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CENTROAFFINE IMMERSIONS OF CODIMENSION TWO
AND PROJECTIVE HYPERSURFACE THEORY

KATSUMI NOMIZU* axp TAKESHI SASAKI™**

Affine differential geometry developed by Blaschke and his school [B] has
been reorganized in the last several years as geometry of affine immersions. An
immersion f of an #-dimensional manifold M with an affine connection V into an
(n + 1)-dimensional manifold M with an affine connection V is called an affine
immersion if there is a transversal vector field & such that V,f(¥) =
f(V,Y) 4+ h(X,Y)& holds for any vector fields X, Y on M”. When f: M"—
R"'is a nondegenerate hypersurface, there is a uniquely determined transversal
vector field &, called the affine normal field, an essential starting point in classical
affine differential geometry. The new point of view allows us to relax the non-
degeneracy condition and gives us more freedom in choosing &; what this new
viewpoint can accomplish in relating affine differential geometry to Riemannian
geometry and projective differential geometry can be seen from [NP1], [NP2], [NS]
and others. For the definitions and basic formulas on affine immersions, centroaf-
fine immersions, conormal (or dual) maps, projective flatness, etc., the reader is re-
ferred to [NP1]. These notions will be generalized to codimension 2 in this paper.

In this paper we present a systematic study of centroaffine immersions of an

"2 — {0}. Such immersions were studied in [W] by adhering to

n-manifold into R
the original features (including apolarity and local convexity assumption) of the
Blaschke theory as much as possible. Our approach is more general in that we fol-
low the spirit of the recent development mentioned above. In particular, our work
is motivated by, and applied to, projective differential geometry.

The paper is organized as follows. In Section 1 we develop the basic machin-
ery for centroaffine immersions of codimension 2, obtain two fundamental forms &

and T and two cubic forms C and 4. The vanishing of T or A is given a geometric
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interpretation (Propositions 1.3, 1.4, 1.5). In Section 2, we consider lifts f : M —
R"* — {0} of a given immersion F : M— P""' and find projective invariants
through such affine models f. In Section 3, we define the dual mapping of F : M—
| by means of a lift f and prove a result about selfdual immersions (Proposition
3.5). In Section 4, we study projective flatness and umbilicity for f : M — R —
{0} (Theorem 4.1) and its projective interpretation (Theorem 4.3). In Section 5, we
prove a number of uniqueness theorems for centroaffine immersions M — R"? —
{0} as well as for immersions M — P"*', among which Theorems 5.7, 5.8 and 5.9
are the main results. In Section 6, we show that f: M— R™? — {0} for which
Vh =0 and rank 4 = 2 lies on a quadratic cone (Theorem 6.3)—a generalization
of the classical theorem of Pick and Berwald for affine hypersurfaces. In Section
7, we draw, under the assumption VT = 0, another geometric conclusion that M
lies on a quadratic hypersurface or an affine hyperplane (Theorem 7.3).

§1. Centroaffine geometry of affine submanifolds of codimension two

We use the following notation throughout this paper. By D we mean the stan-
dard flat affine connection of R*** and by n the radial vector field on R"*? —
(0}:n = X2 2'0/0x", where {z',...,2""% is an affine coordinate system. The
letter w denotes a parallel volume form of R"*? that is fixed once and for all. Let

M be an #-manifold and f an immersion of M into R"**

— {0}. Assume f is trans-
versal to . We choose, at least locally, a vector field & along f such that, at each
point £ € M, the tangent space Tf(JE)R"+2 is decomposed as the direct sum of the
span R{n}, the tangent space f, T, M, and the span R{&}. According to this decom-
position, the vectors Dyn, Dyf. Y, and Dy&, where X, Y are vector fields on M,

have the following expressions:

DXU :f*X!
(1.1) DyfiY = T(X, V) + £, (VY) + h(X,Y)E,
Dy& = p(X)n — f(SX) + 7(X)§.

An n-form 0 is defined by
(1.2) 0X,,....X,) = w(fX,..., fiX, & 0.

Thus we have several objects associated with & They have the following prop-
erties.

ProposiTiON 1.1.
(1) V is a torsion-free affine connection on M.
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(2) h and T are symmetric tensors.

(3) Vb = t(X)6.

In the following, we occasionally identify a tangent vector (field) X with its
image f,X if there is no danger of confusion. Let R” and R denote the curvature
tensors of the connection D and the connection V, respectively. Using (1.1), we

get
D.D,Z=DJT(Y,Z) + V,Z+ h(Y, 2)8
=X(TY,Z)n+TY,Z2)X
+ TX,V, 200 + V.V, Z+ h(X,V,2)¢
+XhX,ZNE+ WY ,Z)(oX)n — SX+ (X))
and

Dy yZ = (X,Y]l, Dn + VixnZ + h(lX,Y], 2)€.
Hence we get

R°X,V)Z=RX,V)Z+T(Y,2)X—TX,Z)Y— WY, Z)SX + h(X,Z)SY
+{T(X,V,2) — T(Y,V,Z) + X(T(Y, 2)) — Y(T(X, Z))
—TUX,Y12) + p(XOW(Y,Z) — o(Mh(X, Z)}y
+ (WX, V,2) — h(Y,V,Z) + X(h(Y, 2)) — Y(h(X, Z))
— w(X,Y12) + t(X)h(Y,Z) —t(Vh(X,Z)}&
=RX,VZ+TY, )X~ TX,2)Y— WY, Z)SX + h(X,Z)SY
+{(V,D(Y,2) — (V,T)(X,Z) + o)WY, Z) — oD WX, Z)}n
+{(V(Y,2)— (Vi) (X, Z) +t(XOR(Y,Z) — t(Y)h(X, Z)}¢&.

From the equations

DyD,& = Dy(o(Y)n — SY + z(Y)§)
= X(@()n + o(MX —{TX, SY)n + V,(SY) + h(X, SY)&
+ X(@(Y))E+ (M {oX)n — SX + =(X) &,
Dy y:€ = o(IX,YDn — SIX,Y] + «([X,Y]DE,

we get

R°(X,V)E=p(V)X — p(X)Y — V,(SY) +V,(SX) — (Y)SX + 7(X)SY
+ S[X,Y] + {X(o(Y)) — Y(o(X)) — T(X, SY) + T(Y, SX)
+ t(NopX) — t(X)p(Y) — (X, YD}y
+ (n(Y,SX) — h(X,SY) + X(z(V)) — Y(z(X)) — o([X,Y])} £
=p(NX—pX)Y— (V) (Y) + (V,S)(X) — o(Y)SX + 7(X)SY
+ (Vo) (V) — (V,0) (X) — T(X, SY) + T(Y, SX)
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+ 7(Y)p(X) — c(X)p(N}n
+ {n(Y, SX) — h(X, SY) + (Vyo) (V) — (Vy) (X)}E.

