We prove large time Gaussian bounds for the derivatives of the semigroup kernel associated with complex, second-order, subelliptic operators on Lie groups of polynomial growth.

1. Introduction

It is well established that the kernel K of the semigroup generated by a right invariant sublaplacian on a connected Lie group with polynomial growth satisfies global Gaussian upper bounds. (See [15, Theorem VIII.2.9], or [12, Theorem IV.4.16].) Moreover, multiple subelliptic derivatives of the kernel satisfy small time Gaussian upper bounds with each derivative contributing an extra $t^{-1/2}$-singularity ([7]). Saloff-Coste [13] also proved similar bounds for single subelliptic derivatives of K and large t. Alexopoulos [2], however, gave an example of a solvable Lie group of polynomial growth for which certain second-order subelliptic derivatives of the kernel have a $t^{-1/2}$, and not a t^{-1}, asymptotic behaviour. Nevertheless the higher order derivatives of the kernel do have global Gaussian bounds with an additional $t^{-1/2}$-singularity for each derivative if the group is nilpotent ([15, 10]). Moreover, for compact groups spectral arguments show that one has an exponential decrease for large t. The situation was clarified by the proof ([11]) that a t^{-1}-asymptotic behaviour is valid for the second-order subelliptic derivatives of the kernel if, and only if, the group is the (local) direct product of a compact group and a nilpotent group, and then the higher-order derivatives have a similar canonical behaviour. Despite this natural limitation Alexopoulos [1, Corollary of Theorem 7.7], showed that a general first-order derivative and some second-order derivatives of the kernel do satisfy the canonical large t Gaussian bounds. The situation then developed with a recent paper

Received 12th August, 2002
On leave from Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. The author wishes to thank Nick Dungey and Derek Robinson for many valuable discussions. The author is particularly indebted to Nick Dungey for explaining his results prior to publication. This paper has been written whilst the author was on sabbatical leave visiting the Centre for Mathematics and its Applications at the ANU. He wishes to thank the CMA for its hospitality and the support from a grant of the Australian Research Council.
of [3] which proved canonical large time Gaussian bounds for multiple derivatives in the directions of the nilradical of G. Dungey's results were derived by combination of the Gaussian bounds on the kernel and L_2-bounds on its multiple derivatives. Since Gaussian bounds are now known for the semigroup kernels associated with complex second-order subelliptic operators ([9]) Dungey's results extend to this case. Dungey also established a $t^{-1/2}$-decay for L_2-bounds for any right invariant derivative of the semigroup ([4]) using an elaborate transference argument. In this paper we give a simpler proof of Dungey's results for multiple derivatives in the directions of the nilradical, based on interpolation arguments, almost as a corollary prove a $t^{-1/2}$-decay for any right invariant derivative of the kernel, extend Alexopoulos' result on general derivatives to the complex setting and in addition consider higher order derivatives.

Let G be a connected Lie group with polynomial growth and Lie algebra \mathfrak{g}. In order to describe the main theorem we need some decomposition theory, which can be found in [1, Sections 2 and 3]. Let \mathfrak{q}, \mathfrak{n} and \mathfrak{m} be the radical, nilradical and a Levi subalgebra for \mathfrak{g}. For all $a \in \mathfrak{g}$ let $S(a)$ and $K(a)$ denote the semisimple and nilpotent part in the Jordan decomposition of a. Then there exists a subspace \mathfrak{v} of \mathfrak{q} such that $\mathfrak{q} = \mathfrak{v} \oplus \mathfrak{n}$, $[\mathfrak{m}, \mathfrak{v}] = \{0\}$ and $S(\mathfrak{v}) = \{0\}$. Then the nilshadow of \mathfrak{q} is the nilpotent Lie algebra $\mathfrak{q}_N = (\mathfrak{q}, [\cdot, \cdot]_N)$ where

$$[a, b]_N = [a, b] - S(a_\mathfrak{v})b + S(b_\mathfrak{v})a$$

with $a_\mathfrak{v}, b_\mathfrak{v}$ the \mathfrak{v}-components of $a, b \in \mathfrak{q}$. If $\{\mathfrak{q}_{N,k}\}$ denotes the lower central series of \mathfrak{q}_N, that is, $\mathfrak{q}_{N,1} = \mathfrak{q}_N$ and $\mathfrak{q}_{N,k+1} = [\mathfrak{q}_N, \mathfrak{q}_{N,k}]_N$ for all $k \in \mathbb{N}$, then there exist vector subspaces $\mathfrak{e}, \mathfrak{h}_1, \ldots, \mathfrak{h}_r$ of \mathfrak{q} such that $\mathfrak{h}_1 = \mathfrak{v} \oplus \mathfrak{e}$, $\mathfrak{n} = \mathfrak{e} \oplus \mathfrak{q}_{N,2}$ and $\mathfrak{q}_{N,k} = \mathfrak{q}_{N,k+1} \oplus \mathfrak{h}_k$ for all $k \in \{1, \ldots, r\}$, where r is the rank of \mathfrak{q}_N. Let b_1, \ldots, b_d be a basis for \mathfrak{g} passing through $\mathfrak{v}, \mathfrak{e}, \mathfrak{h}_2, \ldots, \mathfrak{h}_r, \mathfrak{m}$. For all $i \in \{1, \ldots, d\}$ define the weight $\omega_i = 0$ if $b_i \in \mathfrak{m} \oplus \mathfrak{v}$, $\omega_i = 1$ if $b_i \in \mathfrak{e}$ and $\omega_i = k$ if $b_i \in \mathfrak{h}_k$ with $k \geq 2$.

For all $a \in \mathfrak{g}$ let $dL_G(a)$ denote the generator of the one parameter group $t \mapsto L_G(\exp_G(-ta))$, where L_G is the left regular representation in G and \exp_G is the exponential map. We set $B_i = dL_G(b_i)$. We also need multi-index notation. Set $J(d) = \bigcup_{n=1}^\infty \{1, \ldots, d\}^n$ and if $\alpha = (i_1, \ldots, i_n) \in J(d)$ set $|\alpha| = n$, $||\alpha|| = \omega_{i_1} + \ldots + \omega_{i_n}$ and $B^{\alpha} = B_{i_1} \ldots B_{i_n}$.

Let a_1, \ldots, a_d be an algebraic basis for \mathfrak{g} and let $C = (c_{kl})$ be a $d \times d$-matrix of complex coefficients. Assume $2^{-1}(C + C^*) \geq \mu I$ for some $\mu > 0$. Set $H = - \sum_{i,j=1}^d c_{kl} A_k A_l$, where $A_i = dL_G(a_i)$. Then it follows from [7] that the closure of the subelliptic operator H generates a holomorphic semigroup S which has a smooth kernel K. If $| \cdot |'$ is the modulus on G associated to the algebraic basis a_1, \ldots, a_d' and $V'(\rho)$ denotes the Haar measure of the ball $\{g \in G : |g|' < \rho\}$ then it follows from [9] that K satisfies good
Gaussian bounds, that is, there exist \(b, c > 0 \) such that

\[
|K_t| \leq c G_{b,t}
\]

for all \(t > 0 \), where \(G_{b,t}(g) = V'(t)^{-1/2}e^{-b|f|^2t^{-1}} \).

