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Introduction

The geometric Langlands conjectures, as formulated by Beilinson and Drinfeld
in [2], aim at the construction of certain D-modules on the moduli space of G-
bundles over (punctured) curves (G a reductive group). Positive characteristic
versions of these conjectures had been solved earlier by Drinfeld in [3], in the case
G = GL2.

In the paper [6], theD-modules arising from the construction of [2] were studied
in the special case of a rational curve with marked points, and identified with the
Gaudin model. Then, in [8], Drinfeld’s construction of local systems on the moduli
space of rank two vector bundles on a curve in positive characteristic ([3]) was
adapted to the complex situation. The identification of these two constructions
amounts to Sklyanin’s separation of variables ([11]), as it was noticed in [8]. This
computation is recalled in the first part of this text.

The question has been raised in [8] to construct a similar separation of variables
for the Gaudin–Calogero systems, which were computed in [4] and [10], and play
a similar role in the case of a punctured elliptic curve. This note aims at solving this
question. In the present case Drinfeld’s diagrams for Radon transformation have to
be slightly modified.

It is also worth to note that the systems presented here, are the specialization
at the critical level, of the Knizhnik–Zamolodchikov–Bernard Equations on the
torus. According to the general viewpoint that the diagrams of [3] are related to the
Drinfeld–Sokolov reduction, the generalisation of the present work to noncritical
level should relate these equations to the Virasoro correlators on the torus. In [5], the
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2 B. ENRIQUEZ ET AL.

Bethe Equations were connected with the unitarity property of the KZB Equation
on the torus. It would be desirable to clarify further the connection between these
issues. Finally, among related works, let us quote the paper [9], where the separation
of variables for classical elliptic Calogero systems was established.

1. Separation of variables for sl2 Gaudin systems

Let us begin with some reminders on the Gaudin system. Let X = CP 1; z� be
marked points on X;� = 1; : : : ; N;G be SL2(C); B � G be the upper triangular
subgroup. The moduli space MG(X; z�) of G-bundles on CP 1, with parabolic

structures at z�, is the disjoint union of the M(n)
G (X; z�), n > 0, corresponding

to the parabolic structures on the sheaf O(n1) � O(�n1). We then identify

M
(n)
G
(X; z�) with

Pnn(G=B)
N ; P0 = G; and

Pn =

( 
t p(z)

0 t�1

!
; t 2 C�; p(z) 2 C[z]; deg(p) 6 2ng

for n > 0; P0 acting diagonally and Pn acting on the �-th factor by left translation,
after the replacement of z by z�. In what follows we will deal with M(0)

G (X; z�).

Let us fix weights, ��, � = 1; : : : ; N . On M(0)
G (X; z�) lives the bundle L(��),

quotient of the bundle �N
�=1L�� (L�� is the line bundle on G=B, corresponding

to the weight ��). The natural action of Z(U�2ŝl2)loc (the center of the local
completion of the enveloping algebra of the central extension of sl2(C((z))) at
level �2) is by differential operators L�; � = 1; : : : ; N , which were identified
in [6] with the Gaudin hamiltonians

L� =
X
� 6=�

I
(�)
a Ia(�)

z� � z�
; (1)

Ia; I
a being an orthogonal basis of sl2(C).

Following the conjectures of [2], the D-modules on MG(X; z�) (twisted by
L(��)) defined by L� � �� should satisfy the Hecke eigenvalue property. In [3], a
construction of such modules was given in the case of a curve of genus> 0 without
punctures.

