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Introduction

Let k be a field of characteristic not 2 or 3. The classical constructions of Tits
give all exceptional central simple Jordan algebras overk. In this paper, we give
constructions of Jordan algebras over any commutative domain (in which 2 and 3
are invertible), which place, in a general set up, Tits constructions of exceptional
Jordan algebras. We use these to produce nontrivial Jordan algebra bundles on
the affine planeA2

k, whose fibre is a given exceptional Jordan division algebraJ

overk. If G =Aut J , we further show that the associated principalG-bundles on
A2
k admit no reduction of the structure group to any proper connected reductive

subgroup ofG. This theorem, along with the results of ([PST]), completes the case
G = F4 which is left out in a theorem of Raghunathan on the existence of principal
G-bundles onA2

k for a connected reductive anisotropic groupG over k, whose
structure group has no reduction to any proper connected reductive subgroup ([R],
4.9).

Let R be a commutative domain in which 2 and 3 are invertible. LetA be an
Azumaya algebra overR of degree 3. LetP be a projective module of rank 1
overA. We assume that the reduced normN (P ) of P (cf. [KOS]) is free. Let
µ:N (P ) ' R be an isomorphism ofR-modules. We associate to the pair(P,µ),
in a functorial way, a Jordan algebraJ (P,µ) (Section 1), whose underlyingR-
module isA⊕P⊕P (∗), whereP (∗) = HomA(P,A). We call a Jordan algebra aTits
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14 R. PARIMALA ET AL.

first construction algebraif it is isomorphic toJ (P,µ) for some pair(P,µ) over a
degree 3 Azumaya algebraA overR. We show that such an algebra isexceptional
in the sense of ([PST]), containing a Jordan subalgebra isomorphic toA+. We prove
conversely that ifJ is an exceptional Jordan algebra andA is an Azumaya algebra
of degree 3 overR such that the special Jordan algebraA+ is contained inJ as a
Jordan subalgebra, thenJ is a Tits first construction Jordan algebra.

Let B be an Azumaya algebra of degree 3 over an étale quadratic extensionS

of R and with an involutionσ of second kind. Let(P, h) be a projective module of
rank 1 overB with a Hermitian formh over(B, σ ). Suppose that the discriminant
disc(h) of (P, h) is trivial. Let δ:disc(h) ' (S, 〈1〉) be a trivialization. Then to the
triple (P, h, δ), we associate, functorially, a Jordan algebraJ (P, h, δ) (Section 2)
with the underlyingR-moduleB+ ⊕P , whereB+ is the Jordan algebra consisting
of symmetric elements inB for σ . We call a Jordan algebra aTits second con-
struction algebraif it is isomorphic toJ (P, h, δ) for some triple(P, h, δ) over an
Azumaya algebra(B, σ ) of degree 3 over an étale quadratic extensionS/R with an
involution of second kind. We show that these Jordan algebras are exceptional and
contain a Jordan subalgebra isomorphic toB+. We prove that ifJ is an exceptional
Jordan algebra and(B, σ ) as above such thatB+ is contained inJ as a Jordan
subalgebra, thenJ is a Tits second construction Jordan algebra. These results for
Jordan algebras over fields are due to McCrimmon, which in fact we use in our
proofs.

The idea behind the construction of nontrivial Jordan algebra bundles overA2
k

is the following. LetJ = J (D,µ) be the Jordan algebra overk associated to
the pair(D,µ) arising from Tits first construction, whereD is a degree 3 central
division algebra overk andµ ∈ k∗ is not a norm fromD. We choose a non-
free projectiveD[X,Y ]-moduleP of rank 1 together with a trivializatioñµ of
the reduced norm such that(P, µ̃) specializes to(D,µ) at a rational point. We
then constructJ (P, µ̃) as indicated before. Using these algebras as prototypes on
open sets and through a patching argument, one gets an infinite family of mutually
nonisomorphic Jordan algebras overA2

k with J as the fibre.
Let D be a central division algebra of degree 3 over a quadratic extensionK

of k, together with an involutionσ of second kind. LetJ = J (D, σ, u,µ) be
a Tits second construction algebra withu ∈ D∗, µ ∈ K∗, Nrd(u) = µσ(µ)

andµ not a norm fromD∗. We choose nonfree projectiveD[X,Y ]-modulesP
of rank 1 with Hermitian formsh and trivializations̃µ:disc(h) ' (S, 〈1〉) of their
discriminants. The existence of such triples(P, h, µ̃) is guaranteed by a theorem of
Raghunathan ([R], 4.9). These give rise to Jordan algebrasJ (P, h, µ̃) overk[X,Y ]
as explained earlier. Once again, using these as prototypes on open sets and by
patching arguments, one gets an infinite family of Jordan algebra bundles overA2

k

with J as the fibre.
In Section 3, we prove some results (which are of independent interest) on the

rigidity of bundles onP2
k with aD-structure obtained by extending nonfree pro-

jectiveD[X,Y ]-modules, for a central division algebraD overk of prime degree.
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Using these results, we show that the principalF4-bundles associated to the Jordan
algebras, constructed as above, do not admit reduction of the structure group to any
proper connected reductive subgroup ofG.

As is well known, every exceptional central simple Jordan algebra over a field
arises from the first or the second construction of Tits and, hence, the associatedF4-
bundle admits reduction of the structure group to SL1(D) or SU(D, σ ) for some
D andσ . However, the above constructions of Jordan algebra bundles overA2

k

yield F4-bundles with no reduction of the structure group to any proper connec-
ted reductive subgroup. In particular, theydo not arisefrom a generalised Tits
construction.

It has been pointed out to us by Prof. H. P. Petersson that the (unpublished)
thesis of G. Achhammer also contains a generalized construction of Jordan
algebras.

1. A General Tits First Construction of Jordan Algebras

Let R be a commutative domain in which 2 and 3 are invertible. LetA be an
Azumaya algebra of degree 3 overR, i.e.,A ⊗R R̃ ' M3(R̃) for some faithfully
flat extensioñR of R. Letµ ∈ R∗ and

J (A,µ) = A0 ⊕ A1⊕ A2,

whereAi = A, i = 0,1,2. Following Tits, we define a multiplication onJ (A,µ)
by

(a0, a1, a2) (a
′
0, a
′
1, a
′
2)

= (a0.a
′
0+ a1a

′
2+ a′1a2, a0a

′
1+ a′0a1 + µ−1a2× a′2,

a′2a0+ a2a
′
0 + µa1 × a′1),

whereai, a′i ∈ Ai , 06 i 6 2. Here, forx, y ∈ A, if tr:A→ R is the reduced trace
map,

x.y = 1
2(xy + yx), x = 1

2(tr(x)− x),

x × y = x.y − 1
2 tr(x)y − 1

2 tr(y)x + 1
2(tr(x) tr(y)− tr(x.y)).

With this multiplication,J (A,µ) is a Jordan algebra overR of rank 27 andA0 =
A+ is a Jordan subalgebra, where for any associative algebraC, C+ denotes the
corresponding special Jordan algebra. It can be checked thatJ (A,µ) is anexcep-
tional Jordan algebra i.e., locally for the étale topology,J (A,µ) is isomorphic to
the split 27-dimensional exceptional Jordan algebra (cf. [PST]). We would like to
give a construction of exceptional Jordan algebras, which we shall call Tits’ first
construction, which includesJ (A,µ) as a subclass.
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16 R. PARIMALA ET AL.

Let, for the moment,A denote any Azumaya algebra overR. We recall the
notion of a reduced norm functorN : AMod →R Mod, defined in ([KOS]). This
functor associates to a projectiveA-moduleP , a projectiveR-moduleN (P ) with
the following properties:

(1) N (A) = R.
(2) The mapNP :P = HomA(A, P )→ HomR(N (A),N (P )) = N (P ), induced

by the functoriality, has the propertyNP (ax) = NrdA(a)NP (x) for a ∈
A, x ∈ P , whereNrdA is the reduced norm onA.

(3) If P has rank 1, thenN (P ) is invertible. Further,NA:A→ R is the reduced
norm map ofA.

There is also a functorN :ModA →R Mod which has similar properties. We
have, for a projective leftA-moduleP , P (∗) = HomA(P,A) is a projective right
A-module,N (P (∗)) = N (P )∗ = HomR(N (P ), R) and the mapNP (∗) :P (∗) →
N (P )∗ is the composite

P (∗) = HomA(P,A)→ HomR(N (P ),N (A)) = HomR(N (P ), R) = N (P )∗,

induced by the functoriality ofN onAMod. We abbreviateNP = N .
Let A, B be Azumaya algebras overR andP , Q projective leftA-modules

overA andB respectively. Letf :A → B be an isomorphism ofR-algebras and
f̃ :P → Q an f -semilinear isomorphism. Then there is anR-linear isomorph-
ism N (f̃ ):N (P ) → N (Q) such thatN (f̃ )NP = NQf̃ . The mapN (f̃ ) is
constructed by descent.

PROPOSITION 1.1.LetA be an Azumaya algebra overR andP a projective left
A-module of rank 1. Suppose thatN :P → R is a map such that

(1) N(ax) = NA(a)N(x), a ∈ A, x ∈ P .
(2) The values ofN generate the unit ideal inR.

Then there exists a unique isomorphismη:N (P ) ' R such thatN = ηN . Further,
if v ∈ P is such thatN(v) is a unit, thenP is free andv is a basis element forP
as anA-module.

