of the current interval of the tree, the algorithm descends to the left subtree.

[15, 30]

[0, 10] [70, 80]

[40, 50] [90, 99]

[35, 49]

[85, 95]

Again, the algorithm encounters an intersection of the two intervals that are

currently focussed. Since the upper bound of the stream interval is below the upper

bound of the tree interval, the algorithm computes the union of both intervals,
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replaces the current interval of the tree with it and pops the top interval of the

stream.

[15, 30]

[0, 10] [70, 80]

[35, 50] [90, 99]

[85, 95]

Since the lower bound of the stream is above the upper bound of the current

interval, we are safe to keep it and descend to the right subtree.

[15, 30]

[0, 10] [70, 80]

[35, 50] [90, 99]

[85, 95]

Finally, we compute the union of the current interval and the last interval of the

stream.

[15, 30]

[0, 10] [70, 80]

[35, 50] [85, 99]

⊥

3.4 Worst-case complexities

It is not too hard to see that all three routines run in time that is linearithmic in

the number of nodes of the input diets. All three binary routines are based on a

recursive descent of the first tree and a diet decomposition of the second tree, hence

O(n) is required to walk through all nodes. A recursive call also possibly includes

one rebalancing call and hence we get an additional rebalancing factor of O(log n).

Lemma 2 Let r and s be balanced diets with at most n nodes. The worst-case complexity

of inter(r, s), union(r, s) and diff (r, s) described in Section 3.3 is O(n · log n).

3.5 Linear binary operations

There is an alternative to the three algorithms presented above. Instead of flattening

only one of the trees into a stream and using the structure of the other tree

for recursion, one can flatten both trees into streams, perform the corresponding

operations on them and recreate a balanced tree from the resulting stream.

Is easy to see that flattening a tree into a list can be realised by a depth-first

traversal of the tree in time O(n). Also, given two flattened trees, intersection, union

and difference can be computed in time O(n) by walking through both streams
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simultaneously, resulting in an ordered list. It is known that ordered lists can be

transformed back into balanced trees in time O(n) (Hinze, 1999).

Lemma 3 Let r and s be balanced diets with at most n nodes. The worst-case complexity

of inter(r, s), union(r, s) and diff (r, s) described in Section 3.5 is O(n).

3.6 Other operations

Other operations that are usually carried out on sets are filtering w.r.t. a given

predicate, partitioning w.r.t. a given predicate and splitting w.r.t. a given number.

Splitting is a standard operation on balanced trees and essentially runs just the

same on balanced diets (Ohnishi et al., 2003). As partitioning is almost the same as

filtering, we focus on a description of the latter operation here.

Standard filtering on balanced trees is usually realised by a recursion on the input

tree, applying the filter predicate on the subtrees first, and then checking whether the

root node matches the predicate or not. Depending on that either a reroot or a join

of the filtered subtrees is carried out. With balanced diets, the root node has to be

treated a bit differently: applying the predicate to each number of the represented

interval of the root node results in a list of potentially separated numbers that have

to be reassembled to a list of intervals again. If the length of the list is zero, we

apply the reroot operation again, if the length is one, we apply the join again, and

otherwise, we join the subtrees with the first interval of the list and insert all the

others by applying the insert operation.

4 Empirical evaluation

Our publicly available prototype implementation (Friedmann & Lange, 2010) of the

balanced diets is realised in the functional language OCaml. It defines the signature

for a so-called MeasurableType that explains how to compare, increment or

decrement elements of the considered type and how to compute the counting measure

distance between two elements3. A concrete instantiation of a MeasurableType can

then be mapped via a functor to a concrete instantiation of the Set4 signature.

We only consider the binary set operations – union, intersection and difference –

as they particularly benefit from our genuine diet decomposition. We compare the

following approaches with each other:

1. OCamlSet (Leroy, 2010): the original OCaml Set implementation by Leroy,

2. Camomile (Yoriyuki, 2003): the diet implementation by Yoriyuki,

3. CamlDiets : the balanced diet implementation described above,

4. LinearOp : the alternative method with linear binary operations as described

in Section 3.5, and

5. PatriciaSet (Filliâtre, 2008): the Patricia set implementation by Filliâtre.

3 Used for efficient computation of the cardinality.
4 http://caml.inria.fr/pub/docs/manual-ocaml/libref/Set.html
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The empirical evaluation is based on two different classes of randomised sets

within the fixed domain U = {1, . . . , 106}. This range allows us to generate sufficiently

large sets with non-neglegible running times when being fed to the binary operations.

Given a single benchmark instance, we generate 100 sets matching the constraints

of the instance uniformly at random, and carry out each binary operation of each

set implementation on all pairs of generated sets (i.e. 100 · 99); every operation is

repeated 10 times to improve the accuracy of the empirical measurements. Finally,

the average running time (i.e. overall time divided by 100 · 99 · 10) is calculated and

included in the tables of Figure 1.

All tests have been carried out on a 64-bit machine with OpteronTM CPUs. The

implementation does not support parallel computations, hence, each test is run on

one core only.