Following [8], let us show how Drinfeld’s construction in [3] can be adapted
for X = CP 1 with marked points z�. Consider the space

M
(0)
B (X; z�) = f(parabolic structure on O2

CP 1 at z�;

class of morphisms OCP 1 ! O2
CP 1)g;

the morphisms being considered up to OCP 1-automorphisms; the cokernel of the
morphism considered in this definition isOCP 1 . It is natural to considerKCP 1;z�

=

comp4088.tex; 29/10/1997; 7:16; v.7; p.2

https://doi.org/10.1023/A:1000264321722 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000264321722


SEPARATION OF VARIABLES FOR GAUDIN–CALOGERO SYSTEMS 3

KCP 1(�N
�=1(z�)) as the canonical bundle in our punctured situation, and then the

space fclasses of morphisms K�1
CP 1;z�

! OCP 1g, its mapping � to XN�2 (given
by the zeroes of a given section) and the diagram

Z

	�
�
�
�
�

p0

@
@
@
@
@

q0

R
M

(0)
B
(CP 1; z�) P Hom(K�1

CP 1;z�
;OCP 1)

�- X(N�2)

	�
�
�
�
�

p
@
@
@
@
@R 	�

�
�
�
�

M
(0)
G (CP 1; z�) fOCP 1g

(2)

p being the projection on the first factor, and the correspondence Z being defined
to be the set of ((l�; i); j), l�: line in the fiber of O2

CP 1 at z�, i: morphism
OCP 1 ! O2

CP 1, j: morphism KCP 1;z�
! OCP 1 , proportional i; j’s being con-

sidered equivalent, such that denoting by k:O2
CP 1 ! OCP 1 , the cokernel mapping

of i, there exists a lift j0:KCP 1;z�
! O2

CP 1 of j (i.e., we have j = k�j), compatible
with the parabolic structure (i.e., the image of j0 at z� should be the line l�).

Let us fix weights �� for each�; theD-modules we will consider will be twisted
by the following line bundles:L(��) onM(0)

G (X; z�), p�L(��) onM(0)
B (X; z�), and

p�0p
�L(��) onZ . ForY a variety andL a line bundle on Y , we denote (DY )L = L


DY 
L
�1. Let us fix now complex numbers ��; � = 1; : : : ; N , s.t. �N

�=1�� = 0,
�N
�=1��z� +�N

�=12��(�� � 1) = 0, �N
�=1��z

2
� +�N

�=14��(�� � 1)z� = 0; we
associate to them the operator on X ,

D(��);(��) = 2@2
w �

NX
�=1

��
w � z�

�
NX
�=1

2��(�� � 1)
(w � z�)2

and the DX-module E(��);(��) = DX=DXD(��);(��).

Consider on the other hand on M(0)
G (X; z�) the twisted D-module

M(��) = (D
M

(0)
G
(X;z�)

)L(��)

,
NX
�=1

(D
M

(0)
G
(X;z�)

)L(��)(L� � ��);

(the conditions on �� correspond to the relations on the L�,

NX
�=1

L� = 0;
NX
�=1

L�z� +
NX
�=1

2��(�� � 1) = ef + fe+ 1
2h

2;

NX
�=1

L�z
2
� +

NX
�=1

4��(�� � 1)z� = 2(e1f + f1e+
1
2h1h));
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4 B. ENRIQUEZ ET AL.

e = �N
�=1e

(�); e1 = �N
�=1z�e

(�), analogous relations for f; f1; h; h1). We would
like to show:

PROPOSITION 1 (cf. [8].). There is a homomorphism of D-modules

��E
(N�2)
(��);(��)

! R(q0)�p
�
1p
�M(��)[N ];

which is an isomorphism over ��1((X�f1g)(N�2)��) (� is the diagonal part
of (X � f1g)(N�2)).

(Here we denote, forF a sheaf on a manifold V , byF (n) the sheaf (pV )�(F�n)
on V (n) = V n=Sn; pV being the projection V n ! V (n).)

Proof. Let us give coordinates to the spaces of diagram (1).

M
(0)
G (X; z�) ' Gn(G=B)N = Gn(CP 1)N ;

choosing the identification

CP 1 ' G=B; t 7!

 
1 0

t�1 1

!
B; 0 7!