The main result of this paper is that the derivatives of \(K \) satisfy the following Gaussian upper bounds.

Theorem 1.1. If \(\alpha \in J(d) \) and \(i \in \{1, \ldots, d\} \) then there exist \(b, c > 0 \) such that

\[
|B^\alpha K_t| \leq c t^{-\|\alpha\|/2} G_{b,t} \quad \text{and} \quad |B^\alpha A_i K_t| \leq c t^{-(\|\alpha\|+1)/2} G_{b,t}
\]

for all \(t \geq 1 \).

Dungey [3] proved the Gaussian bounds for multi-indices \(\alpha \) in the nilradical directions and in the directions of a subalgebra \(s \) of \(m \) for which there exists a subalgebra \(g_0 \) of \(g \) such that \(g = s \oplus g_0 \) as Lie algebras. In addition Dungey proved exponential decay \(e^{-\omega t} \) for any (higher-order) derivative which contains at least one derivative in the directions of \(s \).

As in [3] we first prove first \(L_2 \)-bounds for \(B^\alpha S_t \) with derivatives in the nilpotent directions. Since our proof is shorter, we include it here.

The outline of the proof is as follows. First, we may assume that \(G \) is simply connected, since the general case follows from the simply connected case by a transference as in [11, p. 201]. So from now on \(G \) is simply connected. Secondly, we prove \(L_2 \)-bounds on the derivatives of the semigroup in the nilpotent directions. These easily transform into \(L_\infty \)-bounds on nilpotent derivatives of the kernel. Thirdly, by interpolation as in [8, Lemmas 4.2 and 4.3], one obtains Gaussian bounds on the derivatives of the kernel in the nilpotent directions. Fourthly, by the convolution property \(K_{2t} = K_t * K_t \) one can move an additional derivative in any direction to the kernel on the right. Then, by induction, the first bounds of Theorem 1.1 follow. The second bounds follow similarly once one has the correct Gaussian bounds on the derivatives \(A_i K_t \) in the algebraic directions.

In Section 2 we introduce some more structure theory for Lie groups with polynomial growth and prove Theorem 1.1 for derivatives in the direction of \(n \). Then in Section 3 we prove Theorem 1.1 in full.
[1, Proposition 2.3], one can, however choose $\mathfrak{h}_1, \ldots, \mathfrak{h}_r$ such that \mathfrak{h}_k is invariant under $S(v)$ and $\text{ad} m$. By [1, Proposition 2.4], there exists an inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{g} such that the subspaces $\mathfrak{v}, \mathfrak{t}, \mathfrak{h}_2, \ldots, \mathfrak{h}_r, \mathfrak{m}$ are mutually orthogonal and the operators $S(v)$ are skew-symmetric for all $v \in \mathfrak{v}$. Define the inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{g} by

$$\langle a, b \rangle = \int_M \text{dm} \left(\text{Ad}(m)a, \text{Ad}(m)b \right)$$

where dm is the normalised Haar measure on M. Then the subspaces $\mathfrak{v}, \mathfrak{t}, \mathfrak{h}_2, \ldots, \mathfrak{h}_r, \mathfrak{m}$ are mutually orthogonal and the operators $\text{ad} a$ and $S(v)$ are skew-symmetric for all $a \in \mathfrak{m}$ and $v \in \mathfrak{v}$. We may assume that b_1, \ldots, b_d is an orthonormal basis with respect to $\langle \cdot, \cdot \rangle$.

For all $u > 0$ let $\gamma_u : \mathfrak{g} \to \mathfrak{g}$ be the linear map such that $\gamma_u(b_i) = u^{w_i}b_i$ for all $i \in \{1, \ldots, d\}$, where $w_i = 0$ if $b_i \in \mathfrak{m}$ and $w_i = k$ if $b_i \in \mathfrak{h}_k$. Next define $\left[\cdot, \cdot \right]_u : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ by

$$[a, b]_u = \gamma_u^{-1} \left([\gamma_u(a), \gamma_u(b)]\right).$$

Then $\mathfrak{g}_u = (\mathfrak{g}, [\cdot, \cdot]_u)$ is a Lie algebra and $\gamma_u : \mathfrak{g}_u \to \mathfrak{g}$ a Lie algebra isomorphism. Define similarly the nilpotent Lie algebra $\mathfrak{q}_{N_u} = (\mathfrak{q}, [\cdot, \cdot]_{N_u})$ with

$$[a, b]_{N_u} = \gamma_u^{-1} \left([\gamma_u(a), \gamma_u(b)]_{N_u}\right).$$

Then \mathfrak{q}_{N_u} is the nilshadow of \mathfrak{g}_u. If $a \ast_{N_u} b$ denotes the Campbell–Baker–Hausdorff formula in a and b with respect to $[\cdot, \cdot]_{N_u}$ on \mathfrak{q}_{N_u} then $Q_{N_u} = (\mathfrak{q}, \ast_{N_u})$ is the connected simply connected nilpotent Lie group with Lie algebra \mathfrak{q}_{N_u}. Set $G_{N_u} = M \times Q_{N_u}$. We denote by \ast_{N_u} the multiplication on G_{N_u} and by $g^{(-1)_{N_u}}$ the inverse of g. Define $\tau_u : \mathfrak{g}_{N_u} \to \mathcal{L}(\mathfrak{g}_{N_u})$ by $\tau_u(a)b = \left(\text{ad} a + S(\gamma_u(a))\right)b_q$, where a_m and a_o are the components of a in \mathfrak{m} and \mathfrak{v} and b_q is the component of b in \mathfrak{q}. If $\overline{T_u} : \mathfrak{g}_{N_u} \to \text{Aut}(\mathfrak{g}_{N_u})$ is the homomorphism such that $\overline{T_u}(\exp_{G_{N_u}} a) = e^{\tau_u(a)}$ and $T_u : G_{N_u} \to \text{Aut}(G_{N_u})$ is the Lie group homomorphism such that

$$T(\exp_{G_{N_u}} a) \exp_{G_{N_u}} b = \exp_{G_{N_u}} (\overline{T_u}(\exp_{G_{N_u}} a)b)$$

for all $a, b \in \mathfrak{g}_{N_u}$ then $(g, h) \mapsto g \tau_u^* h = (T_u(h^{(-1)_{N_u}})g) \ast_{N_u} h$ defines a Lie group multiplication on the set G_{N_u} of which the Lie algebra is isomorphic to \mathfrak{g}_{N_u} (compare [14, p. 229]). Here $\exp_{G_{N_u}}$ denotes the usual exponential map on G_{N_u}. We set $G_u = (G_{N_u}, \tau_u^*)$ and $T = T_1$. Then with $u = 1$ the Lie group G is isomorphic to (G_{N_u}, T^*) and from now on we identify G with (G_{N1}, T^*). We also delete the u in a symbol if $u = 1$. As a consequence

$$\left(d\ell_{G_u}(a) \varphi \right)(g) = \left(d\ell_{G_{N_u}}(\overline{T_u}(g^{(-1)_{N_u}})a) \varphi \right)(g)$$

for all $a \in \mathfrak{g}$, $g \in G_u$ and $\varphi \in C^\infty_c(G_u)$. But it follows from the skew-symmetry of $\text{ad} m$ and $S(v)$ that $\overline{T_u}$ is a unitary representation of G_{N_u} on \mathfrak{g} equipped with the inner product $\langle \cdot, \cdot \rangle$.