Proof. Since the values ofN generateN (P ), if η exists, it is unique. Hence
it is enough to show thatη exists ifR is local. In this caseP is free. Lete be an
A-basis element forP . SinceN(ae) = NrdA(a)N(e), by (2),N(e) is a unit inR.
The isomorphismφe:A→ P, a 7→ ae induces an isomorphismN (φe):N (A) =
R → N (P ), which gives a generatorγe = N (φe)(1) of N (P ) as anR-module
and by definition,N (e) = γe. We defineη:N (P )→ R by settingη(γe) = N(e).
Then

ηN (ae) = η(NrdA(a)γe) = NrdA(a)N(e) = N(ae).
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ThusηN = N . To prove the last assertion of the proposition, it suffices to show
that v generatesP locally onR. We assume therefore thatR is local ande is a
basis element forP . We have seen above thatN(e) is a unit inR. Let v = ae with
a ∈ A. ThenN(v) = NrdA(a)N(e) and henceNrdA(a) is a unit inR so thata is
a unit inA. This proves thatv is anA-basis element forP . 2
Let nowA be an Azumaya algebra of degree 3 overR. Let P be a projectiveA-
module of rank 1. The mapN :P → N (P ) yields anR-trilinear mapN :P ×P ×
P → N (P ) with the properties:

(1) N (x, x, x) = N (x) for x ∈ P .
(2) If P is free withe as a basis element,N (ae, be, ce) = NA(a, b, c)N (e), where

NA:A × A × A → R is the linearization of the reduced norm ofA, namely
NA(a, b, c) = tr((a × b)c), a, b, c ∈ A, tr being the reduced trace ofA.

We assume thatN (P ) is free. Letµ:N (P ) ' R be an isomorphism ofR-modules.
To (P,µ) we associate a Jordan algebraJ (P,µ) as follows: TheR-trilinear map
N induces anR-bilinear mapφ given by the composite

P × P → HomR(P,N (P ))
µ−→ HomR(P,R)

tr−1

' HomA(P,A) = P (∗)

where, tr:P (∗) = HomA(P,A) → P ∗ = HomR(P,R) is the isomorphism given
by tr(f )(x) = tr(f (x)). Similarly, we haveφ∗:P (∗) × P (∗) → P defined as the
composite

P (∗) × P (∗) → HomR(P
(∗),N (P (∗)))

(µt
−1
)−→ HomR(P

(∗), R)
tr−1

' HomA(P
(∗), A) ' P.

Let J (P,µ) = A⊕ P ⊕ P (∗). We define a multiplication onJ (P,µ) by

(a, x, f )(a′, x′, f ′)

= (a.a′ + f ′(x)+ f (x′), ax′ + a′x + φ∗(f, f ′), f ′a + f a′ + φ(x, x′)),
for all a, a′ ∈ A, x, x′ ∈ P , f, f ′ ∈ P (∗).

THEOREM 1.2. The multiplication above makesJ (P,µ) an exceptional Jordan
algebra.

Proof. It suffices to check this after a faithfully flat base change. We therefore
assume thatP is free. Lete ∈ P be a basis element ofP ande∗ ∈ P (∗) its dual, i.e.,
e∗(e) = 1. Letφ′:P × P → P (∗) be defined byφ′ = trφ, tr andφ being defined
as above. We have,

φ′(ae, be)(ce) = µ(NA(a, b, c)N (e))

= NA(a, b, c)µ(N(e)) = tr((a × b)c)µe,
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18 R. PARIMALA ET AL.

whereµe = µ(N (e)). Therefore,φ(ae, be) = e∗µe(a× b). Sinceµt
−1
(N (e∗)) =

µ−1
e , by a similar calculation one hasφ∗(e∗a, e∗b) = µ−1

e (a × b)e. It is easily
checked, using the above identities, that the mapJ (A,µe) → J (P,µ) given by
(a0, a1, a2) 7→ (a0, a1e, e

∗a2), is an isomorphism of Jordan algebras. 2
PROPOSITION 1.3 (Functoriality).Let A and B be Azumaya algebras of de-
gree 3 overR andP , Q be projective modules of rank 1 overA andB respect-
ively, with isomorphismsµ:N (P ) → R and ν:N (Q) → R of R-modules. Let
g: (A, P,µ) → (B,Q, ν) be an isomorphism i.e.,g:A ' B an isomorphism of
R-algebras,̃g:P ' Q a g-semilinear isomorphism ofR-modules such that the
diagram

N (P )
N (g̃)- N (Q)

A
A
A

µ
U ��

�
�
ν

R

(∗)

commutes. Then the mapJ (g): J (P,µ)→ J (Q, ν) given by

J (g)((a, x, f )) = (g(a), g̃(x), g̃∗−1
(f ))

is an isomorphism of Jordan algebras.
Proof. It is enough to show thatJ (g) is an isomorphism after a faithfully flat

base change ofR. We may therefore assume thatP = Ae is free. ThenQ = Be′
with e′ = g̃(e). Let µe = µ(N (e)) andνe′ = ν(N (e′)). Then, by(∗), we have
µe = νe′ . Therefore the isomorphismg:A→ B induces a mapJ (g): J (A,µe)→
J (B, νe′) given byJ (g)(a0, a1, a2) = (g(a0), g(a1), g(a2)), which is clearly an
isomorphism of Jordan algebras. It can be easily checked that the following
diagram

J (A,µe) - J (P,µ)

J (B, νe′)

J (g)

?
- J (Q, ν),

?
J (g)

is commutative, where the horizontal maps are the isomorphisms given in the proof
of (1.2). ThusJ (g): J (P,µ)→ J (Q, ν) is an isomorphism of Jordan algebras.2
COROLLARY 1.4. Let θ be an invertible element ofA. ThenJ (P,µ) andJ (P ,
NA(θ)µ) are isomorphic.
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Proof.Let g:A→ A be the inner automorphism given byθ−1. Let g̃:P → P

be defined bỹg(x) = θ−1x. Theng̃ is g-semilinear and̃g∗−1
(f ) = f θ . Further,

the diagram

N (P )
N (g̃)- N (P )

A
A
A

µ
U ��

�
�
NrdA(θ)µ

P

is commutative. Thus by (1.3),g induces an isomorphism

J (g): J (P,µ)→ J (P,NrdA(θ)µ)

given by(a, x, f ) 7→ (θ−1aθ, θ−1x, f θ). 2
We call a Jordan algebra isomorphic toJ (P,µ) a Tits first construction Jordan
algebra. This construction can be globalised to yield Tits’ first construction Jordan
algebra bundles over any integral scheme for which 2 and 3 are invertible.

Let k be a field of characteristic different from 2 and 3 andJ an exceptional
central simple Jordan algebra overk. LetD be a central simple algebra of degree 3
overk such that the special Jordan algebraD+ is a subalgebra ofJ . We record the
following result of McCrimmon ([M-1], Theorem 8).

PROPOSITION 1.5.Let J,D, k be as above andD+ ↪→ J . Then there exists
µ ∈ k∗ such thatJ ' J (D,µ). 2
We shall prove a similar result in a more general setting. LetR be a commutative
domain in which 2 and 3 are invertible. LetA be an Azumaya algebra overR. Let
M be a projectiveR-module which is anA+-module, i.e., there is a Jordan algebra
homomorphismφ:A+ → (EndRM)+. Since the unital special universal envelope
SU(A+) of A+ is A × Aop (cf. [J], p. 143, Corollary 2, [JR], Theorem 4), there
exists a homomorphism̃φ:A × Aop → EndRM of associativeR-algebras making
the diagram

A+ δ - A× Aop
A
A
Aφ U ��

�
�
φ̃

EndRM

commutative, whereδ:A+ → A×Aop is given byδ(a) = (a, a). Let e1, e2 denote
the images of the idempotents(1,0), (0,1) respectively under the map̃φ, so that
e1 + e2 = 1. LetM1 = e1(M), M2 = e2(M). ThenM1 is a left andM2 a rightA-
module through the restriction of̃φ toA andAop respectively andM = M1⊕M2.
In fact,

M1 = {m ∈ M|φ(a)(φ(b)(m)) = φ(ab)(m), a, b ∈ A},
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M2 = {m ∈ M|φ(a)(φ(b)(m)) = φ(ba)(m), a, b ∈ A}.
Let J be an exceptional Jordan algebra overR. LetA be an Azumaya algebra

of degree 3 overR such thatA+ ↪→ J as a Jordan subalgebra. LetM ⊂ J be
the orthogonal complement ofA+ in J with respect to the trace form ofJ . Then
J = A+ ⊕M. Forx, y ∈ J let

x × y = xy − 1
2T (x)y − 1

2T (y)x + 1
2(T (x)T (y)− T (xy)),

whereT is the trace map onJ . The mapA+ → (EndR(M))+ given bya 7→ Sa,
Sa(m) = −2a × m, is a Jordan algebra homomorphism (cf. [PR-1], 3.2) and thus
factors through a homomorphism SU(A+) = A × Aop → EndRM. We have a
decompositionM = M1⊕M2 as described above, where

M1 = {m ∈ M|a × (b ×m) = −1
2(ab)×m, a, b ∈, A},

M2 = {m ∈ M|a × (b ×m) = −1
2(ba)×m, a, b ∈ A}.

SinceJ is a projectiveR-module, eachMi is R-projective and sinceA is an
Azumaya algebra overR, eachMi isA-projective. We writea.x for anya ∈ A, x ∈
M1 (resp.x.a for x ∈ M2) for the module action ofA onM1 (resp.M2). We note
that by ([M-2], proof of Theorem 8),Mi⊗RK has rank 1 overA⊗RK,K denoting
the quotient field ofR. HenceMi is of rank 1 overA.