We briefly describe the parameters used to measure the benchmark sets. Let U
be a fixed domain. We consider three kinds of measures for sets S ⊆ U. Here, a

measure is a function μ : 2U → �.

First, we consider the standard counting measure μC (S) := |S |, giving the number

of elements in a set S . Second, we consider the density measure μD(S) := |S |
|U| that

relates the number of elements to the overall size of the domain. Last, we specify

the interval measure μI (S) := |{[x, y] ⊆ S | x � y, (x − 1) �∈ S and (y + 1) �∈ S}| that

counts the number of independent intervals contained in S .

Given a (finite) family F ⊆ 2U of sets and a measure μ, we define the expected

measure EF[μ] as the expected value of the random variable μ with a uniform

distribution over the elements of F, i.e.

EF[μ] =
1

|F|
∑
S∈F

μ(S)

All considered set representation approaches are based on binary trees, therefore

we are interested in the numbers of nodes and the heights of the trees representing

the sets. Let S ⊆ U. The number of nodes αimpl(S) that is required to represent

S which is μI (S) for impl = Camomile, CamlDiets, LinearOp, and is μC (S) for

OCamlSet; and the height of the representation βimpl(S) which is logarithmic in

αimpl(S) in these four cases. We ignore empty leaf nodes here. For impl = PatriciaSet

these measures depend on the actual distribution of the set in the underlying domain

and are therefore not easy to estimate. The number of elements is of course an upper

bound on the representation size up to a constant factor, and the uniform random

distribution of the elements should result in balanced Patricia tries. Thus, their

height can be expected to be logarithmic in the size as well.

Finally, we describe the two benchmark settings in which we carry out the three

operations on several sets.

Interval Benchmark The interval benchmark is based on the class of sets from the

domain U s.t. the number of independent intervals equals a given constant c. We

consider therefore the family of classes Ic = {S ⊆ 2U | μI (S) = c}. It is easy to see

that EIc
[μI ] = c, EIc

[μS ] = 0.5 · |U| = 500, 000 and hence EIc
[μD] = 0.5.
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Fig. 1. Runtime results.
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We perform the interval benchmark for different parametrisations c, ranging

from 20, 000 intervals to 400, 000 intervals. Technically, our set generator uses the

parametrisation c to pick 2 · c pairwise different numbers start1 < end1 < . . . <

start c < end c from the domain U and uses the ordered sequence of 2 · c numbers to

derive a set of intervals [start i, end i].

The average times needed to build the union, intersection or difference of two sets

with the same number of intervals are presented in Figure 1(a).

The following observations can be made. (1) The running times of all implementa-

tions rise with the number of intervals. This is to be expected. (2) The binary routines

of the balanced diet approach generally outperform Yoriyuki’s Camomile method

as well as the alternative diet binary routines. (3) The balanced diet implementation

generally yields a better average running time than all other methods. This might be

due to the stream decomposition based approach. (4) For sets with a small number

of intervals, the diet-based approaches perform much better than Patricia sets and

standard sets. (5) For sets with a high number of intervals, diet-based approaches

are beaten by the other two. Particularly, Patricia sets always seem to be a bit better

than the original set approach, but not by a large amount.

Density Benchmark The density benchmark on the other hand is based on the class

of sets from the domain U s.t. the cardinality of the set divided by the cardinality

of the domain is very close to a given proportionality degree or density 0 � p � 1.

More formally, we consider the family of classes Dp = {S ⊆ 2U | μD(S) = p}.
It is not too hard to see that EDp

[μI ] = p · (1 − p) · |U| = p · (1 − p) · 500, 000,

EDp
[μS ] = p · |U| = p · 500, 000 and hence EDp

[μD] = p.

We perform the density benchmark for different parametrisations p, ranging from

0.1 to 0.9. Technically, our set generator uses the parametrisation p to pick every

element e ∈ U with probability p.

The average time needed to build the union, intersection or difference of two sets

with the same density are presented in Figure 1(b).

The following observations can be made. (1) The running times of the balanced

diet approach rise with the number of intervals rather than the density. They are

particularly low for sets with high density and therefore few intervals. (2) Again,

the binary routines of Yoriyuki’s Camomile method as well as the alternative diet

method are outperformed by the balanced diet implementation. (3) The standard

set approach and the Patricia sets beat the diet-based methods on sets with a small

density, since low-density sets consist of a large number of intervals compared to

the number of elements.

5 Conclusion

We considered the representation of sets as balanced diets and introduced the

concept of the so-called diet decomposition that allows us to realise highly efficient

binary routines on sets. We provide empirical justifications, showing that even mildly

populated sets can benefit from the representation as balanced diets.
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The evaluation section above answers a few preliminary questions about the

use of balanced diets. A much more elaborate investigation is of course possible,

for instance considering sets that occur in certain scenarios rather than randomly

generated ones, variations of other parameters like the domain size, etc. We remark

that tests which combine two sets of different sizes/densities have shown similar

comparisons of the running times between the methods considered here.

Also, it would be interesting to combine the decomposition approach used for the

balanced diets here with a non-diet representation and examine the effect it would

have on those data structures.
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