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 08 Mar 2021 at 11:19:27, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972700037205
We choose and fix a Lebesgue measure on the vector space \(\mathbb{q} \). Then we fix the Haar measure on \(Q_{\mathbb{Q}N_u} \) such that \(\int_{Q_{\mathbb{Q}N_u}} \varphi = \int_{\mathbb{q}} \varphi \circ \exp_{\mathbb{Q}N_u} \) for all \(\varphi \in C_c(Q_{\mathbb{Q}N_u}) \). Then the Haar measure on \(G_{\mathbb{Q}N_u} \) is the product measure of the normalised Haar measure on the compact group \(M \) and the Haar measure on \(Q_{\mathbb{Q}N_u} \). Finally since \(|\det \overline{T}_u(g)| = 1 \) for all \(g \) it follows that we can choose the Haar measure on \(G_u \) such that \(\int_{G_u} \varphi = \int_{G_{\mathbb{Q}N_u}} \varphi \) for all \(\varphi \in C_c(G_u) \). Note that this fixes the Haar measure on \(G = G_1 \).

If \(a_1, \ldots, a_{d'} \) is the algebraic basis of \(\mathfrak{g} \) then \(u_{\gamma^{-1}_u}(a_1), \ldots, u_{\gamma^{-1}_u}(a_{d'}) \) is an algebraic basis for \(\mathfrak{g}_u \). Now set \(A_k^{[u]} = dL_{\mathbb{Q}N_u}(u_{\gamma^{-1}_u}(a_k)) \) for all \(k \in \{1, \ldots, d'\} \). Then (2) implies that

\[
(A_k^{[u]} \varphi)(g) = \sum_{j=1}^{d} (\overline{T}_u(g)b_j, u_{\gamma^{-1}_u}(a_k)) \overline{B}_j^{(u)} \varphi(g) = \sum_{j=1}^{d} u^{1-w_j} r^{(u)}_{kj}(g) \overline{B}_j^{(u)} \varphi(g)
\]

where

\[
\overline{B}_j^{(u)} = dL_{\mathbb{Q}N_u}(b_i),
\]

\[
r^{(u)}_{kj} = r_{kj} \circ \Gamma_u, \quad r_{kj}(g) = \langle \overline{T}(g)b_j, a_k \rangle \quad \text{and} \quad \Gamma_u : G_u \to G \text{ is the lifting of the isomorphism } \gamma_u.
\]

Next, define the subelliptic operator \(H^{[u]} \) on \(G_u \) by

\[
H^{[u]} = - \sum_{k,l=1}^{d'} c_{kl} A_k^{[u]} A_l^{[u]}
\]

If \(S^{[u]} \) is the semigroup generated by \(H^{[u]} \) then by subellipticity there exists a \(c_1 > 0 \) such that

\[
\| (\lambda I + H^{[u]})^{-1} \|_{2 \to 2} \leq \lambda^{-1}
\]

\[
\| (\lambda I + H^{[u]})^{-1} A_k^{[u]} \|_{2 \to 2} \leq c_1 \lambda^{-1/2}
\]

uniformly for all \(\lambda, u > 0 \) and \(k \in \{1, \ldots, d'\} \).

Let \(d_0 = \dim \mathfrak{v} \) and \(d_q = \dim \mathfrak{q} \). Then \(n = \{b_{d_0+1}, \ldots, b_{d_q}\} \). Moreover, set \(J(n) = \bigcup_{n=0}^{\infty} \{d_0 + 1, \ldots, d_q\} \). First we prove \(L_2 \) bounds on nilpotent derivatives.

Proposition 2.1. For all \(\alpha \in J(n) \) there exists a \(c > 0 \) such that

\[
\| B^{\alpha} S_t \|_{2 \to 2} \leq c t^{-\|\alpha\|/2}
\]

for all \(t \geq 1 \).

The proof requires some preparation. For all \(u > 0 \) consider the unitary representation \(U^{(u)} \) of the Lie group \(N \) in \(L_2(G_{\mathbb{Q}N_u}) \) defined by \(U^{(u)}(n) = L_{G_{\mathbb{Q}N_u}}(n) \). For \(m \in \mathbb{N}_0 \) define the space

\[
\mathcal{X}_m^{(u)} = \bigcap_{\alpha \in J_m(n)} D(\overline{B}^{(u)\alpha})
\]
with norm
\[\| \varphi \|_{m}^{(u)} = \max_{\alpha \in J_m(\alpha)} \| \widetilde{B}^{(u)}_{\alpha} \varphi \|_2, \]
where \(\| \cdot \|_2 \) is the \(L_2 \)-norm on \(L_2(G_{Nu}) \) and \(J_m(n) = \{ \alpha \in J(n) : |\alpha| \leq m \} \). So \(\mathcal{X}_m^{(u)} \) is the Banach space of \(m \)-times differentiable elements with respect to the representation \(U^{(u)} \) and the vector space basis \(b_{d_1+1}, \ldots, b_{d_4} \) for \(n \), with the usual norm. Define the seminorm
\[N_m^{(u)} : \mathcal{X}_m^{(u)} \rightarrow \mathbb{R} \]
by
\[N_m^{(u)}(\varphi) = \max_{\alpha \in J(n)} \| \widetilde{B}^{(u)}_{\alpha} \varphi \|_2. \]

Next we need bounds on \(N_m^{(u)}((\lambda I + H_{[u]})^{-1} \varphi) \).

Lemma 2.2. For all \(m \in \mathbb{N} \) there exist \(c, \lambda_0 > 0 \) such that
\[N_m^{(u)}((\lambda I + H_{[u]})^{-1} \varphi) \leq c \lambda^{-1} N_m^{(u)}(\varphi) \]
for all \(\lambda \geq \lambda_0, u \geq 1 \) and \(\varphi \in L_{2,\infty}(G_{Nu}) \).