LEMMA 1.6. LetNi be the restriction of the cubic norm ofJ toMi. ThenNi :Mi →
R has the properties:

(1) Ni(−2a × x) = NrdA(a)Ni(x), for all a ∈ A andx ∈ Mi .
(2) The image ofNi generates the unit ideal ofR.

Proof. By going over to the quotient fieldK of R, property (1) reduces to a
simple computation. To prove (2), we may assume thatR is local. In this case, it
suffices to show thatNi(v) is a unit ofR for somev ∈ Mi . Let M denote the
maximal ideal ofR. ThenJ ⊗R R/M is an exceptional simple Jordan algebra over
R/M with a decomposition

J ⊗ R/M = (A+ ⊗ R/M)⊕ (M1⊗ R/M)⊕ (M2⊗ R/M)

and in view of ([M-2], proof of Theorem 8),Ni takes a nonzero value onMi ⊗
R/M. SinceNi(x) = Ni(x), for x ∈ Mi , bar denoting moduloM, it follows that
the image ofNi contains a unit ofR. 2

Let for x ∈ J , x# = x × x denote theadjoint of x in J , i.e.,xx# = NJ (x), NJ
denoting the cubic norm onJ . ThenM#

i ⊂ Mj , i 6= j andM1M2 ⊂ A+. This can
be shown by going to the quotient field ofR (cf. [M-2], proof of Theorem 8), in
view of the fact that(A+ ⊗K) ∩ J = A+ and(Mi ⊗K) ∩ J = Mi .
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LEMMA 1.7. The mapφ:M2 → M
(∗)
1 given byy 7→ φy, whereφy(x) = xy,

x ∈ M1, y ∈ M2, is an isomorphism ofA-modules.
Proof. We may assume without loss of generality thatMi are free. LetM1 be

free withe as a basis element. By (1.6),N1(e) = µ is a unit ofR. By the remarks
above,µ−1e# ∈ M2 and sinceN2(µ

−1 e#) = µ−1, by (1.1),M2 = µ−1e#A. We
haveφµ−1e#.b(a.e) = ab. This can be seen by going over to the quotient field

of R. This shows thatφy ∈ M
(∗)
1 for y ∈ M2 and thatφ is linear. Moreover,

φ(µ−1e#)(e) = e(µ−1e#) = 1. Thusφ maps the generatorµ−1e# of M2 to the dual
basis elemente∗ of M(∗)

1 . This shows thatφ is an isomorphism ofA-modules. 2
THEOREM 1.8. Let J be an exceptional Jordan algebra over a commutative
domainR in which 2 and 3 are invertible. Suppose thatA is an Azumaya algebra
overR of degree 3 such thatA+ is a Jordan subalgebra ofJ . Then there exists a
projectiveA-moduleP of rank 1 and an isomorphism̃µ:N (P ) ' R such that the
inclusionA+ ↪→ J induces an isomorphismJ ' J (P, µ̃).

Proof. LetM1 andM2 be as above. LetNi denote the restriction of the Jordan
norm onJ toMi . By (1.1) and (1.6) we have an isomorphism̃µ:N (M1) ' R such
thatN1 = µ̃N . We define

ψ : J = A+ ⊕M1 ⊕M2→ J (M1, µ̃)

by ψ(a, x, y) = (a, x, φy). By (1.7),ψ is an isomorphism ofR- modules. We
show thatψ preserves multiplication. It suffices to do this after a faithfully flat
base change. Therefore we assume thatM1 is free. LetM1 = Ae andN1(e) = µ.
Then, as in the proof of (1.7),M2 = µ−1e#A andN2(µ

−1e#) = µ−1. We have

ψ((a, x.e, µ−1e#.y)(a′, x′.e, µ−1e#.y′))

= ψ(a.a′ + xy′ + x′y, (ax′ + a′x + µ−1y × y′).e,
µ−1e#.(y′a + ya′ + µx × x′))

= (a.a′ + xy′ + x′y, (ax′ + a′x + µ−1y × y′).e,
φµ−1e#.(y ′a+ya+µx×x ′)).

On the other hand, we have as in the proof of (1.7),φµ−1e# = e∗. This shows that
ψ is multiplicative. 2

Remark. Given a Jordan algebraJ containingA+, whereA is an Azumaya
algebra of degree 3 overR, we decomposeJ = A+ ⊕M1⊕M2 as in the theorem
and treatingψ :M2 → M

(∗)
1 as an identification, we writeJ = J (M1, µ̃), by an

abuse of notation.
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2. A General Tits Second Construction of Jordan Algebras

Let R be as in Section 1. LetS/R be an étale quadratic algebra overR. LetB be
an Azumaya algebra of degree 3 overS with an involutionσ of second kind, i.e.,
σ restricted toS is the nontrivial automorphismτ0 of S overR. Let u ∈ B∗ with
σ (u) = u andNrdB(u) = µτ0(µ) for someµ ∈ S∗. LetJ (B, σ, u, µ) = B+ ⊕B,
B+ denoting the Jordan algebra of symmetric elements ofB. Following Tits, we
define a multiplication onJ (B, σ, u, µ) by

(b0, b)(b
′
0, b
′) = (b0.b

′
0+ buσ (b′)

+ b′uσ(b), b0b
′ + b′0b + σ (µ)(σ (b)× σ (b′))u−1),

whereb0, b
′
0 ∈ B+, b, b′ ∈ B andx.y, x, x×y are defined as in Section 1. With this

multiplication,J (B, σ, u, µ) is an exceptional Jordan algebra overR, with B+ as
a Jordan subalgebra. We give a construction of exceptional Jordan algebras, which
we shall call Tits’ second construction, which includesJ (B, σ, u, µ) as a subclass.

LetP be a projective module of rank 1 overB. LetP ∨ = HomB(P,B) regarded
as a leftB- module throughσ . Let h:P × P → B be a nonsingularσ -Hermitian
form. We regardh as an isomorphismh:P ' P ∨, whereh(x)(y) = h(y, x). Then
disc(h):N (P )×N (P )→ S is a rank one Hermitian form over(S, τ0) satisfying

disc(h)(N (x),N (y)) = NrdB(h(x, y)).
We assume that this form is trivial. Letµ: (N (P ), disc(h)) ' (S, 〈1〉) be an iso-
morphism of Hermitian spaces. Letν = µ∨−1:N (P )∨ ' S. Letφ:P × P → P (∗)
be the map defined as the composite

P × P N−→ HomS(P,N (P ))
µ−→ HomS(P, S)

tr−1−→ HomB(P,B) = P ∨,
whereN is the trilinearization of the reduced normN :P → N (P ). With this
notation, we setJ (P, h,µ) = B+ ⊕ P and define multiplication by

(a, v)(a′, v′) = (a.a′ + h(v, v′)+ h(v′, v), av′ + a′v + h−1(φ(v, v′))).

THEOREM 2.1. The algebraJ (P, h,µ) is an exceptional Jordan algebra.
Proof. It suffices to check this in a faithfully flat extension ofR. We therefore

assume thatP is free and choose a generatore for P . Let h(e, e) = ue. Then
ue is a unit ofB with σ (ue) = ue andh(be, b′e) = bueσ (b′). Further,µ: (N (P ),
disc(h)) ' (S, 〈1〉) is an isometry. Letµe = µ(N (e)). ThenNrdB(ue) =µeσ (µe).
We show that the mapη: J (P, h,µ) → J (B, σ, ue, µe) given by η(a, be) =
(a, b), is an isomorphism of Jordan algebras. We have, as in Section 1,P ∨ = Be∨,
e∨(e) = 1 andφ(ae, be) = σ (µe)(σ (a)× σ (b))e∨. Thus

h−1(φ(ae, be)) = h−1(σ (µe)(σ (a)× σ (b))e∨)
= σ (µe)(σ (a)× σ (b))u−1

e e. (#)
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Hence

(a, be)(a′, b′e) = (a.a′ + h(be, b′e)+
+ h(b′e, be), ab′e + a′be + h−1(φ(be, b′e)))

= (a.a′ + bueσ (b′)+ b′ueσ (b),
(ab′ + a′b + σ (µe)(σ (b)× σ (b′))u−1

e )e),

so that η((a, be)(a′, b′e)) = (a, b)(a′, b′). This completes the proof of the
theorem. 2
PROPOSITION 2.2 (Functoriality).Letf : (B, σ )→ (B ′, σ ′) be an isomorphism
of S-algebras with involutions of second kind overS/R. Let(P, h) (resp.(P ′, h′))
be a Hermitian (B, σ ) (resp (B ′, σ ′)) space with a trivializationµ: (N (P ),
disc(h)) ' (S, 〈1〉) (resp.µ′: (N (P ′), disc(h′)) ' (S, 〈1〉)). Let f̃ : (P, h) →
(P ′, h′) be an f -semilinear isomorphism of Hermitian spaces such that the
diagram

(N (P ),disc(h))
N (f̃ )- (N (P ′),disc(h′))

A
A
A

µ
U ��

�
�
µ′

(S, 〈1〉)

(∗′)

commutes. Then the mapJ (f ): J (P, h,µ)→ J (P ′, h′, µ′) given byJ (f )(a, x) =
(f (a), f̃ (x)), is an isomorphism of Jordan algebras.

Proof.The proof runs on the same lines as that of (1.3). 2
We call a Jordan algebra isomorphic toJ (P, h,µ) a Tits second construction
Jordan algebra.

PROPOSITION 2.3.Let (B, σ ) be an Azumaya algebra of degree 3 over a quad-
ratic étale extensionS of R, with an involutionσ of second kind overS/R. Let
(P, h, µ̃) be a Hermitian space over(B, σ ) of rank 1 with a trivializatioñµ of its
discriminant. LetJ = J (P, h, µ̃) be the Tits second construction Jordan algebra
overR associated to this data. Then there is an isomorphism

ψ : JS = J (P, h, µ̃)⊗R S ' J (P, µ̃)
of Jordan algebras overS such that the transport of the involution1⊗ τ0 on JS to
J (P, µ̃) throughψ is given byτ(a, x, f ) = (σ (a), h−1(f ), h(x)).