 
0 �1

1 0

!
B;

then G acts on (CP 1)N by homographic transformations. Now M
(0)
B (X; z�) =

Bn(G=B)N ; after fixingOCP 1 ! O2
CP 1 to be (1; 0), the lines l� are C(1; t�1

� ), the
t�1
� being defined up to a global affine transformation. An element of Hom(K�1

CP 1;z�
;

OCP 1) is a 1-form �N
�=1(u�dz=z � z�), with �N

�=1u� = 0. The incidence rela-
tion defining Z is �N

�=1u�t� = 0, since the first component of j0 has to be
�N
�=1(u�t�dz=z� z�), and should be regular at1. The map � associates to (u�),

the solutions (wi) of �N
�=1(u�=z � z�) = 0 (counting k times 1, if this function

is � c=z2+k for z !1, c 6= 0).
Let p1 be the natural projection of (G=B)N on Gn(G=B)N , then

p�1(M(��)) = D(G=B)N

,X
�

D(G=B)N (L� � ��) +D(G=B)N sl2(C):

Introduce the formal variable z, then

NX
�=1

L� � ��
z � z�

+
NX
�=1

2��(�� � 1)
(z � z�)2

= e(z)f(z) + f(z)e(z) + 1
2h(z)

2 �
NX
�=1

��
z � z�
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SEPARATION OF VARIABLES FOR GAUDIN–CALOGERO SYSTEMS 5

with e(z) = �N
�=1(e

(�)=z � z�), etc., e(�) = t2�(@=@t�) + 2��t�, f (�) =
�(@=@t�), h(�) = 2(t�(@=@t�) + ��). The Radon transform of the D-module
generated by the L� � �� is the D-module generated by the L� � ��, where

NX
�=1

L� � ��

z � z�
+

NX
�=1

2��(�� � 1)
(z � z�)2

= e(z)f(z) + f(z)e(z) + 1
2h(z)

2 �
NX
�=1

��

z � z�
;

e(z) = �N
�=1(e

(�)=z � z�), analogous formulae for f(z), h(z), e(�) =

�(u�(@=@u�)
2+2(��+1)@=@u�); f

(�)
= u�; h

(�)
= �2(u�(@=@u�)+��+1):

Consider the operator

L̂(wi) =
NX
�=1

1
wi � z�

(L� � ��)

and let ê(wi) = �N
�=1(1=wi�z�)e

(�), analogous formulae for f̂(wi), ĥ(wi). Then

L̂(wi) +
NX
�=1

��

wi � z�
+

NX
�=1

2��(�� � 1)
(wi � z�)2

�[ê(wi)f̂(wi) + f̂(wi)ê(wi) +
1
2 ĥ(wi)

2]

= �
X

16�;�6N

1
wi � z�

("
e(�);

1
wi � z�

#
f
(�)

+

"
f
(�)
;

1
wi � z�

#
e(�)

+
1
2

"
h
(�)
;

1
wi � z�

#
h
(�)

9=
;

= �
X

16�;�6N

�
1

wi � z�

"
u�

@

@u�
;
@

@u�

 
1

wi � z�

!#
+

� u�

+
2

wi � z�
u�

@

@u�

 
1

wi � z�

! 
u�

@

@u�

!

�
X

16�;�6N

�
1

wi � z�

("
2(�� + 1)

@

@u�
;

1
wi � z�

#
u�

�
2

wi � z�
u�

@

@u�

 
1

wi � z�

!
(�� + 1)

9=
;
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6 B. ENRIQUEZ ET AL.

with [a; b]+ = ab+ ba. Now,

NX
�=1

@

@u�

 
1

wi � z�

!
u� = �

1
wi � z�

;

NX
�=1

u�

�
@

@u�

�2
 

1
wi � z�

!
u� = �2u�

@

@u�

�
1

wi � z�

�
;

so the last line gives zero, and the term in [ ; ]+ gives

�2
NX
�=1

1
wi � z�

u�
@

@u�
�

1
wi � u�

+ 2
NX
�=1

1
wi � z�

u�
@

@u�

�
1

wi � u�

�

= �2
NX
�=1

1
(wi � z�)2u�

@

@u�
:

(the dot denotes the product of differential operators). Then we deduce from

C

QN�1
i=1 (z � wi)QN
�=1(z � z�)