Proof: Since \(\tilde{B}^{(u)}_{k_1 k_j} = 0 \) if \(k_i \in n \) and \(n \) is an ideal it follows from (3) that there exists a \(c > 0 \) such that
\[\| [\tilde{B}^{(u)}_{\alpha}, A_{[u]}] \varphi \|_2 \leq c N_m^{(u)}(\varphi) \]
for all \(k \in \{1, \ldots, d'\} \), \(u \geq 1 \), \(\lambda \in L_{2,\infty}(G_{Nu}) \) and \(\alpha \in J(n) \) with \(|\alpha| = m \). Let \(u \geq 1 \), \(\lambda > 0 \), \(\varphi \in L_{2,\infty}(G_{Nu}) \) and write \(\psi = (\lambda I + H_{[u]})^{-1} \varphi \). For all \(\alpha \in J(n) \) with \(|\alpha| = m \) one has
\[\| \tilde{B}^{(u)}_{\alpha} \psi \|_2 \leq \| (\lambda I + H_{[u]})^{-1} \tilde{B}^{(u)}_{\alpha} \varphi \|_2 + \| (\lambda I + H_{[u]})^{-1} [\tilde{B}^{(u)}_{\alpha}, H_{[u]}] \psi \|_2 \]
\[\leq \lambda^{-1} N_m^{(u)}(\varphi) + \sum_{k,l=1}^{d'} |c_{kl}| \| (\lambda I + H_{[u]})^{-1} [\tilde{B}^{(u)}_{\alpha}, A_{k}^{[u]}] A_{l}^{[u]} \psi \|_2 \]
\[+ \sum_{k,l=1}^{d'} |c_{kl}| \| (\lambda I + H_{[u]})^{-1} A_{k}^{[u]} [\tilde{B}^{(u)}_{\alpha}, A_{l}^{[u]}] \psi \|_2 \]
\[\leq \lambda^{-1} N_m^{(u)}(\varphi) + c \lambda^{-1} \sum_{k,l=1}^{d'} |c_{kl}| N_m^{(u)}(A_{k}^{[u]} \psi) + c c_1 \lambda^{-1/2} \sum_{k,l=1}^{d'} |c_{kl}| N_m^{(u)}(\psi) , \]
where we used (4) and (5). So with \(c_2 = c \sum_{k,l=1}^{d'} |c_{kl}| \) one deduces that
\[N_m^{(u)}(\psi) \leq \lambda^{-1} N_m^{(u)}(\varphi) + c_2 \lambda^{-1} \max_{k \in \{1, \ldots, d'\}} N_m^{(u)}(A_{k}^{[u]} \psi) + c_1 c_2 \lambda^{-1/2} N_m^{(u)}(\psi) . \]

Next, if \(k \in \{1, \ldots, d'\} \) and \(\alpha \in J(n) \) with \(|\alpha| = m \) then it follows from subellipticity...
that
\[\|\bar{B}^{(u)}A_{k}^{[u]}\psi\|_{2}^{2} \leq 2\|A_{k}^{[u]}\bar{B}^{(u)}A_{k}^{[u]}\psi\|_{2}^{2} + 2\|\bar{B}^{(u)}A_{k}^{[u]}\psi\|_{2}^{2} \]
\[\leq 2\mu^{-1}\Re(\bar{B}^{(u)}\psi, H_{[u]}\bar{B}^{(u)}\psi) + 2c^{2}N_{m}^{(u)}(\psi)^{2} \]
\[\leq 2\mu^{-1}\Re(\bar{B}^{(u)}\psi, \bar{B}^{(u)}H_{[u]}\psi) \]
\[+ 2\mu^{-1}\Re(\bar{B}^{(u)}\psi, [H_{[u]}, \bar{B}^{(u)}]\psi) + 2c^{2}N_{m}^{(u)}(\psi)^{2}. \]

But \(H_{[u]}\psi = \varphi - \lambda\psi \). So
\[\Re(\bar{B}^{(u)}\psi, \bar{B}^{(u)}H_{[u]}\psi) = \Re(\bar{B}^{(u)}\psi, \bar{B}^{(u)}\varphi) - \lambda \Re(\bar{B}^{(u)}\psi, \bar{B}^{(u)}\psi) \]
\[\leq N_{m}^{(u)}(\psi)N_{m}^{(u)}(\varphi) \leq 2^{-1}(N_{m}^{(u)}(\psi)^{2} + N_{m}^{(u)}(\varphi)^{2}) \]
and
\[\left| \Re(\bar{B}^{(u)}\psi, [H_{[u]}, \bar{B}^{(u)}]\psi) \right| \]
\[\leq \sum_{i,j=1}^{d} |c_{ij}| \left| (\bar{B}^{(u)}\psi, [A_{i}^{[u]}, \bar{B}^{(u)}]A_{j}^{[u]}\psi) \right| + \sum_{i,j=1}^{d} |c_{ij}| \left| (\bar{B}^{(u)}\psi, A_{i}^{[u]}[A_{j}^{[u]}, \bar{B}^{(u)}]\psi) \right| \]
\[\leq c_{2}N_{m}^{(u)}(\psi) \max_{j \in \{1, \ldots, d\}} N_{m}^{(u)}(A_{j}^{[u]}\psi) + c_{2} \max_{j \in \{1, \ldots, d\}} N_{m}^{(u)}(A_{j}^{[u]}\psi)N_{m}^{(u)}(\psi) + c_{2}N_{m}^{(u)}(\psi)^{2} \]
by anti-symmetry of \(A_{i}^{[u]} \) and an estimate on the commutator \([A_{i}^{[u]}, \bar{B}^{(u)}]\). Hence
\[\max_{k \in \{1, \ldots, d'\}} N_{m}^{(u)}(A_{k}^{[u]}\psi) \leq \mu^{-1}N_{m}^{(u)}(\varphi)^{2} + 4c_{2}\mu^{-1}N_{m}^{(u)}(\psi) \max_{j \in \{1, \ldots, d'\}} N_{m}^{(u)}(A_{j}^{[u]}\psi) \]
\[+ 2(\mu^{-1} + c^{2} + \mu^{-1}c_{2})N_{m}^{(u)}(\psi)^{2}. \]
Therefore
\[\max_{k \in \{1, \ldots, d'\}} N_{m}^{(u)}(A_{k}^{[u]}\psi) \leq \mu^{-1/2}N_{m}^{(u)}(\varphi) + c_{3}N_{m}^{(u)}(\psi) \]
where \(c_{3} = 4c_{2}\mu^{-1} + 2(\mu^{-1} + c^{2} + \mu^{-1}c_{2})^{1/2} \). Together with (7) it follows that
\[N_{m}^{(u)}(\psi) \leq \lambda^{-1}(1 + c_{2}\mu^{-1/2})N_{m}^{(u)}(\varphi) + c_{2}(c_{3}\lambda^{-1} + c_{1}\lambda^{-1/2})N_{m}^{(u)}(\psi). \]

So the lemma follows with \(\lambda_{0} = 1 + 4c_{2}^{2}(c_{1} + c_{3})^{2} \).

Now we are able to prove Proposition 2.1.