Proof.Letψ(h): JS → J (P, µ̃) be given by

ψ((a, x) ⊗ 1) = (a, x, h(x)) (a, x) ∈ J
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and

ψ(1⊗ λ) = (λ,0,0), λ ∈ S.
SinceB is generated byB+ overS, ψ is anS-linear bijection. We show thatψ is
multiplicative. It suffices to check this onJ sinceJ generatesJS overS. For(a, x),
(a′, x′) ∈ J , we have,σ (a) = a, σ (a′) = a′, ψ((a, x)(a′, x′)) =

(a.a′ + h(x, x′)+ h(x′, x), ax′ + a′x+
+h−1(φ(x, x′)), h(x′)a + h(x)a′ + φ(x, x′))

and

ψ(a, x)ψ(a′, x′) = (a, x, h(x))(a′, x′, h(x′))

= (a.a′ + h(x, x′)+ h(x′, x), ax′ + a′x +
+ φ∗(h(x), h(x′)), h(x′)a + h(x)a′ + φ(x, x′)).

So we need to verify that

φ∗(h(x), h(x′)) = h−1(φ(x, x′)), for all x, x′ ∈ P.
This we may check in a faithfully flat extension. We therefore assume thatP is free
with e as a basis element. Letue = h(e, e) andµe = µ̃N (e). Then, as in the proof
of (1.2),

φ∗(h(ae), h(be)) = φ∗(e∗ueσ (a), e∗ueσ (b)) = µ−1
e (ueσ (a)× ueσ (b))e

and

h−1(φ(ae, be)) = h−1(e∗µea × b) = σ (µe)(σ (a)× σ (b))u−1
e e.

By ([J], p.413, (63)), we have

σ (µe)(σ (a)× σ (b))u−1
e = µ−1

e Nrd(ue)(σ (a)× σ (b))u−1
e

= µ−1
e (ueσ (a)× ueσ (b)).

This shows thatψ(h) is an isomorphism of Jordan algebras. The last assertion
follows from the commutativity of the diagram

J (P, µ̃)
τ - J (P, µ̃)

J (P, h, µ̃)⊗ S
ψ(h)

6

1⊗τ0- J (P, h, µ̃)

6ψ(h)

2
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Remark.Identifying B+ ⊗R S with B+ and treatingψ as an identification, we
write J (P, h, µ̃)⊗R S = J (P, µ̃).

Let J be an exceptional Jordan algebra over a domainR in which 2 and 3 are
invertible. Let(B, σ ) be an Azumaya algebra of degree 3 over a quadratic étale
extensionS of R, with an involutionσ of second kind. Assume thatB+ is a Jordan
subalgebra ofJ . LetM denote the orthogonal complement ofB+ in J with respect
to the trace form ofJ , so thatJ = B+⊕M. For anyb ∈ B andx ∈ M, b×x ∈ M
and the mapg:B+ → (EndM)+ given byg(b)(x) = −2b×x, is a homomorphism
of Jordan algebras. This is verified by going over to the quotient field ofR and
using ([PR-1], 3.2). Since the unital special universal envelopeSU(B+) of B+ isB
(cf. [J], p. 141, Theorem 6, [JR], Theorem 4),g factors through a homomorphism
g:B → EndM, of associative algebras, thus makingM into a left B-module.
SinceM is S-projective andB is Azumaya,M is B-projective. ObviouslyM has
rank 1 overB. Forb ∈ B andx ∈ M, we writeb.x = g(b)(x).

LEMMA 2.4. Let J and (B, σ ) be as above. LetM denote the orthogonal com-
plement ofB+ in J with respect to the trace form. There exists a mapN :M → S

making the diagram

M
N- S

A
A
ANJ U ��
�
�
tr

R

commutative,NJ denoting the cubic norm onJ . Further, N has the following
properties:

(1) N(b.x) = NrdB(b)N(x), b ∈ B, x ∈ M.
(2) The values ofN generate the unit ideal ofS.

Proof. IdentifyingB+ ⊗R S with B+ and as in the proof of (1.8) we have

J ⊗R S = (B+ ⊗R S)⊕M1⊕M2,

with M1 a left andM2 a right projectiveB-module. Letτ = 1⊗ τ0. Thenτ is an
involution onJS = J ⊗R S which coincides withσ onB+. We have, forx ∈ M1

anda, b ∈ B,

τ(a)× (τ (b)× τ(x)) = τ(a × (b × x))
= −1

2τ((ab)× x) = −1
2((τ (b)τ(a))× τ(x)),

which shows thatτ(x) ∈ M2. Thusτ(M1) ⊂ M2; similarly, τ(M2) ⊂ M1, so
that τ(M1) = M2 andτ(M2) = M1. IdentifyingM with the fixed points ofτ in
M ⊗ S = M1⊕M2, we have

M = {(v1, τ (v1))|v1 ∈ M1}.
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Let θ :M → M1 be given byθ(v) = v1, wherev ⊗ 1 = (v1, τ (v1)). It is easily
verified thatθ is an isomorphism ofB-modules. We defineN :M → S by

N(v) = NJS (0, v1,0).

We observe thatNJS restricted toM1 is simply the reduced norm ofM1 for a choice
of an isomorphismN (M1) ' S (1.1, 1.6), which gives the two listed properties of
N . Further,

tr(N(v)) = tr(NJS (0, v1,0)) = NJS (0, v1,0)+ τ0(NJS (0, v1,0))

= NJS (0, v1,0)+NJS (0,0, τ (v1)),

= NJS (0, v1, τ (v1)) = NJS (v ⊗ 1) = NJ (v).
which by ([M-1], §5).

Thus the diagram of the lemma is commutative. This proves the lemma.2
THEOREM 2.5. Let J be an exceptional Jordan algebra over a domainR in
which 2 and 3 are invertible. Let(B, σ ) be an Azumaya algebra of degree 3 over
a quadratic étale extensionS of R, with an involution of second kind. Suppose
that B+ ↪→ J is a Jordan subalgebra. Then there exists a projectiveB-module
M of rank 1 together with a Hermitian formh of trivial discriminant and a trivi-
alization η of disc(h) such that the inclusionB+ ↪→ J induces an isomorphism
J ' J (M, h, η).

Proof. Let M denote the orthogonal complement ofB+ in J with respect to
the trace form so thatJ = B+ ⊕ M. We have seen thatM is a projectiveB-
module of rank 1. We construct a Hermitian formh onM with a trivialization for
the discriminant. Forv ∈ J , let v+ denote the component ofv in B+. We have an

R-quadratic map̃h:M → B+ given by2̃h(x) = (x2)+. We show that there exists
a hermitian formh:M ×M → B such thath(x, x) = h̃(x). By (1.8), we have

J ⊗R S = B+ ⊕M1⊕M2.

We have aB-isomorphismθ :M ' M1 given byθ(v) = v1 (cf. proof of 2.4), where
v ⊗ 1 = (0, v1, τ (v1)) ∈ JS. Suppose thatM is free with a basis elemente′. Let
e = θ(e′), so thatM1 = Be. If NJS (0, e,0) = µ ∈ S∗, then,M2 = e∗B with
e∗ = µ−1e#. Let τ = 1⊗ τ0. Sinceτ(Mi) = Mj , i 6= j (cf. proof of 2.4), we have

τ(0, e,0) = (0,0, e∗.u), τ (0,0, e∗) = (0, v.e,0),
for someu, v ∈ B∗. Further, by (1.6, (1)),N2(e

∗.u) = µ−1Nrd(u) and we have

µ−1Nrd(u) = NJS (0,0, e
∗.u) = NJS (τ(0, e,0))

= τ0(NJS (0, e,0)) = τ0(µ).
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ThusNrd(u) = µτ0(µ). Further,

(1,0,0) = τ(1,0,0) = τ((0, e,0)(0,0, e∗))
= τ(0, e,0)τ (0,0, e∗) = (0,0, e∗.u)(0, v.e,0) = (vu,0,0),

so thatvu = 1. Moreover, multiplicativity ofτ gives

τ(0, b.e,0) = τ(−2(b,0,0) × (0, e,0))
= −2(σ (b),0,0) × (0,0, e∗.u) = (0,0, e∗.uσ (b)).

Similarly,

τ(0,0, e∗.c) = (0, σ (c)u−1.e,0).

Hence,

τ(a, b.e, e∗.c) = (σ (a), σ (c)u−1.e, e∗.uσ (b)).