=
NX
�=1

u�

z � z�
;

(dC=C+�N�2
i=1 (dwi=wi� z))�

N
�=1(u�=z� z�) = �N

�=1(du�=z� z�), so du� =

u�(dC=C +�N�2
i=1 (dwi=wi � z�)) and

@

@wi

=
NX
�=1

u�

wi � z�

@

@u�
;

so the remaining term gives�2�N
�=1(@=@wi)(1=wi�z�)(u�(@=@u�))�

N
�=1(2=(wi�

z�)
2)(u�(@=@u�)).
Finally,

L̂(wi) = ê(wi)f̂(wi) + f̂(wi)ê(wi) +
1
2 ĥ(wi)

2

�
NX
�=1

��

wi � z�
�

NX
�=1

2��(�� � 1)
(wi � z�)2 :

Now, f̂(wi) = 0, and ĥ(wi) = �2[@=@wi + A(wi)], with A(wi) = �N
�=1(�� +

1)=(wi � z�), so

L̂(wi) = 2
�
@

@wi

+A(wi)

�2

�
NX
�=1

��
wi � z�

�
NX
�=1

2��(�� � 1)
(wi � z�)2 :
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SEPARATION OF VARIABLES FOR GAUDIN–CALOGERO SYSTEMS 7

In this way, we have constructed an epimorphism from the (N � 2)th symmetric
power of E(��);(��) (restricted to the complement of diagonals) to the D-module
generated by the L����’s (restricted to the complement of the discriminant), and
so to the D-module generated by the L� � ��’s and the action of sl2(C).

Let us now show that it induces an isomorphism of the sheaves of local
analytic solutions. Let us start with a local homomorphism of the first sheaf
to the (analytic) structure sheaf. It is some function ( (wi))16i6N�2, such that
(@2

wj
+ q(wj)) (wi) = 0, for all j. We deduce from that relation, using our previ-

ous computations,

NX
i=1

(L� � ��) 

wi � z�
= 0; i = 1; : : : ; N � 2: (3)

We will consider  as a distribution on the space of all (ui)16i6N , supported on
the hyperplane �N

i=1ui = 0, and analytic on this hyperplane. We obtain from (3)

(L� � ��) = u��+ z�u��; (4)

� and � being distributions of the same nature as ; indeed, � and � can be obtained
solving a Cramer system (since everywhere on the support of  , we can find
two indices � 6= � such that u�u� 6= 0), and L�’s commute with �N

�=1u�.
From the relation �N

�=1L� = 0 follows that � = 0; from �N
�=1L�z� +

�N
�=12��(�� � 1) = ef + fe + 1

2h
2

and �N
�=1L�z

2
� + �N

�=14��(�� � 1)z� =

2(e1f + f 1e + 1
2h1h), follows that (�N

�=1u�)e = (�N
�=1z�u�)�, and

(�N
�=1z�u�)e = (�N

�=1z
2
�u�)�. So, on the complement of f(u�)j�N

�=1z�u� = 0
or �N

�=1z
2
�u� = 0 or (�N

�=1z�u�)
2 � (�N

�=1u�)(�
N
�=1z

2
�u�)g, � and e will

vanish. So these distributions would have to be supported on a subvariety of the set
of all (u�) of codimension > 2, which is impossible. So we will have

(L� � ��) = 0; e = 0: (5)

Since f = h = 0 by construction, we have shown that  can be considered as
a local homomorphism of the D-module generated by the L� � �� (restricted to
the complement of the discriminant) to the structure sheaf.

These two morphisms are clearly inverse to each other; if we show that both
D-modules have their characteristic varieties supported on the zero section, this
will prove the proposition.