Since the connection D is flat, we have equations of Gauss (1.3), of Codazzi (1.4),
(1.5), (1.6), and of Ricci (1.7), (1.8):

(13) RXVZ=hY,Z)SX—hX,Z)SY-T(Y,Z2) X+ T(X,2)Y

(1.4) (V)Y ,Z) + pXDOW(Y,Z) = (V,T)(X,Z) + p(V)h(X, Z)

(15) (Vi)(Y,Z) + c(XDn(Y,Z2) = (Vy) (X, Z) + ©(Y)h(X, Z)

(1.6) (V,S(Y) —t(X)SY+ p(X)Y = (V,S)(X) — c(Y)SX + p(V)X

(1.7) TX, SY) — T(Y, SX) = (Vy0) (Y) — (Vy0) (X) + (V) p(X) — (X)) p(Y)
(1.8) h(X,SY) — h(Y,SX) = (Vi (Y) — (Vy(X) = dr(X,Y).

From (1.3) we have
(1.9) Ric(Y,Z) =trS-h(Y,Z) — h(SY,Z) —(n— 1T, 2Z).

At this point we present the following basic lemma that will be repeatedly
used.

LemMMma 1.2. Let V be a vector space of finite dimension. Suppose 0 is a linear
Jform and h a symmetric bilinear form on V such that

o X)rY,Z)=cVh(X,Z) fral X, Y, ZE V.

If vank h = 2, then 0 = 0.

We now study what the vanishing of T and % means for a given immersion f :

M—R""? — {0}.

ProposITION 1.3, If T vanishes and rank h = 2, then the image of the immersion
is contained in an affine hyperplane which does not go through O and the vector field &
1is tangent to this hyperplane.

Proof. 1f T =0, then (1.4) says p(X)h(Y,Z) = p(Y)h(X, Z). By Lemma
1.2, p = 0 and, therefore, the distribution spanned by fo(T,M) and &, x € M, is
parallel relative to D; this implies the result.

The immersion f considered to be a mapping into this hyperplane is an affine
immersion of M as a hypersurface, relative to the induced flat connection D’ on
the hyperplane, f satisfies

Dif Y = £, (V,Y) + h(X,Y)§ and Dié = — f(SX) + t(X)€.
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0]

Figure 1 (Prop. 1.3) Figure 2 (Prop. 1.4)

ProposiTiON 1.4. If h vanishes and n = 2, then the image of the immersion is
contained in a hyperplane through 0.

Proof. 1f h = 0, then the distribution spanned by fyu(T,M) and 1,4, £ € M,
is parallel relative to D.

In the situation of this proposition, the immersion f defines a centroaffine
hypersurface immersion and the tensor T is the fundamental tensor of this immer-
sion.

We put

CX,)Y,Z)=(Vi(Y,Z) +c(XOh(Y,Z)

(1.10) 0X,Y,Z) = (V,D)(Y,Z) +oX)h(Y,Z).

Both are symmetric in their arguments (cf. (1.4), (1.5)). We call C the (first) cubic
form and § the second cubic form.

We shall next examine how various objects depend on & Another choice, say
&', of transversal vector field is related to € by

A8 =&+ an + U,

where A is a nonzero scalar function, @ is also a scalar, and U is a tangent vector
field. Let 77, V', W, p’, S’, and 7’ denote the quantities corresponding to §’. By
(1.1) we have

Dofu¥ = TX, V)0 + £, V¥ + h(X,¥)AE — an — f,U)
={TX,Y) —ah(X,"}n + £ (VY — (X, U) + 2h(X,Y)&,
D =pX)n — fL.SX + t(X)(AE — an — £, 1)
= {pX) —at(X)}n — fL,(SX + (X)) + Ac(X)¢&".
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On the other hand, we have

st = Dx(/l&/ —an _f*U)
=XWE + ADE — X(@n — af, X
—A{(TX,0) —ah(X, D)0 + £(V,U — h(X,DDU) + Ah(X,U)E}.

Term-by-term comparison shows
(1.11) veY=v,Y—hX,Y)U

(1.12) T'(X,Y) = TX,Y) — ah(X,Y)
(1.13) W(X,Y) = Ah(X,Y)

(1.14) /(X)) = t(X) — X(ogd) + r(X,U)
(1.15) 20X) = p(X) + X(a) + TX,U) — ah(X,U) — ar(X)
(1.16) ASX=SX+tX)U—aX—V,U+h(X,0U.

Formula (1.13) implies that the conformal class of 4 is independent of the
choice of & When the class 4 is nondegenerate we say that the immersion is non-
degenerate. If we assume nondegeneracy, then one can find a vector field & so that
T = 0 because of (1.14); in this case, 8 is V-parallel. We say that this choice of &
defines (or that the pair {f, &} is) an equiaffine immersion. Further, we can res-
trict the choice of & so that the form 6 is equal to the volume form of the non-
degenerate metric tensor 4 such & is uniquely determined mod n up to sign. We
call this pair {f, &} a Blaschke immersion of codimension two. Formulas (1.12),
(1.13), and (1.16) with U = 0 show

T'X,Y) + w(S'X,Y) = T(X,Y) + h(SX,Y) — 2ah(X,Y).
By determining the scalar function @ we can assume that & is so chosen that
(1.17) tr {T(X,Y) + h(SX,Y)} = 0.
If this condition is satisfied, we say that & is pre-normalized. In particular, a pre-

normalized Blaschke immersion {f, &} is uniquely determined up to sign.

Remark. Consider the situation where f is a nondegenerate hypersurface im-
mersion into an affine hyperplane in R*** — {0} and where £ is an equiaffine nor-
mal relative to this immersion:

Do f,Y = f(V,Y) + h(X,Y)& and D& = — £,(SX).
Then we can regard f as an immersion into R""” — {0}. Let £ = £ + an. Then it

1
is easy to see that € is pre-normalized only when a = %trs. The associated
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quantities are given by
TX,Y) = — = h(X,¥), S=S——1, and p=— d(trS)
) =Ty AT, o=, and 0 = 5o altry

and V=V, h=h,and 7 = 0.
Let us return to the general situation and prove a result which is more pre-
cise than Proposition 1.3.

ProPOSITION 1.5. Assume vank h = 2. Then the image of the immersion is con-
taimed i an affine hyperplane if and only if T = ath for some scalar function a.

Proof. Assume T = ah. Replace € by & = & + an. Then, (1.12) shows that
T’ for & wvanishes identically. Hence, Proposition 1.3 implies that the image is
contained in an affine hyperplane. Conversely, if the image lies in a hyperplane
not through O, then for a vector field & tangent to this hyperplane we get T = 0.
Formula (1.12) also says that the property T = ah is independent of the choice of
&, although the scalar « depends on &.