Since

(0, e,0) = τ 2(0, e,0) = τ(0,0, e∗.u) = (0, σ (u)u−1.e,0),

it follows thatσ (u) = u. We have,

M = {(0, b.e, e∗.uσ (b))|b ∈ B} = Be′

with e′⊗1= (0, e, e∗.u). We definehe′ :M×M → B by he′(a.e′, b.e′) = auσ (b).
Since(e′2)+ = ((0, e, e∗.u)2)+ = 2u, we have,he′(e′, e′) = u = h̃(e′). Let e′′ be
another basis element forM. Thene′′ = α.e′ for α ∈ B∗ and e1 = θ(e′′) =
α.θ(e′) = α.e. Let τ(0, e1,0) = (0,0, e∗1.u′). We have,

e∗1 = NJS(e1)
−1e#

1 = (µNrd(α))−1(α.e)# = (µNrd(α))−1(e#.α#) = e∗.α−1

and

τ(0, e1,0) = τ(0, α.e,0) = (0,0, e∗.uσ (α)).
Thereforeu′ = αuσ(α). Now, for a.e′ = a′.e′′, b.e′ = b′.e′′, we havea = a′α,
b = b′α and

he′(a.e
′, b.e′) = auσ (b),

he′′(a.e
′, b.e′) = he′′(a

′.e′′, b′.e′′) = a′u′σ (b′)
= a′αuσ(α)σ (b′) = (a′α)uσ (b′α) = he′(a.e′, b.e′).
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Thushe = he′ is independent of the choice ofe′ and by patching we get a hermitian
form h defined globally onM. We now give a trivialization for disc(h). By (2.4)
and (1.1) there exists an isomorphismη:N (M) ' S such thatN = ηN . We claim
that η: (N (M),disc(h)) → (S, 〈1〉) is an isometry. We verify this in a faithfully
flat extension. We assumeM = Be′ is free with e′ as a basis element. Then
h(a.e′, b.e′) = auσ (b) with u a symmetric unit andNrd(u) = µτ0(µ), where
µ = NJS (θ(e′)) = N(e′) (cf. 2.4). We have

disc(h)(αN (e′), βN (e′)) = ατ0(β)Nrd(h(e
′, e′)) = ατ0(β)µτ0(µ)

and

η(αN (e′))τ0(η(βN (e′))) = αN(e′)τ0(βN(e
′)) = αµτ0(βµ).

This shows thatη is an isometry. We finally show thatJ = B+⊕M = J (M, h, η).
It suffices to check that the two multiplications coincide onB+ ⊕ M. We may
assume thatM = Be′ is free withe′ as a basis element. InJ ↪→ JS (cf. proof of
2.4), we have,

(a, b.e′)(a′, b′.e′) = (a, b.e, e∗.uσ (b))(a′, b′.e, e∗.uσ (b′))

= (a.a′ + buσ (b′)+ b′uσ(b),
(ab′ + a′b + φ∗(e∗.uσ (b), e∗.uσ (b′))).e,
e∗.(uσ (b′)a + uσ(b)a′ + φ(be, b′e)))

= (a.a′ + buσ (b′)+ b′uσ(b),
(ab′ + a′b + µ−1(uσ (b)× uσ(b′))).e,
e∗.(uσ (b′)a + uσ(b)a′ + µ(b × b′))

= (a.a′ + buσ (b′)+ b′uσ(b),
(ab′ + a′b + σ (µu−1(b × b′))).e,
e∗.u(σ (ab′ + a′b + σ (µu−1(b × b′)))

= (a.a′ + buσ (b′)+ b′uσ(b),
(ab′ + a′b + σ (µu−1(b × b′))).e′).

However, inJ (M, h, η), we have,

(a, b.e′)(a′, b′.e′) = (a.a′ + h(b.e′, b′.e′)+
+ h(b′.e′, b.e′), ab′.e′ + a′b.e′ + h−1(φ(b.e′, b′.e′))

= (a.a′ + buσ (b′)+ b′uσ(b), ab′.e′ +
+ a′b.e′ + σ (µu−1(b × b′)).e′),
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by (#) in the proof of Theorem 2.1. Thus the two multiplications onB+ ⊕ M
coincide. This proves the theorem. 2
3. Rigidity of Nonfree Projective Modules overD[X,Y ]
Let k be a field andD a central division algebra of prime degreep overk. Let P
be a nonfree projective (left) module of rank 1 overD[X,Y ]. Then, by ([KPS],
Thm. 7.1),P extends to a vector bundlẽP overX = P2

k with aD structure, which
is unique upto a line bundle.

LEMMA 3.1. LetP be a nonfree projectiveD[X,Y ]-module and̃P an extension
of P as a vector bundle with aD-structure toP2

k. Then the mapD → EndOX P̃ is
an isomorphism.

Proof.Since EndOX P̃ is a finite-dimensionalk-algebra andD is central simple
overk with D ↪→ EndOX P̃ , we have ([B], 4.3, p.107) EndOX P̃ = D ⊗k D′, where
D′ = EndD⊗OX P̃ . Further,

EndD⊗OX P̃ ↪→ EndD(X,Y )(P ⊗ k(X, Y )) ' D(X, Y )op.
ThusD′ is a division algebra overk. SinceD is of prime degree, in view of ([P]), it
follows that AutD[X,Y ]P = k∗. SinceD′∗C AutP = k∗,D[X,Y ] we haveD′ = k
andD = EndOX P̃ . 2

THEOREM 3.2.LetD be a central division algebra of prime degree overk. LetP
be a projective module overD[X,Y ] and P̃ an extension ofP as a vector bundle
with aD-structure toP2

k. If P is nonfree,P̃ is indecomposable as a vector bundle.
Let P̃ (∗) be an extension of the rightD[X,Y ]-moduleP (∗). Then, if degreeD is
odd,P̃ is not isomorphic tõP (∗) as a vector bundle.

Proof. By (3.1),D ' EndOX P̃ is a division algebra, so that̃P is indecompos-
able. By the same argument as in (3.1),Dop ' EndOX P̃

(∗). If the degree ofD is
odd,D is not isomorphic toDop, so thatP̃ andP̃ (∗) are not isomorphic as vector
bundles onP2

k. 2
Remark. Let D be a central division algebra of degree 3 overk. Let k denote

the algebraic closure ofk. We have EndOX P̃k ' (EndOX P̃ )⊗k k 'M3(k), so that
P̃k ' P0⊕ P0⊕ P0, whereP0 is a rank 3 vector bundle onP2

k
which is simple, i.e,

EndOX
k
P0 = k.

4. Nontrivial Jordan Algebra Bundles overAAA2
k via Tits First Construction

We begin by recalling the construction ([OS]) of nonfree projective modules of
rank 1 overD[X,Y ], whereD is a noncommutative division ring. Letα, β ∈ D∗ be
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two noncommuting elements. LetP0 = Pα,β be the projective leftD[X,Y ]-module
defined as the kernel of theD[X,Y ]-linear mapφα,β :D[X,Y ]2→ D[X,Y ], given
by (1,0) 7→ X + α, (0,1) 7→ Y + β. ThenP0 is nonfree overD[X,Y ] of rank
1. Suppose thatD is central and finite-dimensional overk. Then there exists an
irreducible polynomialf (X) ∈ k[X], such that deg(f ) > 2 andP0 ⊗ k[X]f [Y ]
is free. (We may take for examplef (X) to be the minimal polynomial of−α over
k. SinceX + α is a unit ink(α)[X]f ↪→ D[X]f [Y ], P0 ⊗ k[X]f [Y ] contains a
unimodular element and hence is free.)

Letλ ∈ k∗ andPλ be the pull back ofP0 under the automorphismφλ:D[X,Y ] →
D[X,Y ] given byφλ(X) = λX, φλ(Y ) = Y andφλ|D =identity. ThenPλ is a
nonfree rank 1 projectiveD[X,Y ]-module andPλ ⊗ k[X]fλ(X)[Y ] is free, where
fλ(X) = f (λX). Sincef (X) is irreducible and deg(f ) > 2, one may choose a
sequenceλi ∈ k∗ such thatfλi (X) andfλj (X) are mutually coprime fori 6= j . We
renamePλi = Pi , fλi = fi. Further, if{gi} is another family of mutually coprime
polynomials, one may choose{fi} in such a way that(fi, gj ) = 1 for all i, j . This
can be done inductively.

LetD be a finite-dimensional central division algebra overk. LetDe be the free
D-module of rank 1 withe as a basis element. Letµ ∈ k∗ and letµ0:N (De) ' k
be an isomorphism such thatµ0N (e) = µ. We construct nontrivial forms for
(De,µ0) overk[X,Y ]. Let P be a projective leftD[X,Y ]-module of rank 1. Let
φ:P ' De ⊗ k[X,Y ] be an isomorphism ofk[X,Y ]-modules such thatφ:P →
De ⊗ k[X] is an isomorphism ofD[X]-modules, bar denoting reduction modulo
Y (cf. [PST], 6.1). LetPφ = (De ⊗ k[X,Y ])φ be theD[X,Y ]-module for the
transport of theD[X,Y ]-structure onP throughφ. ThenPφ = De ⊗ k[X] as a
D[X]-module and furtherP ' Pφ asD[X,Y ]-modules. If̃µ:N (Pφ) ' k[X,Y ] is
an isomorphism ofk[X,Y ]- modules,̃µ:N (Pφ) = N (De⊗ k[X])→ k[X] is an
isomorphism. Suppose that̃µN (e) = ν. Replacing̃µ by µν−1µ̃, we may assume
without loss of generality that̃µ = µ0. Thus we have constructed a pair(Pφ, µ̃)
whose reduction moduloY coincides with(De⊗ k[X], µ0). We record this as

PROPOSITION 4.1.LetD andk be as above. LetDe be a free module of rank 1
overD andµ0:N (De) ' k an isomorphism. Let{gi} be an infinite family of mutu-
ally coprime polynomials ink[X]. Then there exist nonfree projective modulesPi ,
i > 1, overD[X,Y ] of rank 1 and polynomialsfi in k[X]with (fi, fj ) = 1, i 6= j ,
(fi, gj ) = 1 for all i, j and such thatPi⊗k[X]fi [Y ] is free for eachi. Further, there
existsµ̃i :N (Pi) ' k[X,Y ] such that(Pi, µ̃i) moduloY is (De,µ0)⊗k k[X]. 2
COROLLARY 4.2. The modulesPi in (4.1) are mutually nonisomorphic.