For E(N�2)
(��);(��)

it is clear, since it is true for E(��);(��). On the other hand, the

characteristic variety ofR(q0)�p
�
1p
�M(��)[N ] is the set of (ui; �i), with �N

i=1ui =
0 and up to equivalence (ui; �i) � (ui; �i + �), and

NX
i=1

ui
z � zi

=

 
NX
i=1

ui�i
z � zi

! 
NX
i=1

ui�
2
i

z � zi

!
: (6)

comp4088.tex; 29/10/1997; 7:16; v.7; p.7

https://doi.org/10.1023/A:1000264321722 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000264321722


8 B. ENRIQUEZ ET AL.

This equation gives

NX
i=1

ui

z � zi
=

RA2(z)QN
i=1(z � zi)

;
NX
i=1

ui�i

z � zi
=

RAB(z)QN
i=1(z � zi)

;

NX
i=1

ui�
2
i

z � zi
=

RB2(z)QN
i=1(z � zi)

;

R;A;B polynomials. The set fwi; 1 6 i 6 N � 2g is the union of the set of zeros
of RA2, and of 1 counted N � 2 � deg RA2 times. Since the wi’s are pairwise
distinct, we haveA = const:, and degR = N � 2 orN � 3. Since no wi coincides
with 1, deg R = N � 2; so, B is also constant, and the �i’s are all equal; but this
is equivalent to �i = 0. 2

2. Separation of variables for the sl2 Gaudin–Calogero system

LetX be the elliptic curve C�=qZ, with marked points z�qZ, � = 1; : : : ; N . In the
sl2 case, the Gaudin–Calogero system (which plays the role of the Gaudin system
in the present situation, cf. [4], [10]) takes place in the space

M
(0)
G
(X; z�) = f(E(t;t�1); parabolic structure at z� given by t� 2 CP 1)g=

(t; t�) � (qt; z�t�); (t; t�) � (t; ut�); u 2 C�]; t 2 C�]

= C� � (CP 1)N=C� n ZN :

Here E(t1;:::;tn) is the bundle on X defined by C� � Cn=[(z; �) � (qz; diag(ti)�)],
for t1; : : : ; tn 2 C�.

We consider then the space

M
(0)
B (X; z�)

= f(E(t;t�1); j: Et ! E(t;t�1); par: str: given by t� 2 CP 1); t 2 C�g=

[j � �j; � 2 C�; (t; t�) � (qt; z�t�); (t; t�) � (t; ut�); u 2 C�];
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it has a natural projection p to M(0)
G
(X; z�). Consider now the diagram

Z

	�
�
�
�
�

p1

@
@
@
@
@

q1

R
M

(0)
B (X; z�) fE 2 Pic0(X); ! 2 P Hom(K�1

X;z�

 E�1; E)g

	�
�
�
�
�

p
@
@
@
@
@

p0

R 	�
�
�
�
�

q0

@
@
@
@
@

�

R
M

(0)
G (X; z�) Pic0(X) X(N)

(7)

where

KX;z� = 
1
X

 
NX
�=1

(z�)

!
;

p0 is the projection

class(E(t;t�1); j: Et ! E(t;t�1); par: str:) 7! Et�1 ;

(p0 associates to j its cokernel), q0 associates E to (E ; !), � associates to (E ; !)
the set of zeros of !, and Z is the incidence variety, defined by the conditions that
! lifts to a morphism j0:K�1

X;z�

 Et�1 ! E(t;t�1), compatible with the parabolic

structure. Writing

! =
NX
�=1

u�
�(t�2zz�1

� )

�(t�2)�(zz�1
� )

dz
z
;

the first component of j0 has to be

NX
�=1

u�t�
_�(zz�1

� )

�(zz�1
� )

dz

z
;

so that the incidence condition is �N
�=1u�t� = 0.

(Fix our conventions for �- and }-functions: �(z) = �i>0(1 � qiz)�i>0(1 �
qiz�1); }(ln z) = �( _�=�)_(z), so }(�) � ��2 + � � � for � ! 0; we denote _f(z) =
z(df=dz).)

comp4088.tex; 29/10/1997; 7:16; v.7; p.9

https://doi.org/10.1023/A:1000264321722 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000264321722


10 B. ENRIQUEZ ET AL.

The lifts to C� � (CP 1)N of the Gaudin–Calogero operators ([4], [10]) are
defined as follows: let z be a formal variable, belonging to X � fz�g. We have

L(z) = e(z)f(z) + f(z)e(z) + 1
2h(z)

2

= L0 +
NX
�=1

L�
_�

�
(zz�1

� ) +
NX
�=1

2��(�� � 1)}(ln zz�1
� )

+
NX
�=1

1
2h

(�)

 
NX
�=1

h(�)
! 