We also have

ProposiTION 1.6. Let n = 3. Assume V is flat and rank h = 2. Then the image
of the immersion lies on an affine hyperplane and the immersion turns out to be a graph
immersion into this hyperplane.

Proof. The condition that V is flat means

(1.18) RX,VMZ=nhY,2)SX—hX,Z)SY-T(Y,2) X+ TX,Z2)Y=0.

Let {X,,...,X,, X,,,,...,X,} be a basis such that {X,,,,...,X,} generates ker
and (X, X)) =¢0,;,¢6==x1 for 1 <i,j<r For i#j choose k#1,j
(n = 3). By letting X=X, Y=X,, Z= X, (1.18) implies — T(X,, X)X, +
T(X;, X)X, = 0. Hence, T(X,, X;) = 0. Fori #jlet X=X,, Y= Z = X,. Then
(1.18) implies

h(X, X)SX, — T(X, X)X, = 0.

If 1 <7 <7, then SX; = uX, where ¢ = T(X], X;)/h(X,, X)). Since rank h = 2,
this identity holds for all 7 and g is independent of j. If # + 1 < j < #, then T(X],
X;) = 0. Therefore, we have

S=ul and TX,Y) = puh(X,Y).
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By changing & to & = & + un, the equations (1.11), (1.12), and (1.16) allow us to
assume S = 0 and T = 0. By Proposition 1.3 and Example 3 of [NP1] we get the
conclusion.

We conclude this section with the following formulas for later applications.

ProPOSITION 1.7.  Under the change of & to & = A (€ + an + f,U) the cubic
forms C and 0 transform as follows:

ANCX,)Y,Z) = CX,Y,Z) + h(X, VU, Z) + h(Y,Z)h(U, X)
+ mZ, X)h(U,Y)
¥ X,Y,Z)+a)7T'C'X,Y,2)=06X,Y,Z) + hX, V)T, Z)
+nY,2)TW,X) +h(Z,X)TU,Y)

Proof. The first identity is similar to the affine hypersurface case (see [NP2]).
The second one is calculated as follows.

(VoTHY, Z)+ o0 X)W (Y, Z)

= X(T'(Y,2)) — T"(VyY, Z) — T'(Y,V4Z) + 20 (X)h(Y, Z)

= X(T(Y,2) — ah(Y, 2)) — T(VyY, Z) + ah(V}Y, Z)
— T(Y,V,Z) + ah(Y,V,Z) + A0 XOW(Y, Z)

= X(T(Y, 2)) ~ X@h(¥,Z) — aX(h(Y, Z))
— T(V,Y,Z) + (X, V)T, Z) + ah(V,Y,Z) — ah(U, Z)h(X,Y)
— T(Y,V,2) + h(X,Z)T(U,Y) + ah(Y,V,Z) — ah(U, V) h(X, Z)
+ X)) + X@ + TX, V) — ah(X, 1) — ar(X)}n(Y, Z)

= §(X,Y,Z) —aC(X,Y,Z) + (X, V)T, Z) — ah(U, Z)}
+ (Y, 2T, X) — ah(U, X)} + h(Z, X){T(U,Y) — ah(U,Y)}.

§2. Projective hypersurfaces

"2 — {0} = P"*" be the natural projection where P**' is a projec-

Let 7 : R
tive space of dimension # + 1. Let F be an immersion of an #-manifold M into
P"*!. Then, locally, there is an immersion f of M into R*** — {0} such that 7" f
= F. We call f a local lift of F and use the notation F = [f]. Another local lift g
is written as g = @f for some nonzero scalar function ¢. In this section we want
to obtain ralations of the invariants for f and those for g and, thereby, to find out
what invariants can be attached to the immersion F.

We first consider the relationship between f, and g4. Since

Dyg = Dy(¢f) = (XP) f + ¢Dxf,
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we have

g:X = (XP)n,,, + £ X = X(og §) 1, + 9f:X

where fi X € T,(J,)R"+2 is considered to be in Tng“z by parallel translation. For
the moment we write 7, for n]gm and 7 for nl,w Then

(2.1) g:X=0Xn, + of, X

where 0 = dlog ¢. The quantities for g are denoted with “~”. We get the follow-
ing formulas with respect to the immersions (f, &, 1) and (g, &, n,):

(2.2) VY=V, Y+ oNX+oX)Y

(2.3) T(X, Y) = Hessp,y(X,Y) — 0(X)a(Y) + T(X,Y)
(2.4) h(X,Y) = ¢h(X,Y)

where

Hess,ovg¢ = Hessian of log ¢ = Vo.

The proof is straightforward by calculating

Dyg Y = Dy{o(Y)n, + ¢£.Y}
= X(0(Y)n, + o(Y) g X + X (@) Y + ¢Dx £,.)Y
= X(e(Y)n, + o(V) g X + 0(X) (g, Y — a(Y)n,)
+ T, V)0 + £V, Y + h(X,Y)&

which, on the other hand, should be T(X, Y)7, + g«(VyY) + (X, V)&
Similarly, by the identity

Dy§ = p(X)n — foSX + 1(X)€
= 06(X)n, — g.5X + T(X)§E,

we have
(2.5) T=r
(2.6) #0(X) = p(X) + 0(SX)
(2.7) ¢S =S.
Moreover we can see that
6=¢"""0.

Hence, the conformal class of & is preserved and, if f is equiaffine, i.e. 7 = 0, then
g is also equiaffine relative to the same &.
Let R denote the curvature tensor of ¥V and let y and 7 be the normalized

https://doi.org/10.1017/5S0027763000004645 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004645

72 KATSUMI NOMIZU AND TAKESHI SASAKI

(i.e., divided by # — 1) Ricci tensors of ¥V and V, respectively. We see
RX,VVZ=RX,)Z+ (V,0)(2)Y— (Vy0)(Z)X+ 0(Y)o(Z)X — 0(X)a(Z) Y

and
7(X,Y) = r(X,Y) — {(Vyo) (Y) — a(X)a(Y)}.
Hence we get

(2.8) T7(X,Y) + 7(X,Y) = T(X,Y) + r(X,Y).