PROOF OF PROPOSITION 2.1: Let \(m \in \mathbb{N}, m \geq 2 \). It follows from the first five steps in the proof of [9, Lemma 2.2] that there exists a \(\nu \in (0, 1) \) such that \(L_{2,1}^{(u)}(G_{u}) \subset (L_{2}(G_{Nu}), L_{2,\infty}(G_{Nu}))_{\nu,\infty,K} \) and the embedding is continuous uniformly for all \(u \geq 1 \), where \(L_{2,1}^{(u)}(G_{u}) \) is the Sobolev space defined with respect to the group \(G_{u} \) and the algebraic basis \(u_{\gamma_{a_{1}}}^{-1}(a_{1}), \ldots, u_{\gamma_{a_{d}}^{-1}}(a_{d}) \) and \(L_{2,\infty}(G_{Nu}) \) is the Sobolev space defined with respect to the group \(G_{NU} \) and the algebraic basis \(b_{1}, \ldots, b_{d_{1}}, b_{d_{1}+1}, \ldots, b_{d} \), where \(d_{1} = \dim h_{1} \). Here we used the real interpolation spaces with respect to the K-method of Peetre. Obviously
\[L_{2,mr}^{(Q)}(G_{Nu}) \subset L_{2,mr}^{(Q)}(G_{Nu}), \] the Sobolev space with respect to the set \(b_1, \ldots, b_{d_1} \). But \(L_{2,mr}^{(Q)}(G_{N1}) \subset L_{2,mr}^{(Q)}(G_{N1}) \), the Sobolev space with respect to the set \(b_1, \ldots, b_{d_2} \) and the embedding is continuous. Therefore, by scaling, the space \(L_{2,mr}^{(Q)}(G_{Nu}) \) is embedded in the space \(L_{2,mr}^{(Q)}(G_{Nu}) \) and the embedding is continuous uniformly for all \(u \geq 1 \). Obviously, \(L_{2,mr}^{(Q)}(G_{Nu}) \subset \mathcal{X}_{0}^{(u)} \) and the norm of the embedding is bounded by 1. Combining these embeddings there exists a \(c > 0 \) such that

\[
\| \varphi \|_{(\mathcal{X}_{0}^{(u)}, \mathcal{X}_{0}^{(m)})_{v,2,K}} \leq c \left(\| \varphi \|_2 + \sum_{k=1}^{d} A_k^{n_k} \| \varphi \|_2 \right)
\]

uniformly for all \(u \geq 1 \) and \(\varphi \in L_{2,1}^{'}(G_u) \). Hence by (4) and (5) there exists a \(c_0 > 0 \) such that

\[
(8) \quad \| (\lambda I + H_{[u]})^{-1} \varphi \|_{(\mathcal{X}_{0}^{(u)}, \mathcal{X}_{0}^{(m)})_{v,2,K}} \leq c_0 \lambda^{-1/2} \| \varphi \|_2
\]

for all \(u \geq 1, \lambda \geq 1 \) and \(\varphi \in \mathcal{X}_{0}^{(u)} \).

By Lemma 2.2 there exist \(c_1 \geq 1 \) and \(\lambda_0 > 0 \) such that such that

\[
\| (\lambda I + H_{[u]})^{-1} \varphi \|_m \leq c_1 \lambda^{-1} \| \varphi \|_m
\]

for all \(\lambda \geq \lambda_0, u \geq 1 \) and \(\varphi \in L_{2,\infty}^{'}(G_{Nu}) \). But \(L_{2,\infty}^{'}(G_{Nu}) \) is dense in \(\mathcal{X}_{m}^{(u)} \) by an argument similar to the proof of [5, Lemma 2.4]. Hence if \(\lambda = 1 \vee \lambda_0 \) then the map \((\lambda I + H_{[u]})^{-1} \) is continuous from \(\mathcal{X}_{0}^{(u)} \) into \(\mathcal{X}_{m}^{(u)} \) with norm bounded by 1 and from \(\mathcal{X}_{m}^{(u)} \) into \(\mathcal{X}_{m}^{(u)} \) with norm bounded by \(c_0 \). Therefore, by interpolation, for all \(\gamma \in (0,1) \) the map \((\lambda I + H_{[u]})^{-1} \) is continuous from \(\mathcal{X}_{0}^{(u)}, \mathcal{X}_{m}^{(u)} \) into \((\mathcal{X}_{0}^{(u)}, \mathcal{X}_{m}^{(u)})_{\gamma,2,K} \) with norm bounded by \(c_1 \). But by (8) the map \((\lambda I + H_{[u]})^{-1} \) is also continuous from \(\mathcal{X}_{0}^{(u)}, \mathcal{X}_{m}^{(u)} \) into \((\mathcal{X}_{0}^{(u)}, \mathcal{X}_{m}^{(u)})_{\gamma,2,K} \) with norm bounded by \(c_0 \). Hence, by interpolation, for all \(\gamma \in (0,1) \) the map \((\lambda I + H_{[u]})^{-1} \) is continuous from \((\mathcal{X}_{0}^{(u)}, \mathcal{X}_{m}^{(u)})_{\gamma,2,K} \) into \((\mathcal{X}_{0}^{(u)}, \mathcal{X}_{m}^{(u)})_{\gamma+(1-\gamma),2,K} \) with norm bounded by \(c_0 + c_1 \). Using interpolation once more, it follows that there exists an \(N \in \mathbb{N} \) such that

\[
\| (\lambda I + H_{[u]})^{-N} \mathcal{X}_{0}^{(u)} \|_{(\mathcal{X}_{0}^{(u)}, \mathcal{X}_{m}^{(u)})_{1-(2m)-1,2,K}} \leq \mathcal{X}_{m}^{(u)} \] and the embedding is continuous, uniformly for all \(u > 0 \). Hence there exists a \(c_2 > 0 \) such that

\[
\| (\lambda I + H_{[u]})^{-N} \varphi \|_2 \leq \| \varphi \|_{(\mathcal{X}_{0}^{(u)}, \mathcal{X}_{m}^{(u)})_{1-(2m)-1,2,K}} \leq c_2 \| \varphi \|_2 \]

for all \(\varphi \in L_{2,\infty}^{'}(G_{u}) \). In particular,

\[
\| (\lambda I + H_{[u]})^{-N} \mathcal{S}_{1,\alpha}^{[u]} \|_{2-\alpha} \leq c_2 (1 + c_0 + c_1)^N \| (\lambda I + H_{[u]})^{N} \mathcal{S}_{1,\alpha}^{[u]} \|_{2-\alpha}
\]

uniformly for all \(u \geq 1, \varphi \in L_{2,\infty}^{'}(G_{u}) \) and \(\alpha \in J(n) \) with \(|\alpha| = m - 1 \). Then

\[
\| (\lambda I + H_{[u]})^{-N} \mathcal{S}_{1,\alpha}^{[u]} \|_{2-\alpha} \leq c_2 (1 + c_0 + c_1)^N \| (\lambda I + H_{[u]})^{N} \mathcal{S}_{1,\alpha}^{[u]} \|_{2-\alpha}
\]