_�

�
(zz�1

� )

!2

;

where e(z) = �N
�=1(�(t

�2zz�1
� )=�(t�2)�(zz�1

� ))e(�), h(z) = 2t2(@=@t2) +
2k( _�=�)(t2)+�N

�=1(
_�=�)(zz�1

� )h(�), f(z) = �N
�=1(�(t

2zz�1
� )=�(t2)�(zz�1

� ))f (�),
and e(�) = t2�(@=@t�) + 2��t�, f (�) = �(@=@t�); h

(�) = 2(t�(@=@t�) + ��).
Let us fix now complex numbers ��, � = 0; : : : ; N , with �N

�=1�� = 0 (this
condition corresponds to the fact that �N

�=1L� belongs to the left ideal generated

by �N
�=1h

(�)); consider on M(0)
G
(X; z�), the D-module (twisted by the quotient

Lk;(��) of i�1(L�2
k )��N

�=1L�� , i: Ker(s)! X(2), s:X(2) ! X the sum mapping,
Lk a bundle of degree k on X),

M(��) = (D
M

(0)
G
(X;z�)

)Lk;(��)

,
NX
�=0

(D
M

(0)
G
(X;z�)

)Lk;(��)(L� � ��) :

Consider then the operator on X � fz�g,

D(��);(��) = 2
�
w
@

@w

�2
� �0 �

NX
�=1

��
_�

�
(wz�1

� )

+2
NX
�=1

��(�� � 1)}(lnwz�1
� )

and the DX-module

E(��);(��) = DX=DXD(��);(��):

The fibration � has fibers C�; we will twist inverse images under � by the func-
tion C�N

�=1(��+1) (C coordinate on the fiber). Also, we will work with k = 0
(multiplication by �(t2)k taking us back to this case). We will show that:

PROPOSITION. There is a homomorphism ofD-modules from the twisted inverse
image ��E(N)

(��);(��)
to R(q1)�p

�
1p
�M(��)[N ], which is an isomorphism over ��1

(X(N) ��) (� is the diagonal part of X(N)).
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Proof. Let

p1: C� � (CP 1)N ! C� � (CP 1)N=C� n ZN

be the natural projection, then

p�1(M(��)) = DC��(CP 1)N

,X
�

DC��(CP 1)N (L� � ��)

+DC��(CP 1)N

 X
�

h(�)
!
:

Because of the factor DC��(CP 1)N (��h
(�)), the D-module is constant along

the fibers of the action of C�. Its Radon transform is the D-module generated by

L� � �� and �N
�=1h

(�)
, where

L0 +
NX
�=1

L�
_�

�
(zz�1

� ) +
NX
�=1

2��(�� � 1)}(ln zz�1
� )

+
NX
�=1

1
2h

(�)

 
NX
�=1

h
(�)

! 
_�

�
(zz�1

� )

!2

= e(z)f (z) + f(z)e(z) + 1
2h(z)

2;

e(z) = �N
�=1(�(t

�2zz�1
� )=�(t�2)�(zz�1

� ))e(�), analogous formulae for f(z) and
h(z), with

e(�) = �

"
u�

�
@

@u�

�2

+ 2(�� + 1)
@

@u�

#
; f

(�)
= u�;

h
(�)

= �2
�
u�

@

@u�
+ (�� + 1)

�
:

Consider the operator

L̂(wi) = L0 � �0 +
NX
�=1

_�

�
(wiz

�1
� )(L� � ��)

+
NX
�=1

 
_�

�
(wiz

�1
� )

!2
1
2h

(�)