Assume that % is nondegenerate and that {f, &} is a pre-normalized
Blaschke immersion. Then the immersion g has a similar normalization. Let & be
an associated vector field which can be written as

AE=E+an,+g.U.
By computation, we see that the identities
A=¢, ¢n(U, X) =0dX), 2a+al) =0

determine &. Let (V, &, S, T, p) be the data for & They are given by the follow-
ing formulas:

(2.9) V.Y=VY+ oX)Y+ o)X — ¢h(X,Y)U
(210)  A(X,Y) = ¢’h(X,V)
(2.11) TX,Y)=TX,Y) + (V0 (Y) — o(X)o(Y) — aph(X,Y)
(2.12) ¢°SX = SX — apX — p{Vy U+ o(X) U+ (DX} + ¢°h(U, X)U
(2.13) ¢°6(X) = p(X) + 0(SX) + ¢X(a) — a¢’n(U, X)
+ ¢{(Vyo) U — o(X)a(U) + T(U, X)}

We define a quadratic form J by
(2.14) J(X,Y) =TX,Y) + h(SX,Y).

Then we can prove easily the following formulas:

Prorosition 2.1.

(1) C = ¢°C.
2) T(X,Y) =TX,Y) + ¢C(U, X,Y).

83. Dual mappings

In this section, we define the dual mapping of a given immersion and discuss
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its elementary properties. We assume the nondegeneracy throughout the section.

Let R,,, denote the dual vector space of R"* and 7]* the radial vector field
of R,,,. We define two mappings v and w from M into R,,, by associating to each
point x two linear functions v(z) and w(z) on T,,,R"** which is identified with
the vector space R"”, as follows:

v(@ ) =1, v@ My =0, and @) (fLX) =0 forall X€ T,M;
w(@ ) =0, w@(,y) =1, and w@) (LX) =0 forall X€ T,M.

LEMMA 3.1. The derivatives of the mappings v and w are given as follows:

(Dyv) () = — 7(X) (Dyw) (§) = — p(X)
Dy)(n) =0 (Dyw)(n) =0
D) (f,Y) = — h(X,Y) Duw (f,Y) = — TX,Y).

The nondegeneracy of & implies that the mapping v defines an immersion, be-
cause from the assumption v,Y = Dyv =0 follows Y =0 by the identity
(Dyv) (f,Y) = — h(X,Y). Since v(f,X) = 0 and since Dyv is nonzero, the vec-
tor field 7" is transversal to the mapping v. Since w() = 1 and Dyv(n) = 0, the
vector field w is also transversal to the mapping v. Because of the definition two
vector fields v and w are linearly independent. So, the mapping v defines a cen-
troaffine immersion of M. The pair {v, w} is called the dual mapping of {f, &}.
The following set of equations

D,m* = v, X
(3.1) DY =T "X, V)™ + 0,(VEY) + h* (X, V) w
Dyw = 0*X)n* — v, (S*X) + * X)) w

defines the objects V*, h*, T, S*, p*, and 7 for the dual mapping v.

Lemma 3.2.

T*(X,Y) = — h(SX,Y) + t(X)(Y) — (Vi) (Y)
¥ (X,Y) = h(X,Y)
Z(h(X,Y)) = h(V,X,Y) + h(X,V3Y) + «(V)h(X, Z).

Proof. These formulas are obtained by differentiating the three equations on
the left hand side of Lemma 3.1. For example,

0 = X{(0,(1)) (&) + (Y}
=Dy, ) () + (0,Y) (D0 + (Vi (Y) + =(ViY)
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= (T*X,V)n" + 0 (V3Y) + A5 (X, V)w) (&)
+ 1) (X)) — fSX + 7(X)O + (ViD) (V) + «(ViY)
= {T*X,Y) — c(Vi1)} + (h(SX,Y) — o(X)7(¥)}
+ (V3 (Y) + o(V3Y)

shows the first formula. The other two are derived likewise.
Similar computation shows
LemMa 3.3.

0F(X) = — p(X) — £(S*X)
(X)) =0
h(S*X,Y) = — T(X,Y).

Recall the definition of 7 and define 7~ by

T*X,Y) = T*X,Y) + h"(S*X,Y).

ProposiTioN 3.4

1) TX,Y) + T*X,Y) = t(X)=(Y) — (Vi) ().
) C*"X,Y,Z)+ CX,Y,Z) =t(X)h(Y,Z) + t(V)h(Z,X) +c(Z2)h(X,Y).

Proof. The identity (1) follows from Lemma 3.2 and Lemma 3.3. We prove
(2). By definition, we have

CX,Y,Z)=XY,Z) — WV, Y,Z) —h(Y,V,Z) + c(X)h(Y, 2Z).
Since A* = h and ¥ = 0, we obtain
C*(X,Y,2)=X(Y,2)) — h(VyY,Z) — h(Y,V3Z).

Hence the sum of these equations gives the formula in view of the third identity of
Lemma 3.2.

We remark here that when 7 = 0 the formulas take simple forms; in particu-
lar, two connections V and V* are conjugate to each other:

(3.2) Xh(Y,Z)) =h(V,Y,Z) + h(Y,ViZ).

This is a well-known relation in affine hypersurface theory (see [DNV]).
Let us next consider the dual of the dual: denote by (p, ¢) the dual of (v, w).
It is determined by
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pw) =1, p(») =0, and p(v,X) =0
qw) =0, qw) =1, and qv,X) =0.

If we put p, = anyu + fie(V) + b€, then a = pw) =1, b =p(v) =0, and
pX) = — h(X,V) — br(X) = — h(X,V); since h is nondegenerate, V = 0.
Thus p, = Ny = f(2). Similarly, we see g, = &, + fi,V, where V is defined by
n(X,V) + t(X) = 0. Therefore, the dual mapping of the dual is the same as the
original immersion while the transversal vector field changes a little depending on
T

Let F be an immersion of M into the projective space P"*! and f a local lift
of F: [f] = F. The dual mapping v is associated with a transversal vector field
& The dual mapping v” associated with another vector field & = (§ + an + £, U)/A
differs from v by v = Av. Hence, [v] = [v"] as mappings into the dual projective
space P,,,. Let g be another choice of local lift of F'; then, g = ¢f for a nonzero
scalar function ¢. In this case, the dual mapping v, for {g, & is equal to v. So, we
can define the dual immersion F* of F by F* = [v]. The discussion in the pre-
vious paragraph says that (F*)* = F.

We say that the pair {f, & is affinely selfdual if f = Av for a linear iso-
morphism A of R,,, with R""* We say that the immersion F = [f] is selfdual if
F=AF* for a projective linear isomorphism A of P,,; with i

For both cases, denoting by <, > the dual pairing of R"” and R,,, we have

S AT =L, » =0.
This proves
ProposiTiON 3.5. The image of an affinely selfdual (nondegenerate) centro-
affine immersion lies in a quadratic cone, that is, a cone over a quadratic hyper-
surface in an affine hyperplane not passing through the origin. The image of a

selfdual (nondegenerate) projective immersion is part of a nondegenerate quadratic
hypersurface.

