ON UCHIMURA'S CONNECTION BETWEEN PARTITIONS AND THE NUMBER OF DIVISORS

D. M. BRESSOUD ${ }^{(1)}$ AND M. V. SUBBARAO ${ }^{(2)}$

Abstract. A combinatorial proof is given for Uchimura's identity

$$
\sum_{n \geq 1} \frac{x^{n}}{1-x^{n}}=\sum_{n>1} n x^{n} \prod_{j \geq n+1}\left(1-x^{j}\right)
$$

As a corollary to this proof we derive a formula for the sum of the nth powers of the divisors of m in terms of partitions of m.

Uchimura has proved [1] that

$$
\begin{equation*}
\sum_{n \geq 1} \frac{x^{n}}{1-x^{n}}=\sum_{n \geq 1} n x^{n} \prod_{j \geq n+1}\left(1-x^{j}\right) \tag{1}
\end{equation*}
$$

If both sides are expanded as power series in x and the coefficients of x^{m} are compared, equation (1) is seen to be equivalent to

$$
\begin{equation*}
d(m)=-\sum_{\pi \vdash m}^{\prime}(-1)^{\#(\pi)} \lambda(\pi) \tag{2}
\end{equation*}
$$

where $d(m)$ is the number of divisors of $m, \pi \vdash m$ means that π is a partition of m, the prime on the summation restricts the sum to those partitions which have distinct parts, $\#(\pi)$ is the number of parts in π and $\lambda(\pi)$ is the smallest part in π. The purpose of this paper is to give a direct combinatorial proof of equation (2). As a corollary to this proof, we shall derive the more general identity

$$
\begin{equation*}
\sigma_{n}(m)=-\sum_{\pi \vdash m}^{\prime}(-1)^{\not \#(\pi)} \sum_{j=1}^{\lambda(\pi)}(L(\pi)-\lambda(\pi)+j)^{n} \tag{3}
\end{equation*}
$$

where $\sigma_{n}(m)$ is the sum of the nth powers of the divisors of m and $L(\pi)$ is the largest part in π.

For each positive integer N, let $C(N)$ denote the set of partitions π into

[^0]distinct parts satisfying the following inequalities:
$$
L(\pi) \geq N>L(\pi)-\lambda(\pi) .
$$

Thus, for example, $C(2)=\{(2),(3),(4), \ldots,(1+2),(2+3),(3+4), \ldots\}$.
For each partition π into distinct parts, there are exactly $\lambda(\pi)$ integers N such that $\pi \in C(N)$, namely $N=L(\pi)-\lambda(\pi)+j, 1 \leq j \leq \lambda(\pi)$. We thus have that

$$
\begin{equation*}
-\sum_{\pi \vdash m}^{\prime}(-1)^{\#(\pi)} \lambda(\pi)=-\sum_{N} \sum_{\substack{\pi \vdash m \\ \pi \in C(N)}}(-1)^{\#(\pi)} \tag{4}
\end{equation*}
$$

To prove equation (2), it is therefore sufficient to show that

$$
-\sum_{\substack{\pi \vdash m \tag{5}\\ \pi \in C(N)}}(-1)^{\not \#(\pi)}= \begin{cases}1, & \text { if } N \mid m \\ 0, & \text { otherwise }\end{cases}
$$

We shall prove this equation by exhibiting an algorithm which pairs partitions of m in $C(N)$ which have oppositive parity in the number of parts. If $N \nmid m$, then all of the partitions will be paired. If $N \mid m$, then the only partition which will remain unpaired is the partition consisting of a single part divisible by N.

If π contains a part which is a multiple of N and if π has at least one other part, then we remove the multiple of N and add N to the smallest remaining part. We continue to create new partitions by adding N to the smallest part in the previous partition until we again have a partition of m. As an example, if $N=7$ then the parition $11+13+14+16$ is sucessively transformed into $11+$ $13+16,13+16+18,16+18+20$.