 
NX
�=1

h
(�)

!
:

Let ê(wi) = �N
�=1(�(t

�2wiz
�1
� )=�(t�2)�(wiz

�1
� ))e(�), etc. Let us compute the

difference

�L̂(wi) + (ê(wi)f̂(wi) + f̂(wi)ê(wi) +
1
2 ĥ(wi)

2 � �0

�
NX
�=1

��
_�

�
(wiz

�1
� ) + 2��(�� � 1)}(lnwiz

�1
� ));
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it is equal to

NX
�;�=1

�(t�2wiz
�1
� )

�(t�2)�(wiz
�1
� )

"
e(�);

�(t2wiz
�1
�
)

�(t2)�(wiz
�1
�
)

#
f
(�)

+
1
2

NX
�;�=1

_�

�
(wiz

�1
� )[h

(�)
;
_�

�
(wiz

�1
�
)]h

(�)
: (8)

The first term of (8) is the sum of (9) and (10), where

(9) = �
NX

�;�=1

�(t�2wiz
�1
� )

�(t�2)�(wiz
�1
� )

"
2u�

@

@u�

 
�(t2wiz

�1
�
)

�(t2)�(wiz
�1
�
)

!
@

@u�

+u�

�
@

@u�

�2
 

�(t2wiz
�1
�
)

�(t2)�(wiz
�1
�
)

!#
� u�

= �
NX
�=1

�(t�2wiz
�1
� )

�(t�2)�(wiz
�1
� )

2u�

2
4 NX
�=1

@

@u�

 
�(t2wiz

�1
�
)

�(t2)�(wiz
�1
�
)

!
u�

3
5 @

@u�

�
NX
�=1

�(t�2wiz
�1
� )

�(t�2)�(wiz
�1
� )

2u�
@

@u�

 
�(t2wiz

�1
�
)

�(t2)�(wiz
�1
�
)

!
@

@u�

�
NX
�=1

�(t�2wiz
�1
� )

�(t�2)�(wiz
�1
� )

u�

NX
�=1

�
@

@u�

�2
 

�(t2wiz
�1
�
)

�(t2)�(wiz
�1
�
)

!
u�

and

(10) =
NX

�;�=1

�(t�2wiz
�1
� )

�(t�2)�(wiz
�1
� )

(�2)(�� + 1)
@

@u�

 
�(t2wiz

�1
�
)

�(t2)�(wiz
�1
�
)

!
u�

=
NX
�=1

2(�� + 1)
�(t�2wiz

�1
� )

�(t�2)�(wiz
�1
� )

�(t2wiz
�1
�
)

�(t2)�(wiz
�1
�
)

=
NX
�=1

2(�� + 1)[}(ln t2)� }(lnwiz
�1
� )]:

We have

NX
�=1

@

@u�

 
�(t2wiz

�1
�
)

�(t2)�(wiz
�1
�
)

!
u� = �

�(t2wiz
�1
� )

�(t2)�(wiz
�1
� )
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and

NX
�=1

�
@

@u�

�2
 

�(t2wiz
�1
�
)

�(t2)�(wiz
�1
�
)

!
u� = �2

@

@u�

 
�(t2wiz

�1
� )

�(t2)�(wiz
�1
� )

!

So

(9) =
NX
�=1

2u�
�(t2wiz

�1
� )

�(t2)�(wiz
�1
� )

�(t�2wiz
�1
� )

�(t�2)�(wiz
�1
� )

@

@u�

=
NX
�=1

(�2)[}(lnwiz
�1
� )� }(ln t2)]u�

@

@u�
:

The second term of (8) is the sum of (11) and (12), with

(11) = 2
NX

�;�=1

_�

�
(wiz

�1
� )u�

@

@u�

 
_�

�
(wiz

�1
�
)

!
u�

@

@u�

and

(12) =
1
2

NX
�;�=1

_�

�
(wiz

�1
� )2u�

@

@u�

 
_�

�
(wiz

�1
�
)

!
2(�� + 1)