§4. Projective flatness and umbilicity

Two torsion-free affine connections V and V’ are said to be projectively
equivalent if there is a 1-form ¢ such that

ViV =VyY + o(X)Y + o(Y)X.

If ois closed, we say that V and V' are projectively equivalent in a stronger sense.
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The connection V is said to be projectively flat if it is a projectively equivalent to a
flat affine connection.

Let us recall the definition of the projective curvature tensor of a connection
V(E, p. 97)). Put

WX, YVNZ=RXYVNZ—{y(Y,2)X—yX,2)Y},
where 7(X,Y) = Ric(X,Y)/(n — 1) and
2

w—1

WX, 1Z = AT, DY~ AX, DY) + 27 AX,DZ,

where
AX,Y) = § Ric(X,¥) — Rie(¥, X)).

Then the projective curvature tensor W is defined by
WX YVZ=wWXYVZ+ W,X,NZ.

If V has symmetric Ricci tensor, W, = 0 and hence W = W,.

If two affine connections V and V’ are projectively equivalent, they have the
same W. It is known that V is projectively flat if its projective curvature tensor
W is identically zero when n = 3.

Denote by S° the traceless part of S: S’ =S — (trS/#)I. Then the identities
(1.3) and (1.9) show

4.1) WX, YNZ=hn(Y,Z2)S°X — h(X,2)S’Y
+ ;éf {h(S°Y,Z2)X — n(S°X, 2)Y),
1

W —1

(4.2) W,(X,Y)Z = H{r(S°Z,Y) — h(S°Y,Z)} X

—{n(S°Z, X) — h(S°X, Z)} Y]
1 0 0
T {h(S°Y, X) — n(S°X,V)}Z.

We prove

THEOREM 4.1. Let n 2 3. The connection V is projectively flat if and only if
either (1) h =0, or (2) rank h = 1 and S° = v-T on ker h, or (3) S° = 0.
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Proof. First, we show the if-part. When (1) or (3) occurs, W vanishes trivial-
ly. We assume the case (2). Let Y € ker h. Then

WX, V)Z =~ vh(X, D)V~ L h(SX, )Y
1

n—1

W, (X, Y)Z = — {h(S°Z, X) — h(S°X,2Z)}Y.
If XCkerhor Z€E ker h,then W= W, + W, = 0. Let X = Z €ker h; then W,
= 0. Write S°X = AX mod ker # ; then, since trS° = A+ (n — 1)y = 0, we have
W, = 0. Hence W = 0.

Second, we prove the converse statement. Assume W =0 and rank 2 = 1.
Let {X,,...,X,} be a basis such that A(X,, X)) = *1 and {X,,...,X,}
generates ker h. When Z= X, and X # Y € {X,,...,X,}, possible because # > 3,

W(X,Y)Z = ﬁ (h(S°Y, X)X — h(S°X, X) Y},
1

w—1

Hence, W= 0 implies A(S°X, X)Y = h(S°Y, X)X and A(S’X, X,) =0 be-
cause X and Y are linearly independent. Namely, we see S°(ker h) C ker h. When
X=7Z= X, and Y € ker h (accordingly, S°Y € ker h), W,(X, Y)Z = 0 and

W,(X,Y)Z =

{h(S°X,X)Y — h(S°Y,X)X).

WX, Y)Z = — h(X, X)S'Y — n—}-l— (X, X)Y.

Therefore, S°Y = vY where v = — h(5°X,, X,)/(n — 1) h(X,, X,), which shows
the case (2).

Assume next rank 2> 2 and W=0; we see S°=0. Let {X,,.. ., X, X,.,,...,
X,} be a basis such that {X,,,...,X,} generates ker 4 and h(X;, X}) = % §,; for
1<4j<r Whenr23and X# Y# Z# Xarein {X,...,X,},

W(X,Y)Z= n% {h(S°Y,Z)X — h(S°X,2)Y},
1

n—1

W, (X, V)Z = {h(S°Z,Y) — h(S°Y,Z2)} X

P 1 {h(S°Z,X) — h(S°X,2)}Y
-

1 0 [
+m{h(s Y, X) - h(S’X,Y)}Z.
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Hence, when W = 0, the coefficient of Z says A(S°Y,X) = h(S°X,Y) and, so,
W, = 0; then the coefficient of X in W, implies h(S°Y, Z) = 0.
When Y # Z € {X,,...,X,} and X € {X,,,,...,X,}, we have

WX,V Z= -t (S'Y, D)X — h(SX, DY),
1

n—1

1
+
n—1

W, X,Y)Z = (n(S°Z,Y) — h(S°Y,Z)}X

. 1 .
nS'X,2)Y n+1h(SX,Y)Z.

The coefficient of Z shows h(S°X,Y) = 0, i.e., S’ker & C ker h. Then the coeffi-
cient of X vanishes:

1
n—1

1

n—1

n(sY,Z) + {h(S°Z,Y) — h(S°Y,Z)} =0,
from which it is easy to see 2#(S°Y, Z) = 0 also in this case. Hence we have seen
that there exist scalars v; such that

(4.3) S°X;, = v,X;, modkerh, 1 <i<7.

Now let both ¥ = Z and X belong to {X,,...,X,}. Then, W, = 0 by (4.3) and
W,(X,1)Z = h(Y,1)S°X + 4 h(S'Y, D)X,

Hence, v; + v;/(n — 1) = 0 for i # j. Since # = 3, it is easy to see v; = 0. Then,
W, = 0 implies now S°X =0, ie, S’ =0on {X,,...,X,}.

Consider finally the case where Y=Z € {X,,...,X,} and X € {X,,,,...,X,}.
We have W, =0 and W,(X,Y)Z=h(Y,Y)S’X. Hence S’ =0 also on {X,,,,...,
X,}. This ends the proof.

Remark that the proof is the same as that of Theorem 5 of [NP3] when Ricci
curvature is symmetric.

We say the immersion f is wmbilical relative to € if S° =0, i.e., S = vI for
some scalar function v.

LEmMA 4.2. Assume S = vl and n = 2. Then

(1) dr = 0.
(2) dv — vt +p=0.
(3) a(€ + vn) is a constant vector where & is defined (locally) by T = — dlog a.
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Proof. (1) follows from the identity (1.8). For (3), it is enough to check

Dy(E+vp) = (eX)n — SX+ (X)) + X(w)n +vX
= 7(X) (& + vp).

The assumption S = vI implies V,S = (Xv) -I. Then, by (1.6),
(X)) —vr(X) + p(X)}Y = {Y(v) — vr(Y) + p()} X.
If n =2, (2) follows.

THEOREM 4.3. Assume the immersion f is umbilical. Then each 2-dimensional
linear subspace spanned by N, and &, contains a fixed line through the ovigin; in other
words, each projective line through [f(2)] in P"™' in the direction of [£,] passes
through a fixed point.

