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ON UCHIMURA'S CONNECTION BETWEEN PARTITIONS 
AND THE NUMBER OF DIVISORS 

BY 

D. M. BRESSOUD(1) AND M. V. SUBBARAO(2) 

ABSTRACT. A combinatorial proof is given for Uchim-
ura's identity 

n==l -1 X n > l j*>n + l 

As a corollary to this proof we derive a formula for the sum 
of the nth powers of the divisors of m in terms of partitions 
of m. 

Uchimura has proved [1] that 

(i) I 7 ^ r = 1 nx" n d-xO. 
n > l *- •* n > l j'S:n + l 

If both sides are expanded as power series in x and the coefficients of xm are 
compared, equation (1) is seen to be equivalent to 

(2) d(m)=- X'(-D#(Tr)M^) 

where d(m) is the number of divisors of m, 77 h m means that 77 is a partition of 
m, the prime on the summation restricts the sum to those partitions which have 
distinct parts, #(77) is the number of parts in 77 and À (77) is the smallest part in 
77. The purpose of this paper is to give a direct combinatorial proof of equation 
(2). As a corollary to this proof, we shall derive the more general identity 

(3) an(m) = - X' ( - l ) # w Y (LOr)-AOr) +j)B 

irf-m j = l 

where an(m) is the sum of the nth powers of the divisors of m and L(TT) is the 
largest part in 77. 

For each positive integer N, let C(N) denote the set of partitions 77 into 
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distinct parts satisfying the following inequalities: 

L(TT)>N>LU)-k(ir). 

Thus, for example, C(2) = {(2), (3), ( 4 ) , . . . , (1 + 2), (2 + 3), (3 + 4 ) , . . . } . 
For each partition 77 into distinct parts, there are exactly À (77) integers N 

such that T T G C ( N ) , namely N = L(ir)-\('ir) + j , 1 < / < À ( 7 T ) . We thus have 
that 

(4) -I ,(-D#(w)A(7r)=-I I (~ir-\ 
Tv\-m N Tr\-m 

TTGCXN) 

To prove equation (2), it is therefore sufficient to show that 

(5) - I i-ir-^l1' *N\m 

^hm 10, otherwise. 
ir<=C(N) 

We shall prove this equation by exhibiting an algorithm which pairs parti
tions of m in C(N) which have oppositive parity in the number of parts. If 
N-Ym, then all of the partitions will be paired. If N | m, then the only partition 
which will remain unpaired is the partition consisting of a single part divisible 
by N. 

If 77 contains a part which is a multiple of N and if 77 has at least one other 
part, then we remove the multiple of N and add N to the smallest remaining 
part. We continue to create new partitions by adding N to the smallest part in 
the previous partition until we again have a partition of m. As an example, if 
N = l then the parition 11 + 13 + 14+16 is sucessively transformed into 11 + 
13 + 16, 13 + 16+18, 16 + 18 + 20. 

If 77 does not contain a part which is a multiple of N, we reverse the 
procedure given above, which is to say that we subtract N from the largest part 
in the previous partition until we reach that unique partition for which the total 
amount subtracted is less than the smallest part plus N and more than the 
largest part minus N. This total amount subtracted is then inserted as a new 
part. As an example, if N = 7 then the partition 12+13 + 16+18 is successively 
transformed into 11 + 12+13 + 16 (7 subtracted), 9 + 1 1 + 12+13 (14 sub
tracted), 9 + 1 1 + 12+13 + 14. 

This concludes the proof of equation (5). Equation (3) is a simple corollary 
of (5), for we have that 

an(m)=-XiST X {-\rM 

N irl-m 
- r reC(N) 

= -I ' ( - l ) # ( ' ) lN- , 
7rhm 

the inner sum being over all N such that TT G C(N). A S was shown above, these 
are given by N = L(TT) —À(77)+ 7, 1 < 7 < À ( 7 T ) . 
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If we let D(N) denote the set of partitions TT satisfying 

L ( 7 r ) > N > L ( 7 7 ) - À ( 7 r ) 

and not necessarily having distinct parts but with at most one part which is a 
multiple of N, then the same algorithm as before pairs partitions in D(N) with 
opposite parity and leaves unpaired only the partition consisting of a single part 
which is a multiple of N, if it exists. We thus also have 

(6) - I (-!)*- = {'' if
fh

Nlm 

i^ln 10, otherwise. 
7reE>(N) 

Summing over N as before yields 

(7) crn(m) = - X ( - l r l N " , 
irl-m 

where the inner sum is over all N such that ireD(N): that is to day, 
MO 

X N n = S s n ( L ( i r ) - I ( i r ) + i,7r) 
i = i 

where 
(a, if a divides at most one part of TT 

10, otherwise. 

It is worth noting that Uchimura [2] has generalized equation (1) in a 
different direction, namely that 

(8) X "r*n 11 (l-xi)=Yr(Kl9...9Kr), r > l , 

where Yr is the rth Bell polynomial 

yr(K1,...,Kr)=I / i ! /2!
r;.. frl{^J • • • {f)\ 

fi being the frequency of the part i in the partition TT, and Kj+1 being the 
generating function for the sum of the jth powers of the divisors. 

Kj+1 = Ki+1(x)= I o)(ii)xn. 
n > l 

REFERENCES 

1. K. Uchimura, An identity for the divisor generating function arising from sorting theory, J. 
Comb Th. (A) 31 (1981), 131-135. 

2. K. Uchimura, Identities for divisor generating functions and their relations to a probability 
generating function, preprint. 

PENNSYLVANIA STATE UNIVERSITY 

UNIVERSITY PARK, PENNSYLVANIA 16802 

UNIVERSITY OF ALBERTA 

EDMONTON, ALBERTA T6G 2G1 

https://doi.org/10.4153/CMB-1984-022-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1984-022-5