If π does not contain a part which is a multiple of N, we reverse the procedure given above, which is to say that we subtract N from the largest part in the previous partition until we reach that unique partition for which the total amount subtracted is less than the smallest part plus N and more than the largest part minus N. This total amount subtracted is then inserted as a new part. As an example, if $N=7$ then the partition $12+13+16+18$ is successively transformed into $11+12+13+16$ (7 subtracted), $9+11+12+13$ (14 subtracted) $9+11+12+13+14$.

This concludes the proof of equation (5). Equation (3) is a simple corollary of (5), for we have that

$$
\begin{aligned}
\sigma_{n}(m) & =-\sum_{N} N^{n} \sum_{\substack{\pi \vdash m \\
\pi \in C(N)}}(-1)^{\#(\pi)} \\
& =-\sum_{\pi \vdash m}^{\prime}(-1)^{\not \#(\pi)} \sum N^{n}
\end{aligned}
$$

the inner sum being over all N such that $\pi \in C(N)$. As was shown above, these are given by $N=L(\pi)-\lambda(\pi)+j, 1 \leq j \leq \lambda(\pi)$.

If we let $D(N)$ denote the set of partitions π satisfying

$$
L(\pi) \geq N \geq L(\pi)-\lambda(\pi)
$$

and not necessarily having distinct parts but with at most one part which is a multiple of N, then the same algorithm as before pairs partitions in $D(N)$ with opposite parity and leaves unpaired only the partition consisting of a single part which is a multiple of N, if it exists. We thus also have

$$
-\sum_{\substack{\pi+m \tag{6}\\ \pi \in D(N)}}(-1)^{\#(\pi)}= \begin{cases}1, & \text { if } N \mid m \\ 0, & \text { otherwise }\end{cases}
$$

Summing over N as before yields

$$
\begin{equation*}
\sigma_{n}(m)=-\sum_{\pi \vdash m}(-1)^{\#(\pi)} \sum N^{n}, \tag{7}
\end{equation*}
$$

where the inner sum is over all N such that $\pi \in D(N)$: that is to day,

$$
\sum N^{n}=\sum_{i=1}^{\lambda(i)} \delta^{n}(L(\pi)-l(\pi)+i, \pi)
$$

where

$$
\delta(a, \pi)= \begin{cases}a, & \text { if } a \text { divides at most one part of } \pi \\ 0, & \text { otherwise }\end{cases}
$$

It is worth noting that Uchimura [2] has generalized equation (1) in a different direction, namely that

$$
\begin{equation*}
\sum_{n \geq 1} n^{r} x^{n} \prod_{j \geq n+1}\left(1-x^{j}\right)=Y_{r}\left(K_{1}, \ldots, K_{r}\right), \quad r \geq 1, \tag{8}
\end{equation*}
$$

where Y_{r} is the r th Bell polynomial

$$
Y_{r}\left(K_{1}, \ldots, K_{r}\right)=\sum_{\pi \vdash r} \frac{r!}{f_{1}!f_{2}!\cdots f_{r}!}\left(\frac{K_{1}}{1!}\right)^{f_{1}} \cdots\left(\frac{K_{r}}{r!}\right)^{f_{r}},
$$

f_{i} being the frequency of the part i in the partition π, and K_{j+1} being the generating function for the sum of the j th powers of the divisors.

$$
K_{j+1}=K_{i+1}(x)=\sum_{n \geq 1} \sigma_{i}(n) x^{n} .
$$

References

1. K. Uchimura, An identity for the divisor generating function arising from sorting theory, J. Comb Th. (A) 31 (1981), 131-135.
2. K. Uchimura, Identities for divisor generating functions and their relations to a probability generating function, preprint.

Pennsylvania State University
University Park, Pennsylvania 16802
University of Alberta
Edmonton, Alberta T6G 2G1

[^0]: Received by the editors October 19, 1982 and, in final revised form, April 28, 1983.
 ${ }^{(1)}$ Partially supported by N.S.F. Grant No. MCS-8101943; Research done at Université Louis Pasteur, Strasbourg, France.
 ${ }^{(2)}$ Partially supported by NSERC Grant No. A-3103.
 AMS-MOS classification: 10A45 (Primary). 10A20, 05A17 (Secondary).
 (C) Canadian Mathematical Society, 1984.