Proof. Puty = f(x) + A& + un. Then we get

Dyy = QX)) + Xp)n + (X — ASX + pX) + (X2 + A7(X))E.
Letting # = Av — 1 and using (2) of Lemma 4.2, we check
Dyy = (X2 + A7(X)) (€ + vp).
Puta = a(€ + vn) and w = a '(dA + A7). Then we obtain
Dyy = w(X)-a,
which proves the conclusion.

Remark. Our method in this paper makes it possible to recapture Proposition
8 in [NP3] without the assumption of equiprojectivity.

§5. Uniqueness theorems

In this section we are going to establish a number of uniqueness theorems for
"*2 — {0} and for immersions M — P"*".
"2 — {0}, i =1,2, with transversal
vector fields &' We have two sets of invariants (V', ', T%, S*, o', 7). We say
that f1 and fz are affinely (resp. projectively) equivalent if f1 =Af2 (resp. if
[f'1 = [Af?) for a general linear transformation 4 in GL(# + 2, R).

A preliminary uniqueness theorem is stated as follows.

centroaffine immersions M — R
. . . i
Consider two immersions f : M— R
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Lemva 5.1, Assume V' =VL, W' =n, T'=7T% S =57 pl = pz, and
Y= Thenf' and f* are affinely equivalent.

We follow the patterns in [D] and [O] to prove the following.

LEMMA 5.2 Assume V' =V =V, h' =W’ =:h, and T' = T> =: T. If rank
h =2, then f ' and f 2 are affinely equivalent.

Proof. From the equation (1.5),
(Ve (Y,Z)— (Vyh) (X, 2Z)

Il

T WMhX,Z) — ' X)h(Y, Z)
=2 (Vh(X,Z) — “X)h(Y, 2).

Hence, for 7 1= - TZ, we get
tMh(X,Z) =t(X)nY,Z).

Then, the assumption rank % = 2 implies ¢ =0 by Lemma 1.2. Similarly, for
o= pl - pz, the equation (1.4) shows

oeMh(X,Z) =o(X)n(Y, 2)
and we get 0 = 0. Lastly, for S := S' — S? the equation (1.3) gives
nY,Z)SX=nX,2Z)SY
which implies S = 0. Hence the equivalence follows from Lemma 5.1.

We shall further prove

LEMMA 5.3. Assume V' = Vz, ' = AW, and T' = T? — ah® where a and A
are scalar fumctions and A is monzero. If rank h' = 2, then ' and f° are affinely
equivalent.

Proof. Put &% = (§° — an)/A. Then relative to £% we see

W= 2nt, T =T —ah’, V¥ = V*;
hence, we can apply Lemma 5.2.
The assumption of Lemma 5.2 can be modified to yield projective equivalence:
LEMMA 5.4. Assume

VY= V¥ +oX+ oX)Y
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T'(X,Y) = T*(X,Y) + (Vo) (V) — 6(X)a(Y)
K(X,Y) = W X,Y)

where A is a nonzero scalar function and o is a closed 1-form. Then f " and f 2 are pro-
jJectively equivalent.

Proof. Let 0 = dlog u locally and consider the immersion g = pf > with the
same transversal 52. Then

ViYy= ViV + o(NX + o(X)Y
T5(X,Y) = T°(X,Y) + (V,0) (Y) — 6(X)a(Y)
W(X,Y) = ph*(X,Y).

Hence V'= V, T'= T% and h' = (1/wh’. Apply Lemma 5.3 to f' and g to
obtain the result.

Now we can drop the condition on 7. We prove

PROPOSITION 5.5. Let n > 3. Assume V' =V’ =:V and h' = h* =: h. If rank
h =2, then f* and f* are affinely equivalent.

Proof. Let us recall that the projective curvature tensor W is the sum of two
tensors W, and W, which have expressions given in (4.1) and (4.2). The
right-hand side of W has two expressions, one using S and the other using s,
Hence, for S° = S — (trS/n) I where S := S' — S%, we see

WY, 2)S°X — WX, DSV + 1 (S'Y, 2)X — h(S°X, 2)Y)

+ A W(S°Z,Y) = h(S°Y, 2V X — ((S°Z, X) — h(S°X, Z))} Y]

n —1

1 0 0 _
+ 7 ((S°Y, X) = h(S°X,Y)}Z = 0.

Since rank % = 2, the argument in the proof of Proposition 4.1 works and we

have S =0, i.e., S = s/ for a scalar s. Now, the equation (1.3) implies, for T :=
T' - T?

sh(Y,2)X —sh(X,Z2) Y- T(Y,Z) X+ TX,Z)Y=0.

Hence, T(Y,Z) = sh(Y,Z). Take &% = £ — sn; then, T¥ = T* + sh by (1.12)
and 87 = 8% + sI by (1.16). This means, in particular, T' — T% = 0 and we can
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apply Lemma 5.2.

THEOREM 5.6. Let n = 3. Given two centroaffine immersions f ' and f 2 M—
R™? — {0}, assume that the induced connections V' and V° coincide and that h' and
h’ are conformal and of rank = 2. Then both immersions are affinely equivalent.

Proof. By scaling Ez by an appropriate nonzero factor, we can reduce the
case to that of Proposition 5.5 in view of (1.11) and (1.13).

THEOREM 5.7. Let n = 3. Assume V' is projectively equivalent in a stronger
sense to V° and h' is conformally equivalent to h’. If rank h' = 2, then f' is projec-
tively equivalent fo f 2

Proof. By scaling f2 by an appropriate scalar, we can reduce the case to that
in the previous proposition.

Two theorems above can be further generalized. We consider a- pair
(V, h) which arises from an immersion f:M— R"? — {0} together with a
transversal vector field & In the set of all such pairs (V, A) associated to all im-
mersions M — R™*? — {0}, we define an equivalence relation: (V, &) ~., (V' h)
if there exist a vector field U and a function A #¥ 0 on M such that

(5.1) VY=V, Y—h(X, VU and W = Ah.

It is easily checked that, given f : M— R"™* — {0}, we get an equivalence class
[(V, b1, independently of the choice of &.

THEOREM 5.8. Let n = 3. Two immersions fl, fz M- R"™ — {0} of rank
> 2 are affinely equivalent if and only if the equivalence classes [(V', B")], and
L(V2, D], forf ' and f° coincide.

Proof. See the equations (1.11) and (1.13).
Given two immersions F', F*: M— P""! we shall say that F' and F? are
projectively equivalent if there is a projective transformation A of P"*! such that F’
= A+ F' In this case, any lift f1 of F' and any lift f2 of F* are projectively
equivalent in the sense we defined in the beginning.