for all \(\varphi \in L_{2,\infty}^{'}(G_{u}) \). In particular,
But there exists a $c_3 > 1$ such that $\|HS_t\|_{2\to 2} \leq c_3 t^{-1}$ for all $t > 0$. Then $\|H(u)S_{1/n}^{[u]}\|_{2\to 2} = u^2\|HS_{n^{-1} u}\|_{2\to 2} \leq c_3 n$ uniformly for all $u > 0$. Then

$$\|\widetilde{B}^{(u)}aS_{1}[u]\|_{2\to 2} \leq c_4$$

for all $u \geq 1$, where $c_4 = c_2 c_3 (2(1 + c_0 + c_1)N) N$. Finally, it follows from (2) that $B_i^{(u)} = \sum_{j=1}^d (\rho_{ij} \circ \Gamma_u) \widetilde{B}_j^{(u)}$ for all $i \in \{1, \ldots, d\}$ and $u > 0$, where $\rho_{ij}(g) = (\mathcal{F}(g)b_j, b_i)$. But if $b_i \in n$ then for a non-vanishing term in the sum one must have $b_j \in n$. In addition, $\widetilde{B}_k^{(u)} \rho_{ij} = 0$ if $b_k \in n$ and ρ_{ij} is bounded. So for all $\alpha \in J(n)$ there exist bounded continuous functions ρ_{β} such that $B^{(u)\alpha} = \sum_{\beta \in J(n), \ |\beta| = |\alpha|} (\rho_{\beta} \circ \Gamma_u) \widetilde{B}^{(u)\beta}$. Then for all $\alpha \in J(n)$ there exists a $c_5 > 0$ such that $\|B^{(u)\alpha}S_{1}[u]\|_{2\to 2} \leq c_5$, uniformly for all $u \geq 1$. Then

$$\|B^{\alpha}S_t\|_{2\to 2} = t^{-\|o\|/2}\|B^{(t/2)^{\alpha}}S_{1(t/2)}\|_{2\to 2} \leq c_5 t^{-\|o\|/2}$$

for all $t \geq 1$ and Proposition 2.1 follows.

Corollary 2.3. For all $\alpha \in J(n)$ there exists a $c > 0$ such that

$$\|B^{\alpha}K_t\|_{\infty} \leq c V'(t)^{-1/2} t^{-\|o\|/2}$$

for all $t \geq 1$.

Proof: For all $t \geq 1$ and $\alpha \in J(n)$ one has

$$\|B^{\alpha}K_{3t}\|_{\infty} = \|B^{\alpha}S_{3t}\|_{1\to \infty} \leq \|B^{\alpha}S_{2t}\|_{2\to \infty} \|S_{1}\|_{1\to 2} \leq \|B^{\alpha}S_{t}\|_{2\to 2} \|S_{t}\|_{2\to \infty} \|S_{t}^*\|_{2\to \infty} = \|B^{\alpha}S_{t}\|_{2\to 2} \|K_{t}\|_{2} \|K_{t}^\dagger\|_{2}$$

where K^\dagger is the kernel of S^*. Then the corollary follows from the bounds (6), the Gaussian bounds on K and K^\dagger and the doubling property.

The next lemma is the key in the induction step to turn L_∞-bound on derivatives and Gaussian bounds on K into Gaussian bounds on derivatives of K.

Lemma 2.4. Suppose $a \in g$, $t \geq 1$, $b, c_0, c_2, c, \delta > 0$, $\Phi \in C^\infty(G)$ and suppose that

$$|\Phi(g)| \leq c_0 G_{b, t}(g)$$

for all $g \in G$,

$$\|dL(a)^2\Phi\|_{\infty} \leq c_2 V'(t)^{-1/2}$$

and $|\exp u\alpha|^t \leq c (1 + |u|^{1/\delta})$ for all $u \in R$. Then

$$\left|(dL(a)\Phi)(g)\right| \leq (2e^{b\delta} \tau^{-1} c_0 + 2^{-1} c_2 \tau) G_{4^{-1} b, t}(g)$$

for all $\tau \in (0, t^{\delta/2}]$ and $g \in G$.

[9] Derivatives of kernels 401
PROOF: If $u \in \mathbb{R}$ then
\[
(|g'|^2) \leq 2\left(\left|\exp(-ua)g'\right|^2 + 2\left|\exp(ua)g'\right|^2\right) \leq 2\left(\left|\exp(-ua)g'\right|^2 + c^2 \left(1 + |u|^{2/6}\right)^2\right)
\]
and hence
\[
-\left(\left|\exp(-ua)g'\right|^2 + c^2 \left(1 + |u|^{2/6}\right)^2\right)
\]
for all $g \in G$. Therefore
\[
\left|\left((I - L(\exp ua))\Phi\right)(g)\right| \leq 2e^{b^2}c_0 V'(t)^{-1/2} e^{-2^{-1}b|g'|^2t^{-1}}
\]
for all $g \in G$ and $u \in (0, t^{4/2}]$.

Using the identity
\[
f'(0) = u^{-1}(f(u) - f(0)) + u^{-1} \int_0^u dv (u - v) f''(v)
\]
with $f(u) = (L(\exp ua)\Phi)(g)$ one deduces that
\[
\left|\left(dL(a)\Phi\right)(g)\right| \leq u^{-1}\left|\left((I - L(\exp ua))\Phi\right)(g)\right| + u^{-1} \int_0^u dv (u - v) \left\|dL(a)^2\Phi\right\|_{\infty}
\]
\[
\leq 2e^{b^2}u^{-1}c_0 V'(t)^{-1/2} e^{-2^{-1}b|g'|^2t^{-1}} + 2^{-1}cu c_2 V'(t)^{-1/2}
\]
for all $g \in G$ and $u \in (0, t^{4/2}]$. Then the lemma follows by setting $u = \tau e^{-4^{-1}b|g'|^2t^{-1}}$. ◯

Next we prove the Gaussian bounds for the nilpotent derivatives of the kernel. If $|\cdot|$ and $|\cdot|_{G_N}$ are moduli on G and G_N with respect to the basis b_1, \ldots, b_d, respectively, then it follows from (2) and the orthogonality of the $\mathbb{T}(g)$ that $|g| = |g|_{G_N}$ for all $g \in G_N$. Then by [15, Proposition III.42], for any neighbourhood Ω of the identity element there exists a $c > 0$ such that
\[
c^{-1} |g|_{G_N} \leq |g'| \leq c |g|_{G_N}
\]
or all $g \in G \setminus \Omega$.

Proposition 2.5. For all $\alpha \in J(n)$ there are $b, c > 0$ such that
\[
|B^\alpha K_t| \leq c t^{-||\alpha||/2} G_{b,t}
\]
for all $t \geq 1$.