=
NX
�=1

(�� + 1)

(
�2wi

@

@wi

"
_�

�
(wiz

�1
� )

#)

=
NX
�=1

2(�� + 1)}(ln(wiz
�1
� )):

To compute (11), we express the relation between the @=@wi and the @=@u�:
we have

NX
�=1

u�
�(t2zz�1

� )

�(t2)�(zz�1
� )

= C
�N
i=1�(zw

�1
i )

�N
�=1�(zz

�1
� )

;

so

NX
�=1

du�
�(t2zz�1

� )

�(t2)�(zz�1
� )

+
dt
t
u�

"
_�

�
(t2zz�1

� )�
_�

�
(t2)

#
�(t2zz�1

� )

�(t2)�(zz�1
� )

= C
�N
i=1�(zw

�1
i )

�N
�=1�(zz

�1
� )

"
dC
C
�

NX
i=1

dwi

wi

_�

�
(zw�1

i )

#
;
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by inspection of the pole at z�, and because of

C
�N
i=1�(z�w

�1
i )

�� 6=��(z�z
�1
�
)
= u�;

it follows that

du� = u�

"
dC
C
�

NX
i=1

dwi

wi

_�

�
(z�w

�1
i )

#

and so

wi

@

@wi

= �
NX
�=1

_�

�
(z�w

�1
i )u�

@

@u�
:

Now

(11) = 2
NX
�=1

�wi

@

@wi

 
_�

�
(z�w

�1
i )

!
u�

@

@u�

= 2
NX
�=1

}(lnwiz
�1
�
)u�

@

@u�
:

Finally

(9) + (11) = 2}(ln t2)
NX
�=1

u�
@

@u�
= 2}(ln t2)C

@

@C

and

(10) + (12) =
NX
�=1

2(�� + 1)}(ln t2):

The sum of these terms is 2}(ln t2)(C(@=@C) + �N
�=1(�� + 1)); the term

C(@=@C) +
PN

�=1(�� + 1) (equal to � 1
2

PN
�=1 h

(�)
) is set to zero in the twisted

inverse image ��E(N)
(��);(��)

. It follows that

L̂(wi) = 2
�
t2
@

@t2
+ wi

@

@wi

+A(wi)

�2

� �0 �
NX
�=1

��
_�

�
(wiz

�1
� )

+
NX
�=1

2��(�� � 1)}(lnwiz
�1
� );
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since ê(wi) = 0, and ĥ(wi) = 2[t2(@=@t2) + k
_�
�
(t2) +wi(@=@wi) +A(wi)], with

A(wi) = ��N
�=1(��+1) _�=�(wiz

�1
� ). The addition of the termA(wi) corresponds

to the twisting by a GL(1)-connection and does not change the PGL(2)-oper, as
in [8] . The addition of the term t2@=@(t2) corresponds to the fact that we are
working here with the variables (wi; t), which are linked by the relation t2�N

i=1wi =
�N
�=1z� (mod. qZ). Our statement follows as before. 2

Remark. As in the rational case, one may remark that the conditions on the ��’s
to satisfy the Bethe ansatz equations, that can be found in [7], can be translated into
the condition on the projective connection defined by them, to have a single-valued
solution  (z) = ��(zai)=�

n
�=1�(zz

�1
� )�� . Thanks to the Leray formulae for

Radon transformation [1], one could expect the Bethe eigenvectors to be expressed
in the form

	(t1; : : : ; tN ) =

Z
�

C�
PN

�=1
(��+1) (w1) � � � (wN)

(
PN

�=1 u�t�)
k

�

�
NX
�=1

(�1)�u�du1 ^ � � � ^ �du� ^ � � � ^ duN ;

1 6 k��N
�=1(��+ 1) 6 N � 1, the integration being on a suitable cycle in CPN .

In the general case, this formula should lead to the computation of the monodromy
of the Gaudin–Calogero system (by deformation of the cycle of integration). It
might be interesting to express this monodromy representation directly in terms of
the one of the projective connection associated to the ��’s.
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