Given an immersion F : M— P™*', we consider a pair (V, k) which arises

n+2

from the choice of a lift f: M— R"~ — {0} together with a transversal vector
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field £ In the set of all such pairs (V, &) associated to all immersions M — P"*,

we define an equivalence relation: (V, k) ~, (V’, &) if there exist a closed
1-form o, a vector field U, and a function A # 0 on M such that

(5.2) ViVl = VY + o(XDY + o(NX — h(X,Y)U and h' = Ah.

It is easily checked by (1.11) and (2.2) that, given F : M — P! we get an
equivalence class [(V, h)], independently of the choice of {f, &} representing F.
We define the rank of F' as the rank of 2. We can now state

THEOREM 5.9. Let n = 3. Two immersions F', F*: M— P""! of vank = 2
are projectively equivalent if and only if the equivalence classes [(Vl, hl)] » and

[(V?, h*)], for F' and F? coincide.

Remark. Formula (5.2) appears in [NP3], (44), as well as in [S].

§6. Immersions with Vi = 0

In affine hypersurface theory a well-known theorem of Pick and Berwald can
be formulated as follows. If a nondegenerate hypersurface has vanishing cubic
form, then it lies in a quadric. In this section we shall obtain a result of this type
for centroaffine immersions M— R™? — {0}.

Lemma 6.1. Assume vank h =2 and R(X,Y)h=10. Then dt =0 and
T = Hh, i, h(SX,Y) + T(X,Y) = Hh(X,Y) for some scalar function H.
Proof. By the assumption, we have
hRX, VY, Z) +n(Y,RX,Y)Z) = — (RX,Y)W(Y,Z) =0.
Then from (1.3) we have
Y, Vh(SX,Z) — hX,)h(SY,Z) + TX,Vh(Y, Z)

6.1) —TY,NhX,Z) +h(Y,Z)h(SX,Y) — (X, Z)h(SY,Y)
+TX,Z2)nY)Y) — T(Y, Z)h(X,Y) = 0.

Let {X,,...,X,, X,,,,...,X,} be a basis such that {X,,,,...,X,} generates ker h
and (X, X)) =¢€0,,e,=F*1 for 1 <, j<r Let1<j<rand1<i<n
with ¢ # 7. By setting X = X,, Y= Z = X, (6.1) implies

(6.2) h(SX, X) + T(X,, X) = 0.
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Next, let 7+ 1 <j<7and 1 <i<#n with i # . Choose k, 1 < k<r, k#1
(which is possible by virtue of the assumption rank s = 2). By setting X = X,
Y= X, and Z = X, (6.1) again implies (6.2). Thus (6.2) holds for all ¢, j ( # 7).

Now let 1 <4, j<m, i #J If weset X=2=X, Y=X, then (6.1) leads
to

h(X,, X){h(SX, X) + T(X,, X)}
6.3) = h(X, X)h(SX,, X) + T(X,, X)} for 1<i,j<r
h(SX, X) + T(X,X) =0 for r+1<i,n

(6.2) and (6.3) together imply
&7 (X, X) =eJ(X;,X) and T(X,X) =00(@G+*7).

Hence, there exists a function H such that 7(X;, X;) = H h(X,, X)) for any i, J.
This proves the conclusion.

LEMMA 6.2. Assumerank h = 2, Vh =0, and n = 2. Then

dH + 2p = 0.

Proof. Under Vh =0, (1.5) becomes 7(X)h(Y, Z) = t(Y)h(X, Z); this im-
pies 7 =0 by Lemma 1.2. Since Vi = 0, we have R(X,Y)h = 0 and
(6.4) r(SX,Y) + T(X,Y) = Hr(X,Y)

by Lemma 6.1. Differentiating this equation and using the assumption VA = 0, we
get

r(V,9X,Y) +(V,T)X,Y) = (ZH)h(X,Y).
On the other hand, (1.4) and (1.6) imply

r((V,9X,Y) + p(ZDHh(X,Y) = h((V,S)Z,Y) + p(XDR(Z,Y)
(V,DX,Y) + pDh(X,Y) = (V;T)(Y,Z) + p(X)h(Y, 2Z).

Hence, from the last three equations, we get
ZH)YW(X,Y) +202)h(X,)Y) = X(H)WY,Z) + 20(X)R(Y, Z).

This identity implies the result by Lemma 1.2.
We define for each x € M a quadratic cone through x by the following equa-

tion:

Q= {lalx+ U+ud)| WU, U) +H'—20=0, acR*.
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This is an analogue of Lie's quadrics ([B], p. 228—~9). We now prove

THEOREM 6.3. Assume the immersion M— R"™* — {0} satisfies that rank h =

2, Vh=0, and n = 2. Then the image lies on a quadratic cone.

n+2

Proof. Fix a point y € R"™ — {0}. For each x € M, y can be written as

y=oalx+ U+ ud.

Suppose y € @, . Then, if we can show y € @, for every z, the proof is complete. ’
To see this we compute Dyy by using the fundamental equations. The result is

Dyy = alX(loga) + T(X,U) + po(X)}n
+aXloga) U+ X+ V,U~— uSX)
+ {X(loga)u + (X, U) + X} &.

Note here that T = 0. On the other hand, since y is fixed, we have Dyy = 0; so,

TX,U) = — X(og a) — po(X)
V,U=uSX—X— X(loga) U
X, ) = — uX(loga) — Xp.

Using these equations, we get

(VU U)Z=huSX—X— X(loga)U, U)
= uh(SX,U) — h(X,U) — X(log a)h(U,U)
= u(Hh(X,U) — T(X,U)) — h(X,U) — X(Uog ) h(U,U)
= u{X(log @) + po(X)
+ (He — D{— pX(og @) — Xy} — X(log ) h(U,U)

and, hence,

X(n(U,U) + Hu" — 2p)
= 20(V,U,U) + XH- 1> + 2HuXy — 2Xu
= 2X(og ) {y — h(U,U) — u(Hu — D} + Qo(X) + XH) .

Therefore, by Lemma 6.2,
Xh(U,U) + Hi> — 2p) = — 2X(oge) (W(U,U) + Hu> — 2p) ;

this implies that &’ (R (U,U) + Hyu® — 2u) is constant. Since it is zero at £ = z,,
we have h(U,U) + Hu’ — 2u = 0.
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LEMMA 6.4. Assume the cubic form C vanishes and vank h = 2. Then dt = 0
and R(X,Y)h = 0.

Proof. The assumption C = 0 means (V,h) (U,V) = — t(X)h(U,V). Hence,

(VyVel) (U, V) = XUV, (U, V)} =V,h(V,U, V) — (V) (U, ViV)
= X(= (U, V)) + c«(Vr(V,U,V) + «(Y)h(U,V,V)

— X@(Y)hU,V) — c(M{(V k) (U, V)}

{r(X)z(Y) — X(z ()} (U, V).