Proof: If $|\alpha| = 0$ then the bounds (10) equal the bounds (1). The proof is by induction. Let $k \in \{d_0 + 1, \ldots, d_q\}$, $\alpha \in J(n)$ and suppose that the bounds (10) are valid for $B^\alpha K_t$. Then by (9) and the inclusion $\phi(R(t)) \subset B(\tau t)$ in the proof of [15, Proposition IV.5.6], applied to the simply connected nilpotent group Q_N it follows that there exists a $c > 0$ such that $|\exp ub_k| \leq c |u|^{1/\omega_k}$ for all $|u| \geq 1$. Then the bounds (10) follow for $B_k B^\alpha K_t$ from Lemma 2.4 by taking $\Phi = B^\alpha K_t$, $\alpha = b_k$, $\delta = \omega_k$ and $\tau = t^{\omega_k/2}$, using the induction hypothesis and the L_{∞}-bounds of Corollary 2.3 on $B^2_k B^\alpha K_t$. Hence by induction the bounds (10) are valid for all $\alpha \in J(n)$. The proof is complete. ◯
3. Derivative bounds

The derivative bounds on the kernel in a general direction follow from the derivative bounds in a nilpotent direction and an estimate on $\langle b_j, \text{Ad}(g)b_i \rangle$. We need two lemmas before we prove the required bounds on $\text{Ad}(g)$.

Lemma 3.1. If $v \in \mathfrak{v}$ then $K(v)q_{N;k} \subseteq q_{N;k+1}$ for all $k \in \{1, \ldots, r\}$.

Proof: It is straightforward to prove that adv and $K(v)$ are derivations on \mathfrak{g}_N. If $v' \in \mathfrak{v}$ then $(\text{adv}v') = [v, v']_N$ and since $K(v)$ is a polynomial in adv without a constant term and adv is a derivation of q_N it follows that $K(v)v \subseteq q_{N;2}$. Clearly $K(v)n = [v, n]_N \subseteq q_{N;2}$. So $K(v)q \subseteq q_{N;2}$. Since $K(v)$ is a derivation of q_N the corollary follows.

For all $\xi \in \mathbb{R}^{d_q}$ define $||\xi|| = \sum_{i=1}^{d_q} |\xi_i|^{1/w_i}$. Then it follows from the Campbell–Baker–Hausdorff formula and the first displayed formula on page 55 of [15] that there exists a $c > 0$ such that

$$||\xi|| \leq c|\exp_{G_N} \xi b_1 *_{G_N} \ldots *_{G_N} \exp_{G_N} \xi d_q b_{d_q}|_{G_N}$$

for all $\xi \in \mathbb{R}^{d_q}$ with $||\xi|| \geq 1$.

Lemma 3.2. For all $i, j \in \{1, \ldots, d\}$ and $m_1, \ldots, m_{d_q} \in \mathbb{N}_0$ there exists a $c > 0$ such that

$$\left| \langle b_j, (\text{ad}_{\xi d_q} b_{d_q})^{m_{d_q}} \ldots (\text{ad}_{\xi_{d_q+1} b_{d_q+1}})^{m_{d_q+1}} K(\xi_d b_d)^{m_{d_0}} \ldots K(\xi_1 b_1)^{m_1} b_i \rangle \right| \leq \begin{cases} c||\xi||^{\omega_j - \omega_i} & \text{if } \omega_j > \omega_i \\ 0 & \text{otherwise} \end{cases}$$

for all $\xi \in \mathbb{R}^{d_q}$ with $||\xi|| \geq 1$.

Proof: By composition it suffices to prove the statement for $m_1 + \ldots + m_{d_q} = 1$. Let $l \in \{1, \ldots, d_q\}$ be such that $m_l = 1$. Suppose the left hand side of (12) is not zero.

If $l \leq d_0$ then $v = \xi_l b_l \in \mathfrak{v}$ and one has $K(v)m = \{0\}$ and $K(v)q_{N;k} \subseteq q_{N;k+1}$ for all $k \in \{1, \ldots, r\}$ by Lemma 3.1. Hence $i \leq d_q$ and $\omega_j = \omega_j > w_i \geq \omega_l$. Therefore with $c = \left| \langle b_j, K(b_l) b_i \rangle \right|$ one has

$$\left| \langle b_j, K(\xi_l b_l) b_i \rangle \right| \leq c|\xi_l| \leq c||\xi|| \leq c||\xi||^{\omega_j - \omega_l}$$

since $||\xi|| \geq 1$.

If $l > d_0$ then with $n = \xi_l b_l \in \mathfrak{n}$ one has $(\text{adn}) b_i = -[b_i, n] \in h_{\mathfrak{w}_l} \cap \mathfrak{n}$ if $b_i \in \mathfrak{m}$. Hence $b_j \in \mathfrak{n}$ and $\omega_j - \omega_i = w_j = w_i$. Then $$\left| \langle b_j, (\text{ad}_{\xi_l} b_l)^{m_l} b_i \rangle \right| \leq \left| \langle b_j, [b_l, b_i] \rangle \right| ||\xi||^{\omega_j - \omega_i}$$

since $|\xi_l| \leq ||\xi||^{w_l}$. Alternatively, if $b_i \in \mathfrak{v}$ then $(\text{adn}) b_i = -(\text{adn}) b_i \in q_{N, w_l} \cap \mathfrak{n}$. So $b_j \in \mathfrak{n}$ and $\omega_j - \omega_i = w_j \geq w_i$. Then $$\left| \langle b_j, (\text{ad}_{\xi_l} b_l)^{m_l} b_i \rangle \right| \leq \left| \langle b_j, [b_l, b_i] \rangle \right| ||\xi||^{\omega_j - \omega_i}$$

since $|\xi_l| \leq ||\xi||^{w_i} \leq ||\xi||^{w_j}$. Finally, if $b_i \in \mathfrak{n}$ then $(\text{adn}) b_i \in q_{N, w_i + w_l}$. So $w_j \geq w_i + w_l$ and one can argue as before.\[\square\]
Lemma 3.3. For all $i,j \in \{1,\ldots,d\}$ there exists a $c > 0$ such that
\[
|\langle b_j, \text{Ad}(g^{-1})b_i \rangle| \leq \begin{cases} c \left(1 + (|g|)^{\omega_j - \omega_i} \right) & \text{if } \omega_j \geq \omega_i \\ 0 & \text{otherwise} \end{cases}
\]
for all $g \in G$.