Proof. SupposePi ' Pj for somei 6= j . Since(fi, fj ) = 1 for and(Pi)fi is
free overD ⊗ k[X]fi [Y ] for all i, the corollary follows from ([BCW]). 2
LEMMA 4.3. LetJ = J (D,µ) be an exceptional Jordan division algebra over a
field k arising from Tits’ first construction. Then there exist central division algeb-
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rasD1,D2 overk of degree 3 such that(D1)+, (D2)+ are Jordan subalgebras ofJ
and(D1)+ ∩ (D2)+ = k.

Proof. Let L ↪→ D be a cubic cyclic extension ofk. Let D1 be the cyclic
cross product(L, ι, µ), whereι is a generator of Gal(L/k). Then, by ([PR-2], 2.7),
(D1)+ is a Jordan subalgebra ofJ (D,µ). Let θ ∈ D be such thatθ−1 Lθ 6= L and
Nrd(θ) = 1. Thenθ−1 Lθ ∩ L = k. Let φθ denote the automorphism ofJ given
by φθ (a0, a1, a2) = (θ−1a0θ, θ

−1a1, a2θ). The subalgebraφθ ((D1)+) of J (D,µ)
is equal to(D2)+, whereD2 = (L′, ι′, µ′) andL′ = θ−1Lθ , ι′ ∈ Gal(L′/k)
a generator andµ′ ∈ k. We show that(D1)+ ∩ (D2)+ = k. Let (b0, b1, b2) ∈
(D1)+ ∩(D2)+, wherebi ∈ L. Then there existai ∈ L, 0 6 i 6 2, such that
(b0, b1, b2) = (θ−1a0θ , θ−1a1, a2θ). We therefore haveθ−1a1 = b1, so thata1 6= 0
would imply thatθ ∈ L, a contradiction. Thusa1 = 0. Similarlya2 = 0. Further,
θ−1a0 θ = b0 ∈ θ−1L θ ∩ L = k. This proves that(D1)+ ∩ (D2)+ = k. 2
Let J be a Tits first construction Jordan division algebra overk. By (4.3), there
exist cyclic division algebrasD1,D2 of degree 3 overk such that(D1)+, (D2)+
are Jordan subalgebras ofJ with (D1)+ ∩ (D2)+ = k. Then (cf. 1.8)J = J (D1e1,
µ1) = J (D2e2, µ2) for someei ∈ J andµi :N (Diei) ' k, isomorphisms. By
(4.1), there exists, for eachi > 1, a pair(P 1

i , µ̃
1
i ), whereP 1

i is a nonfree rank

1 projectiveD1[X,Y ]-module and̃µ1
i a trivialization of its reduced norm and a

polynomialfi ∈ k[X] such that the following conditions are satisfied:

(1) The polynomialsfi andfj are coprime fori 6= j and(P 1
i )fi is free.

(2) The reduction of(P 1
i , µ̃

1
i ) moduloY is (D1e1, µ1)⊗ k[X].

Similarly, for everyi > 1, there exist, by (4.1), pairs(P 2
i , µ̃

2
i ), P

2
i a nonfree rank

1 projectiveD2[X,Y ]-module with a trivializationµ̃2
i of its reduced norm and

polynomialgi ∈ k[X] satisfying

(1) The polynomialsgi andgj are coprime fori 6= j , the polynomialsfi andgj
are coprime for alli, j and(P 2

i )gi is free.

(2) The reduction of(P 2
i , µ̃

2
i ) moduloY is (D2e2, µ2)⊗ k[X].

LetP be a rank 1 nonfree projectiveD[X,Y ]-module and̃µ:N (P ) ' k[X,Y ]
a trivialization of the reduced norm. The pair(P, µ̃) is a principalSL1(D)-bundle
overA2

k which admits an extension(P̃ , µ̃) to P2
k (cf. [PST], 4.5). The bundlẽP

is simply an extension toP2
k of the D[X,Y ]-moduleP . Then J = J (P̃ , µ̃)

is a Jordan algebra bundle overP2
k which restricts onA2

k to J (P, µ̃). Since the
extension ofJ (P, µ̃) to P2

k is unique, we have the following

PROPOSITION 4.4.The Jordan algebra bundleJ = J (P, µ̃) admits a unique
extensioñJ toX = P2

k whose underlying vector bundle is given by

J̃ = (D ⊗OX)⊕ P̃ ⊕ P̃ (∗),
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whereP̃ denote the extension of theD[X,Y ]-moduleP to P2
k. 2

Let (P 1
i , µ̃

1
i ), (P

2
i , µ̃

2
i ) be nonfree projectiveD1[X,Y ] andD2[X,Y ] modules

respectively with trivializations of their reduced norms constructed above. Let

J 1
i = J (P 1

i , µ̃
1
i ), J 2

i = J (P 2
i , µ̃

2
i ).

Then{J ji , j = 1,2, i > 1}, is a family of Jordan algebras overk[X,Y ] with the
property thatJ ji = J ⊗ k[X] moduloY and

J 1
i ⊗ k[X]fi [Y ] ' J ⊗ k[X]fi [Y ], J 2

i ⊗ k[X]gi [Y ] ' J ⊗ k[X]gi [Y ]
with (gi, gj ) = 1= (fi, fj ), i 6= j and(fi, gj ) = 1 for all i, j .

PROPOSITION 4.5.The Jordan algebrasJ 1
i (respJ 2

i ) are mutually nonisomorphic.
Proof. Suppose thatJ 1

i ' J 1
j , for somei 6= j . SinceJ 1

i andJ 1
j are extended

after invertingfi andfj respectively and(fi, fj ) = 1, by ([BCW]),J 1
i is extended

from J ⊗ k[X]. Then the extensioñJ 1
i of J 1

i to P2
k, by uniqueness of extension, is

isomorphic toπ∗J , π :P2
k → Speck denoting the structure morphism. Then

(D1⊗OP2
k
)⊕ P̃ 1

i ⊕ P̃ 1
i

(∗) ' π∗J

as vector bundles onP2
k. While π∗J is a trivial vector bundle,̃P 1

i is an indecom-
posable vector bundle by (3.2). This is a contradiction. 2
Let

π1
i : (P 1

i , µ̃
1
i )⊗ k[X]fi [Y ] ' (D1e1, µ1)⊗ k[X]fi [Y ]

and

π2
i : (P 2

i , µ̃
2
i )⊗ k[X]gi [Y ] ' (D2e2, µ2)⊗ k[X]gi [Y ]

be isomorphisms such thatπji = identity, for j = 1,2. We then have induced
isomorphisms

J (π1
i ): J 1

i ⊗ k[X]fi [Y ] ' J ⊗ k[X]fi [Y ],
J (π2

i ): J 2
i ⊗ k[X]gi [Y ] ' J ⊗ k[X]gi [Y ],

with J (πji ) = identity, for j = 1,2. Let Ji be the Jordan algebra obtained by
patchingJ 1

i on k[X]gi [Y ] andJ 2
i on k[X]fi [Y ] overk[X]figi [Y ] by φi = J (π2

i )
−1
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J (π1
i ). Then, sinceJ ji = J moduloY andJ (πji ) = identity, φi = identity and

Ji = J ⊗ k[X] moduloY . By the very construction,

Ji ⊗ k[X]figi [Y ] ' J ⊗ k[X]figi [Y ]

and the polynomialsri = figi are mutually coprime. We now show that the al-
gebrasJi are mutually nonisomorphic. Suppose thatJi ' Jj for i 6= j . Then
both (Ji)ri and(Ji)rj are extended fromJ . Since(ri, rj ) = 1, Ji ' J ⊗ k[X,Y ].
RestrictingJi to k[X]gi [Y ]we getJ 1

i ⊗ k[X]gi [Y ] andJ 1
i ⊗k [X]fi [Y ] are extended.

Since(fi, gi) = 1,J 1
i is extended fromJ . This contradicts (4.5). We record this as

PROPOSITION 4.6.The Jordan algebrasJi onA2
k have the following properties:

(1) Ji = J ⊗ k[X] moduloY .
(2) There are mutually coprime polynomialsri ∈ k[X] such thatJi⊗k[X]ri [Y ] '

J ⊗ k[X]ri [Y ].
(3) The algebrasJi are nonextended and mutually nonisomorphic. 2
5. Nontrivial Jordan Algebra Bundles onAAA2

k via Tits Second Construction

Let K be a quadratic extension ofk. Let (D, σ ) be a central division algebra of
degree 3 overK with an involutionσ of second kind overK/k. Let u ∈ D∗ be
such thatσ (u) = u andNrd(u) = µσ(µ) for someµ ∈ K∗. In ([R], 4.9), it
is shown that there exists a rank 1 projectiveD[X,Y ]-moduleP with a nonsin-
gular Hermitian formh:P × P → D[X,Y ] and a trivializationµ̃:disc(h) →
(K[X,Y ], 〈1〉) with the following properties:

(1) The reduction of(P, h, µ̃) moduloY is isomorphic to(D, 〈u〉, µ), where〈u〉
denotes the rank one Hermitian form given bya 7→ auσ (a) andµ is treated
as a trivialization of the discriminant of〈u〉.

(2) There existsf ∈ k[X] such that(P, h, µ̃)⊗k[X]f [Y ] ' (D, 〈u〉, µ) ⊗k[X]f
[Y ].

(3) The principal SU(D, σ )-bundle onA2
k associated to(P, h, µ̃) admits no re-

duction of the structure group to any proper connected reductive subgroup of
SU(D, σ ). In particular,(P, h, µ̃) is not extended from(D, 〈u〉, µ).