If

Il

Similarly,

(VW) (U, V) = {z(X)(Y) — Y(c(XN}h(U,V),
Vg (U, V) = — «([X,YDrWU,V).

Therefore, we get

RX,VmU,V) = {Y(x(X)) — X(«(Y)) + «(IX,YD}h(U,V)
= — dr(X,Y)r(U,V).

Then the identity (R(X,V)WU,V) + h(R(X,Y)U,V) + h(U,R(X,Y)V)

= ( implies

{h(X,SY) — (Y ,SX)}h(U,V)
=h(Y,D)h(SX,V) — h(X,U)h(SY,V) + TX,U)h(Y,V) — T(Y,U)h(X,V)
+n(Y, VInSX,U) — kX, VI(SY,U) + TX, V)Y, U) — T(Y,V)h(X,U).

Let {X,,...,X,, X,41,...,X,} be a basis as in Lemma 6.1. For any 1 < i< 7,
1<j;<mi#jbylettingX=2X,and Y=U=V=LX, we get

h(X,, SX) — h(X,, SX) = 2{n(SX,, X)) + T(X,, X))}.
Assuming further 1 < j < 7 and interchanging ¢ and j, we have

h(X,, SX) — h(X;, SX) = 2{n(SX;, X)) + T(X,, X)}.
Since T is symmetric, the difference implies
(6.5) rX;, SX,) — h(X;,, SX,) =0

for1<¢,j<r
Now for v+ 1<:1<n, 1)< n, 1%+ take 1 £ k< r, k#j By letting
X=X, Y=X, U=V=X, we obtain

h(X, SX) — h(X,, SX) = 0.
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This proves (6.5) generally; hence dz = 0 by (1.8).

COROLLARY 6.5. Assume the cubic form C vanishes and rank h = 2. Then the
1mage lies on a quadratic cone.

Proof. 1f C =0, then t(X)A(Y,Z) = t(Y)h(X,Z) by (1.5). Lemma 1.2 im-
plies 7 = 0 and, then, Vi = 0. Theorem 6.3 proves the result.

. . +2
COROLLARY 6.6. Assume the immersion M— R"

h| C, namely

— {0} satisfies the condition

CX,Y,Z) =nrX,Y)h(Z,U) + h(Y,Z)h(X,U) + h(Z, X)h(Y,U).
Then the tmage lies on a quadratic cone.

Proof. Proposition 1.7 implies that we can assume C = 0 by a rechoice of a
transversal field &.

§7. Immersions with VT = 0
In this section we prove a result (Theorem 7.3) which is an analogue of

Theorem 6.3.

LEMMA 7.1. Assume rank h = 2. Then the condition R(X,Y)T = 0 is equiva-
lent to the condition T(SX,Y) = kh(X,Y) for some scalar function k.

Proof. The condition R(X,Y) T = 0 implies
TRX,Y)U,V) + T(U,R(X,Y)V) =0.

Hence, by (1.3) and by the symmetry of 7, we have

A:=nY, U)TSX,V) — (X, U)T(SY,V)
+ n(Y,V)T(SX,U) — h(X,V)T(SY,U) = 0.

Let {X,,...,X,, X,;1,...,X,)} be a basis as before. Suppose j # k and at least one
of them is in {# + 1,...,m}. Choose 1 < i < #,i+#j, k. By letting X=X, Y=
U= X, V=X, we obtain T(SX;, X,) = 0. Suppose j # k and both in {1,.. .,
7}. By letting X = X;, Y= U =V = X,, we obtain T(SX], X,) = 0.

Next, assuming j # k, let X = V=X, Y= U = X, we get
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h'(XJ" XJ) T(SXIn Xk) - h’(Xky Xk) T(SX,y X/) = 0
Hence we see T(SX,Y) = kh(X,Y). The converse can be seen by showing
A = 0 under this condition.
LemMma 7.2. Assume VT =0, T(SX,Y) = kh(X,Y), and rank h = 2. Then
dlog k = 27.

Proof. By differentiating T(SX,Y) = kh(X,Y), we get
TX,(V,9Y) = Zkh(X,Y) + k(V,p)(X,Y).
By interchanging Y and Z and by taking the difference, we get

TX,(V,9Y— (V,9Z)
= Z(KhX,Y) — Y X, Z) + k{(V,n(X,)Y) — (Vih) (X, Z)}.

Then equations (1.5) and (1.6) imply
{Zk — 2kc(D)}n(X,Y) = {Yk — 2kc(V)}h(X, Z).

This implies the formula by Lemma 1.2.

THEOREM 7.3. Assume the immersion M— R — {0} satisfies that rank

h=22 VI=0,and n = 2. Then the image lies on a quadratic hypersurface or on an
affine hyperplane.

Proof. By the assumption we have from Lemmas 7.1 and 7.2
Mpe=0, (2 TX,SY) =kh(X,Y), and (3) dlogk = 2r.

The first one follows from (1.4). We define a quadratic form ¢, on each tangent
n+2
space T,,R""" as follows:

@ ¢, =1 6) ¢.(fLX,7)=0 (6 ¢ =0
™ ¢, & X =0 B ¢, 8=k 9 ¢.(X 1Y) =-—TX,Y).

If we can see that ¢ is D-parallel, then the proof is complete because the equation
(4) represents a quadratic hypersurface or an affine hyperplane. The fact Dyg =0
is seen by simple computation. For example,

Dy @ (Y, /1Z)
= —qWDx(/Y, fuZ) — ¢(fiY Dy fiZ) — X(T(Y,Z)) by (9)
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= —qTX, V)0 + V¥ + WX, YV)E, f:2)
—qUiY, TX, Z)n + i VxZ + h(X, 2)§)
—{(VyD(Y,Z) + T(VyY,Z) + T(Y,VyZ)}
0 by (2), (5). (7) and (9).

It

Remark. 1f T =0 in Theorem 7.3, then also k = 0; hence the quadratic form
q is of rank 1 and the hypersurface ¢ = 1 is an affine hyperplane. See Proposition
1.3. In general, at a point where & # 0 and & is nondegenerate, the quadratic form
T is nondegenerate; hence the quadratic hypersurface is also nondegenerate.
The meaning of Theorem 7.3 may become clearer if we start with a quadratic
"2 — {0} is contained
in the quadratic hypersurface ¢(n, n) = 1, i.e. (4). Then (5) holds. By choosing &
satisfying (6), (7) and (8), we can see that these conditions imply (9) and thus lead

to VT = 0. Namely, f(M) contained in the quadratic hypersurface (4) satisfies

form g and assume that a centroaffine immersion f : M — R

vr=o.
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