Proof: Since $G = MQ$ and M is compact it follows that $\text{Ad}(M)b_i$ is a bounded subset of $m \oplus v$ or $h_{w_i} \cap n$ if $b_i \in m \oplus v$ or $b_i \in n$, respectively. So it suffices to consider the case $g \in Q$. By [14, Theorem 3.18.11], there exists a $\xi \in \mathbb{R}^d$ such that $g = \exp \xi b_1 \ldots \exp \xi_d b_d$. Then
\[
\text{Ad}(g^{-1}) = e^{-ad\xi_d b_d} \ldots e^{-ad\xi_1 b_1} e^{-K(\xi_d b_d)} \ldots e^{-K(\xi_1 b_1)} = e^{-S(\xi_d b_d)} \ldots e^{-S(\xi_1 b_1)}.
\]
But $S(\nu)$ is an orthogonal transformation, leaving $m \oplus v$, ξ_1, \ldots, ξ_d invariant. Moreover, $\exp G_\nu \xi_1 b_1 \ldots G_\nu \xi_d b_d = \exp \xi_1 b_1 \ldots \exp \xi_d b_d = g$. Therefore by (11) and (9) it suffices to show that there exists a $c > 0$ such that
\[
|\langle b_j, e^{-ad\xi_d b_d} \ldots e^{-ad\xi_1 b_1} e^{-K(\xi_d b_d)} \ldots e^{-K(\xi_1 b_1)} b_i \rangle| \leq \begin{cases} c \|\xi\|^{\omega_j - \omega_i} & \text{if } \omega_j \geq \omega_i \\ 0 & \text{otherwise} \end{cases}
\]
uniformly for all $\xi \in \mathbb{R}^d$ with $\|\xi\| > 1$. But this follows from Lemma 3.2 by expanding the (terminating) power series of the exponentials of the nilpotent endomorphisms. \qed

Next we derive a global a priori Gaussian bound which will be improved by subsequent additional arguments.

Lemma 3.4. For all $\alpha \in J(d)$ there exist $b, c > 0$ such that
\[
|B^\alpha K_t| \leq c G_{b,t}
\]
for all $t \geq 1$.

Proof: Let $\alpha \in J(d)$. It follows from the semigroup property and the bounds (1) that there exists a $c > 0$ such that
\[
\|B^\alpha S_t\|_\infty = \|B^\alpha S_{1/2}\|_{1/2} \leq \|B^\alpha S_{1/2}\|_{1/2} \leq c V'(t - 1/2)^{-1/2}
\]
for all $t \geq 1$. Hence there exists a $c > 0$ such that $\|B^\alpha S_t\| \leq c V'(t)^{-1/2}$ for all $t \geq 1$.

Now we prove the lemma by induction to $|\alpha|$. The bounds (13) are valid if $|\alpha| = 0$. Let $k \in \{1,\ldots,d\}$, $\alpha \in J(d)$ and suppose the bounds (13) are valid for $B^\alpha K_t$. Then the bounds (13) for $B_k^\alpha K_t$ follow from Lemma 2.4 by taking $\Phi = B^\alpha K_t$, $a = b_k$, $\tau = 1$ and $\delta = 1$, using the induction hypothesis and the above proved L_∞-bounds on $B_k^2 B^\alpha K_t$. Hence the lemma follows by induction. \qed

The proof of Theorem 1.1 is an easy consequence of the next lemma.
LEMMA 3.5. Let \(R \) be a right invariant differential operator, \(b, c > 0, \delta \geq 0 \) and \(i \in \{1, \ldots, d\} \). Suppose that \(|RK_t| \leq ct^{-\delta}G_{b,t} \) for all \(t \geq 1 \). Then there exist \(b', c' > 0 \) such that \(|B_iRK_t| \leq c't^{-\delta}t^{-\omega_j/2}G_{b',t} \) for all \(t \geq 1 \).

PROOF: For all \(j \in \{1, \ldots, d\} \) define \(\psi_{ij} : G \to \mathbb{R} \) by

\[
\psi_{ij}(g) = \langle b_j, \text{Ad}(g^{-1})b_i \rangle.
\]

Then \(B_iL_G(g) = \sum_{j=1}^{d} L_G(g) \psi_{ij}(g) B_j \) for all \(g \in G \). Hence

\[
B_i(\psi * \varphi) = \sum_{j=1}^{d} (\psi \psi_{ij} *) B_j \varphi
\]

for all \(i \in \{1, \ldots, d\} \) and \(\varphi, \psi \in L_{1, \infty}(G) \). In particular,

(14) \[
B_iRK_{2t} = B_i((RK_t) * K_t) = \sum_{j=1}^{d} (\psi_{ij} RK_t) * B_j K_t
\]

for all \(t > 0 \). By Proposition 2.5 and Lemma 3.4 there exist \(b_1, c_1 > 0 \) such that \(|B_jK_t| \leq c_1 t^{-\omega_j/2}G_{b_1,t} \) for all \(t \geq 1 \) and \(j \in \{1, \ldots, d\} \). Moreover, by Lemma 3.3, one can restrict the sum in (14) to \(j \in \{1, \ldots, d\} \) with \(\omega_j \geq \omega_i \). So suppose \(\omega_j \geq \omega_i \). Then there exists a \(c_2 > 0 \) such that \(|\psi_{ij}(g)| \leq c_2 \big(1 + (|g|^t)^{\omega_j - \omega_i}\big) \) for all \(g \in G \). Therefore by the assumption on \(RK_t \) one has

\[
|\psi_{ij}(g)(RK_t)(g)| \leq cc_2 \left(1 + (|g|'t^{-1/2})^{\omega_j - \omega_i}t^{(\omega_j - \omega_i)/2}\right) t^{-\delta}G_{b,t}(g)
\]

for all \(g \in G \) and \(t \geq 1 \), where \(c_3 = \sup_{x \geq 0} x^{\omega_j - \omega_i}e^{-2^{-1}bx^2} \). Then

\[
|(\psi_{ij} RK_t) * B_j K_t| \leq cc_1c_2(1 + c_3) t^{-\delta}t^{-\omega_i/2}G_{2^{-1}b,t} * G_{b_1,t}
\]

for some \(b', c' > 0 \), uniformly for all \(t \geq 1 \), since the convolution of two Gaussians is bounded by a Gaussian.

PROOF OF THEOREM 1.1: The first estimate for \(|\alpha| = 0 \) is given by (1) and it follows by induction to \(|\alpha| \) from Lemma 3.5. The second estimate follows similarly once one can prove that \(B_iK_t \) has bounds \(|B_iK_t| \leq ct^{-1/2}G_{b,t} \) for all \(t \geq 1 \). Since \(a_1, \ldots, a_d \) is an algebraic basis it suffices to prove that for all \(\alpha \in J(d') \) with \(|\alpha| \geq 1 \) there exist \(b, c > 0 \) such that

(15) \[
|A^\alpha K_t| \leq ct^{-1/2}G_{b,t}
\]

for all \(t \geq 1 \). The proof is again by induction.
If $|\alpha| = 1$ then (15) has been proved in [13, Proposition 1], for a sublaplacian and the proof for a complex subelliptic operator is the same, once one has the Gaussian bounds (1). Let $\alpha \in J(d')$ with $|\alpha| \geq 1$, $k \in \{1, \ldots, d'\}$ and suppose the bounds (15) for $A^\alpha K_k$ are valid. Then the bounds (15) follow for $A_k A^\alpha K_k$ from Lemma 3.5 by writing A_k as a linear combination of B_1, \ldots, B_d. Hence by induction the bounds (15) are valid for all $\alpha \in J(d')$ with $|\alpha| \geq 1$ and the proof of the theorem is complete.

REFERENCES