In (1), we may further assume, through a twist argument ([PST], 6.1), that(P, h, µ̃)

reduces moduloY to (De, ue, µe) ⊗ k[X] whereDe is the free module of rank 1
overD with a basis elemente, ue the Hermitian form onDe given byue(xe, ye) =
xuσ (y) andµe(N (e)) = µ. In (2), we may further assume thatf (0) 6= 0 in view
of the following

LEMMA 5.1. For η ∈ k∗, let (P, h, µ̃)η be the pull back of(P, h, µ̃) under the

automorphismD[X,Y ] φη−→ D[X,Y ], given byX 7→ X− η, Y 7→ Y andφη|D =
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identity. Then(P, h, µ̃)η ⊗k[X]fη [Y ] is extended from(D, 〈u〉, µ) wherefη(X) =
f (X − η).

Proof.We need only to check that the fibre of(P, h, µ̃)η at (0,0) is isomorphic
to (D, 〈u〉, µ). In fact the fibre of(P, h, µ̃)η at (0,0) is precisely the fibre of
(P, h, µ̃) at (η,0). Since(P, h, µ̃) is stably extended fromD, the fibre of(P, h)η
at (η,0) is isomorphic to the fibre of(P, h, µ̃) at (0,0), which is(D, 〈u〉, µ). 2
LEMMA 5.2. LetJ = J (D, σ, u,µ) be a Tits second construction Jordan division
algebra, whereD is a central simple algebra of degree 3 over a quadratic extension
K of k, with an involutionσ of second kind overK/k. Assume thatJ is not a Tits
first construction. Then there exist central simple algebras(D1, σ 1), (D2, σ 2) of
degree 3 over a quadratic extensionF/k with involutions of second kind overF/k,
such that(D1)+, (D2)+ are Jordan subalgebras ofJ with (D1)+ ∩ (D2)+ = k.

Proof. Let J = D+ ⊕ D. ThenJ is the descent ofJ (D,µ) = D ⊕ D ⊕ D
overK under the descent mapψu(x, y, z) = (σ (x), σ (z)u−1, uσ(y)) (cf. [M-1],
proof of Theorem 7). LetM1 denote the subalgebra ofJ (D,µ) generated overK
by (u,0,0) and(0,1,0). Sinceψu(u,0,0) = (u,0,0) andψu(0,1,0) = (0,0, u),
it is easily verified thatψu stabilizesM1. SinceJ is a Jordan division algebra,
u 6∈ k∗ andM1 is a nine-dimensional subalgebra ofJ . SinceJ is not a Tits first
construction, by ([J], Lemma 2, p.420),M1 descends to a subalgebraM1 = (D1)+
of J for a central division algebra(D1, σ 1) of degree 3 over a quadratic extension
F of k, with an involution of second kind overF/k. Choose an elementv ∈ D
with vuσ (v) 6∈ K(u), vσ (v) = 1 andNrd(v) = 1. Thenφ̃v: J → J given by
φ̃v(a, b) = (v−1av, v−1b), is an automorphism ofJ . Let M2 = φ̃v(M

1). Since
M1 andM2 are isomorphic as Jordan algebras,M2 = (D2)+ for some degree 3
division algebra(D2, σ 2) with an involution of second kind overF/k. The map
φ̃v ⊗ 1: JS → JS transports to the automorphismφv:D ⊕D ⊕D→ D ⊕D ⊕D
given byφv(a0, a1, a2) = (v−1a0v, v

−1a1, a2v).

We haveM2 = M2 ⊗k K = φv(M1). We prove thatM1 ∩M2 = k. For this,
it is sufficient to prove thatM1

E ∩M2
E = E in JE for some finite extensionE of

k. Let E = K(
√
d), whered is the discriminant of the minimal polynomial ofu

overK. ThenE(u)/E is cyclic andM2
KE = φv(M

1
KE). The proof of (4.3) gives

M1
KE ∩ M2

KE = KE, noting thatv−1KE(u)v 6= KE(u). ThusM1 ∩ M2 = k,
proving the lemma. 2
Let J be a Tits second construction Jordan algebra which is not a Tits’ first con-
struction. By the above lemma, we may write (cf. 2.5)

J = J (D1e1, ue1, µe1) = J (D2e2, ue2, µe2)

with (D1)+ ∩ (D2)+ = k.
By ([R], 4.9), there exist(P i1, h

i
1, µ̃

i
1), (P

i
2, h

i
2, µ̃i2), rank 1, nontrivial Hermitian

spaces over(D1[X,Y ], σ 1) and (D2[X,Y ], σ 2) respectively andfi, gi ∈ k[X]
with the following properties:
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(1) (P i1, h
i
1, µ̃

i
1) moduloY reduces to(D1e1, ue1, µe1), (P

i
2, h

i
2, µ̃

i
2) moduloY re-

duces to(D2e2, ue2, µe2).

(2) (P i1, h
i
1, µ̃

i
1)⊗ k[X]fi [Y ] is isomorphic to(D1e1,ue1,µe1)⊗ k[X]fi [Y ], (P i2, hi2,

µ̃i2)⊗ k[X]gi [Y ] is isomorphic to(D2e2, ue2, µe2)⊗ k[X]gi [Y ] with (fi, fj ) =
(gi, gj ) = 1, i 6= j and(fi, gj ) = 1 for all i, j .

(3) The bundles(P i1, h
i
1) and(P i2, h

i
2) are not extended fromD1 andD2 respect-

ively.

We define two familiesJ i1 andJ i2 of Jordan algebras onA2
k as follows

J i1 = J (P i1, hi1, µ̃i1), J i2 = J (P i2, hi2, µ̃i2).
Let

πi1: (P i1, hi1, µ̃i1)fi ' (D1e1, ue1, µe1)⊗ k[X]fi [Y ]
and

πi2: (P i2, hi2, µ̃i2)gi ' (D2e2, ue2, µe2)⊗ k[X]gi [Y ]

be isometries such thatπij = identity for j = 1,2. Then these induce isomorph-
isms

J (πi1): J i1 ⊗ k[X]fi [Y ] ' J ⊗ k[X]fi [Y ],
J (πi2): J i2 ⊗ k[X]gi [Y ] ' J ⊗ k[X]gi [Y ],

which reduce to identity moduloY .

PROPOSITION 5.3.The Jordan algebrasJ i1 andJ i2 overk[X,Y ] have the follow-
ing properties:

(1) J i1 andJ i2 reduce moduloY to J .
(2) J i1⊗k[X]fi [Y ] is extended fromJ ⊗k[X]fi [Y ] andJ i2⊗k[X]gi [Y ] is extended

from J ⊗ k[X]gi [Y ] with (fi, fj ) = (gi, gj ) = 1, i 6= j and (fi, gj ) = 1 for
all i, j . In particular, J i1 are mutually nonisomorphic and the same holds for
J i2.

(3) J ij ⊗k F = J (P ij , µ̃
i
j ) for j = 1,2, where the Jordan algebrasJ (P ij , µ̃

i
j )

are those constructed in Section 4 andF is as in (5.2). (Here we use the
identificationJ (P, h,µ)⊗RS = J (P,µ)mentioned in the remark after (2.3)).

Proof.Properties 1 and 2 follow from the corresponding properties for(P ij , h
i
j ,

µ̃ij ). The fact thatJ i1 are mutually nonisomorphic follows from ([BCW]) provided

we show thatJ i1 is not extended fromJ . SinceJ i1 ⊗ K ' J (P i1, µ̃i1) is not exten-
ded fromJ (D1e1, µ̃e1), P

i
1 being nonfree (4.5), it follows thatJ i1 is not extended.
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Proof of the assertions forJ i2 is similar. The third property follows from the very
construction of these algebras. 2

Let J i be the Jordan algebra overk[X,Y ] obtained by patching(J i1)gi onk[X]gi[Y ], (J i2)fi on k[X]fi [Y ] overk[X]figi [Y ], by the isomorphism

ψi : J i1 ⊗ k[X]figi [Y ] ' J i2 ⊗ k[X]figi [Y ],
defined byψi = J (πi2)−1 J (πi1). SinceJ ij reduce moduloY toJ andψi = identity,
J i reduce moduloY to J . Further, by the very construction,

J i ⊗ k[X]figi [Y ] ' J ⊗ k[X]figi [Y ]
and the polynomialssi = figi satisfy (si, sj ) = 1, i 6= j . Arguing as in the
proof of (4.6), one shows thatJ i are mutually nonisomorphic. We record this in
the following

PROPOSITION 5.4.The Jordan algebrasJ i overA2
k have the following proper-

ties:

(1) J i = J ⊗ k[X] moduloY .
(2) There existsπi : J i ⊗ k[X]si [Y ] ' J ⊗ k[X]si [Y ] such thatπi = identity, for

somesi ∈ k[X] with (si, sj ) = 1 for i 6= j .
(3) J i are mutually nonisomorphic.
(4) J i ⊗k F = Ji, whereJi are the algebras constructed in Section 4. 2
6. F 4 Bundles with no Reduction of the Structure Group to any Proper

Connected Reductive Subgroup

Let J be an exceptional Jordan division algebra overk. LetG = Aut J . ThenG
is an anisotropic group of typeF4 overk. If J arises from a Tits first construction,
thenGL is anisotropic for any extensionL of degree coprime to 3. In fact, ifJ =
J (D,µ)with µ ∈ k∗ thenG is isotropic if and only ifJ is split and this is so if and
only if µ ∈ Nrd(D∗) ([J], Theorem 20, p. 416). In particular, ifµ 6∈ Nrd(D∗),
µ /∈ Nrd(D∗L), if [L: k] is coprime to 3.

