J. Clark

paper by Brown [1] but for completeness sake we give some details here, taking a more elementary approach than Brown's.

First let $\alpha = k_0 + k_1 a + k_2 a^2 + k_3 a^3 + k_4 b + k_5 a b + k_6 a^2 b + k_7 a^3 b$ be an arbitrary element of R, with $k_i \in \mathbb{Z}_2$ for $i = 0, \ldots, 7$. Then $\alpha \in C$ precisely when α commutes with both generators a and b of G. Comparing αa , αb with $a\alpha$, $b\alpha$ respectively, gives that $\alpha \in C$ precisely when $k_1 = k_3$, $k_4 = k_6$ and $k_5 = k_7$. Thus $\alpha \in C$ if and only if

(*)
$$\alpha = k_0 + k_1(a + a^3) + k_2a^2 + k_4(b + a^2b) + k_5(ab + a^3b).$$

It follows that C has 32 elements and the 16 non-units, that is those with even support, form the unique maximal ideal M of C. Moreover, using the expression (*) above, an easy calculation shows that $M^2 = 0$ and for any nonzero element x of M the principal ideal Cx is simply $\{0, x\}$. It follows that C is its own classical quotient ring (since every element of M is a zero-divisor) and given any two distinct nonzero elements x, y of M we may define a C-homomorphism $f: Cx \to C$ by f(x) = y. Since $Cx \cap Cy = 0$, f can not be extended to an endomorphism on C. Hence, by Baer's criterion for injectivity, C is not self-injective.

References

- [1] K.A. Brown, 'Quotient rings of group rings', Compositio Math. 36 (1978), 243-254.
- [2] C. Faith, 'Injective modules and injective quotient rings', in Lecture Notes in Pure and Applied Mathematics 72 (Marcel Dekker, Inc., New York, 1982).
- [3] C. Faith and S. Page, 'FPF ring theory. Faithful modules and generators of mod-R', in London Math. Soc. Lecture Notes 88 (Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney, 1984).
- [4] D.S. Passman, 'The algebraic structure of group rings', in Pure Appl. Math. (Wiley-Interscience, New York, London, Sydney, 1977).
- [5] G. Renault, 'Sur les anneaux de groupes', C.R. Acad. Sci. Paris Sér.A-B 273 (1971), 84-87.
- [6] G. Renault, 'Sur les anneaux de groupes', in Rings, modules and radicals 6: Proc. Colloq., Keszthely 1971, pp. 391-396 (Colloq. Math. Soc. János Bolyai, North-Holland Amsterdam, 1973).

Department of Mathematics and Statistics University of Otago Dunedin New Zealand