For the rest of the section we shall fix the following notation: ifG is a simply
connected group overk, we say that a connected reductive groupG overk is of type
G if the simply connected cover of[Gk,Gk] is a product of groups each isomorphic
to G. We say that a representationρ:G → GL(V ) is faithful if the kernel ofρ is
finite. We call a representationV of G of typen if it is a direct sum of irreducible
representations each of which has dimensionn.

PROPOSITION 6.1.LetJ be an exceptional Jordan division algebra arising from
a Tits’ first construction. Then the only possible proper connected reductive sub-
groups ofG = Aut(J ) overk are of typeA1, A2 or D4. Further, if a subgroupH
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is of typeA1, then the simply connected cover of[H,H ] is isomorphic toRL/kH ′,
whereL is a degree 3 extension ofk,H ′ an absolutely almost simple group of type
A1 defined overL andRL/k denotes the Weil’s restriction.

Proof. Let H be a proper connected reductive subgroup ofG. Then by Tits’
classification of simply connected groups overk, it follows that the simply connec-
ted cover of[H,H ] is isomorphic to

∏r
i=1 RLi/kHi for some finite extensionsLi

overk and absolutely almost simple groupsHi overLi. Since the rank ofG is 4,
if Hi is not of typeA1, A2 or D4, then[Li : k] 6 2 andHi becomes isotropic in
an extension of degree 2l for somel. SinceG remains anisotropic over any finite
extension of degree coprime to 3, it follows that eachHi is of typeA1, A2 orD4.
Further, ifHi is of typeA1 for somei, then[Li : k] = 3 andr = 1. 2
PROPOSITION 6.2.LetJ be an exceptional Jordan division algebra arising from
a Tits’ first construction andV the space of trace zero elements ofJ . Then the ac-
tion of any proper connected reductive subgroup ofG = Aut(J ) onV decomposes
asV1⊕ V2, with 16 dimkV1 6 8.

Proof.LetH be a proper connected reductive subgroup ofG. ReplacingH by
[H,H ], we assume thatH is semisimple. In view of ([PST], 7.5), under the action
of H , V decomposes asV1 ⊕ V2 with Vi 6= 0, i = 1,2. If either ofV1 or V2 is
reducible for the action ofH , then clearly there exists a nonzeroH -stable sub-
space ofV of dimension6 8. We therefore assume thatV1 andV2 are irreducible
representations ofH and dimkVi > 9, i = 1,2. Without loss of generality we may
assume that 96 dimkV1 6 13.

Suppose thatH is of typeD4. SinceH ⊂ G and rank ofG is 4,H must be
simple. SinceG is anisotropic in any extension of degree 2n, the simply connected
cover ofH is a trialitarianD4 overk. The least dimension of a nontrivial irreducible
representation overk of a trialitarianD4 being 24, we get a contradiction.

Suppose thatH is of typeA2. Since the actions ofH on V1 andV2 are non-
trivial, there exist simple factorsH1 andH2 (possiblyH1 = H2) of Hk such that
H1 acts nontrivially onV1 andH2 acts non-trivially onV2. If the dimension ofV1

is a prime, thenH1 acts irreducibly onV1k
and similarly if the dimension ofV2

is a prime, thenH2 acts irreducibly onV2k
. SinceH is of typeA2, H1 andH2

are of typeA2. It follows from the table of formulae for dimensions of irreducible
representations of simple groups over an algebraically closed field ([OV], p. 300–
305), that the dimension ofVi is not equal to 11, 13 or 17, fori = 1,2. Since
dimkV1+dimk V2 = dimkV and 96 dimkV1 6 13, it follows that dimkV1 = 10 or
12. Suppose that dimV1 = 10. Then dimkV2 = 16. SinceV2 is irreducible,V2 ⊗ k
is isotypical of some type. Looking at the dimensions of irreducible representa-
tions ofA2, we see thatV2 ⊗ k must decompose as a sum of two 8-dimensional
irreducible representations ofH . Since there is a unique irreducible representation
of dimension 8 which is rational (the adjoint representation),V2 itself must have
a decompositionV2 = V ′2 ⊕ V ′′2 with each of the summands of dimension 8 (cf.
[PST], 7.1), leading to a contradiction. Therefore dimkV1 = 12 and dimkV2 = 14.
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Since there are no irreducible representations of dimension 2, 7 or 14 forA2 over
k, V2 can not be irreducible forH2, leading to a contradiction once again.

Suppose that the simply connected cover ofH is isomorphic toRL/kH ′ for
some degree 3 extensionL overk and a simple groupH ′ overL. In this case, we
haveHk = H1H2H3, an almost direct product of simple groups of typeA1. We
note that any irreducible representation ofH is of the formW1 ⊗ W2 ⊗ W3 for
some irreducibleHi-representationWi , 1 6 i 6 3. Since there are no absolutely
simple subgroups ofG over k of typeA1, we assume thatH is simple overk.
Since the action ofH on V1 is nontrivial, it is also faithful. Therefore the action
of Hk on V1k is faithful. Suppose that dimkV1 = 11 or 13. Then one of the three
simple factors should act trivially onV1, leading to a contradiction. If dimkV1 = 9
then dimkV2 = 17 and arguing as above withV2, we again get a contradiction.
Therefore dimkV1 = 10 or 12. Let us consider the case of dimkV1 = 10. Then, as
above, the action ofHk onV1k is not irreducible. Then, under the action ofHk, V1k
decomposes asW1 ⊕ W2 with dimkWi = 5, i = 1,2 or V1k = W1 ⊕ · · · ⊕ W5

with dimkWi = 2, 16 i 6 5. In either case, by looking at the Galois action, one
concludes that 3 divides 2 or 5, which is absurd. Therefore the dimkV1 = 12. In
this case dimkV2 = 14, which is also seen to impossible, arguing as above withV2.

Now the proposition follows from (6.1). 2
THEOREM 6.3. Let Ji be the Jordan algebras onA2

k constructed in Section 4.
Then the corresponding principalG-bundlePJi admits no reduction of the struc-
ture group to any proper connected reductive subgroup ofG.

Proof. By an abuse of notation, we say that a Jordan algebra bundle admits a
reduction of the structure group if the corresponding principalG-bundle admits
such a reduction. Suppose thatJi admits a reduction of the structure group to a
proper connected reductive subgroupH of G. By (6.2), the action ofH on the
space of trace zero elements ofJ decomposes asV1 ⊕ V2 with 1 6 dimkV1 6 8.
ThenH ↪→ (GL(V1) ×GL(V2)) ∩G. The restriction ofJi to k[X]gi [Y ] also has a
reduction of the structure group toH . SinceJi ⊗ k [X]gi [Y ] ' J 1

i ⊗ k [X]gi [Y ],
the bundleJ 1

i overk[X,Y ] has the property thatJ 1
i ⊗ k[X]gi [Y ] has a reduction

of the structure group toH . Further,J 1
i ⊗ k[X]fi [Y ] ' J ⊗ k[X]fi [Y ] with

(fi, gi) = 1. Hence by ([PST], 4.7),J 1
i over k[X,Y ] admits a reduction of the

structure group toH . Let J̃ 1
i denote the extension ofJ 1

i to P2
k as aH -bundle.

Then by the uniqueness of extension ofG-bundles fromA2
k to P2

k ([PST], 4.6),

J̃ 1
i is an extension of the Jordan algebraJ 1

i on k[X,Y ] and hence the underlying

vector bundle of̃J 1
i has a decomposition (4.4)(D1 ⊗ OP2

k
) ⊕ P̃ i1 ⊕ P̃ i1

(∗)
with P̃ i1

indecomposable (3.1). Further,̃P i1
(∗) = HomD1⊗OP2

k

(P̃ i1,D1⊗OP2
k
) is an extension

of P i1
(∗) = HomD1[X,Y ] (P

i
1,D1[X,Y ]) to P2

k. Once again, by the uniqueness of

the extension,̃P i1
(∗) ' P̃ i1(∗) is indecomposable by (3.1). Thus the trace zero sub-
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bundle(J̃ 1
i )0 decomposes as(D1⊗OP2

k
)0⊕ P̃ i1 ⊕ P̃ i1

(∗)
with (D1⊗OP2

k
)0 = trace

zero sub-bundle ofD1⊗OP2
k
, which is trivial as a vector bundle,̃P i1 andP̃ i1

(∗)
being

indecomposable as vector bundles. However,(J̃ 1
i )0, being a GL(V1) × GL(V2)-

bundle, decomposes as(J̃ 1
i )0 = E1 ⊕ E2 with Ei a GL(Vi)-bundle,i = 1,2. Any

direct summand of(J̃ 1
i )0 of rank6 8 must necessarily be contained in(D1⊗OX)0.

Since the fibre of(J̃ 1
i )0 at (0,0) decomposes asV1 ⊕ V2, specializing at(0,0),

we conclude thatV1 ↪→ (D1)0 = trace zero elements inD1. Arguing in a sim-
ilar way, by restrictingJi to k[X]fi [Y ], we conclude thatV1 ↪→ (D2)0 so that
V1 ↪→ (D1)0 ∩ (D2)0 ↪→ J . Since(D1)+ ∩ (D2)+ = k, (D1)0 ∩ (D2)0 = 0 in J ,
leading to a contradiction. This proves the theorem. 2
THEOREM 6.4. Let J i denote the Jordan algebra bundle onA2

k constructed in
Section 5. Then the principalG-bundlePJ i admits no reduction of the structure
group to any proper connected reductive subgroup ofG.

Proof.By (6.3),J i ⊗k F = Ji admits no reduction of the structure group to any
proper connected reductive subgroup ofG, whereF is as in (5.2). HenceJ i itself
admits no such reduction. 2
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