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Abstract. An introduction is given to the use of prototype-based models in supervised machine
learning. The main concept of the framework is to represent previously observed data in terms
of so-called prototypes, which reflect typical properties of the data. Together with a suitable,
discriminative distance or dissimilarity measure, prototypes can be used for the classification of
complex, possibly high-dimensional data. We illustrate the framework in terms of the popular
Learning Vector Quantization (LVQ). Most frequently, standard Euclidean distance is employed
as a distance measure. We discuss how LVQ can be equipped with more general dissimilar-
ites. Moreover, we introduce relevance learning as a tool for the data-driven optimization of
parameterized distances.
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1. Introduction
Prototype-based models constitute a very successful family of methodological ap-

proaches in machine learning (see e.g. Kohonen 1990, Hastie et al. 2009, Biehl et al.
2016, Biehl et al. 2009). They are appealing for a number of reasons: The extraction of
information from previously observed data in terms of typical representatives, so-called
prototypes, is particularly transparent and intuitive, in contrast to many, more black-box
like systems. The same is true for the working phase, in which novel data are compared
with the prototypes by use of a suitable (dis-)similarity or distance measure.

Prototype systems are frequently employed for the unsupervised analysis of complex
data sets, aiming at the detection of underlying structures, such as clusters or hierarchical
relations, see for instance (Biehl et al. 2009). Competitive Vector Quantization or the
well-known K-means algorithm are prominent examples for the use of prototypes in the
context of unsupervised learning (Duda et al. 2001, Hastie et al. 2009).

Potential goals of supervised machine learning are the assignment of data to categories
in classification problems, or their characterization by a continuous target value in re-
gression tasks. In both cases, the learning or training process relies on the availability
of labeled example data. The aim is to extract relevant information and represent it in
terms of a hypothesis for the unknown target function. The obtained hypothesis can then
be applied to novel data in a working phase.

In the following we focus on the framework of Learning Vector Quantization for clas-
sification. Besides basic concepts and training prescriptions we present extensions of the
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Figure 1. Illustration of the Nearest Neighbor Classifier (left panel) and an NPC scheme (right
panel) for a data set comprising 3 classes. Both are based on Euclidean distance and yield
piece-wise linear decision boundaries. Prototypes are represented by larger symbols (right).

framework to unconventional distances and, moreover, to the use of adaptive measures
in so-called relevance learning schemes.

2. Prototypes in Supervised Learning
Among the many frameworks developed for supervised machine learning, prototype-

based systems are particularly intuitive, flexible, and easy to implement. Although we
restrict the discussion to classification problems, many of the concepts carry over to
regression or, to a certain extent, also to unsupervised learning (Biehl et al. 2009).

Various prototype-based classifiers have been considered in the literature, some of
them are derived from well-known unsupervised schemes like the Self-Organizing-Map
or the Neural Gas (Kohonen 1990, Martinetz et al. 1993) which can be equipped with
a posterior labeling of prototypes. Here, our focus is on the so-called Learning Vector
Quantization (LVQ), a framework which was originally suggested by Kohonen (1990). As
a starting point for the discussion, we briefly revisit the well-known k-Nearest-Neighbor
(kNN) approach to classification (e.g. Duda et al. 2001, Cover 1967).

2.1. Nearest Prototype vs. Nearest Neighbor Classifiers
Nearest Neighbor classifiers (Duda et al. 2001, Cover 1967) constitute one of the simplest
and most popular classification schemes. In this classical approach, a given set of labeled
feature vectors is stored as a reference set:

ID = {xμ , yμ = y(xμ)}P
μ=1 .

Here, the labels yμ ∈ {1, 2, . . . C} indicate each example’s membership to one of C classes.
An arbitrary observation or feature vector x, can be classified according to its (dis-)

similarities to the reference data. Most frequently, its (squared) Euclidean distance from
all xμ ∈ ID is computed: d(x,xμ) = (x− xμ)2 , and x is then assigned to the class of its
Nearest Neighbor exemplar in ID. Note that the square is irrelevant when comparing dis-
tances for the identification of the nearest neighbors. In the more general kNN classifier,
the assignment is determined by means of a voting scheme that considers the k closest
reference vectors (Cover 1967).

The NN or kNN classifier is obviously very easy to implement as it does not even
require a training phase. Nevertheless one can show that the kNN approach bears the
potential to yield Bayes optimal performance if the number k of neighbors is chosen
carefully (Duda et al. 2001, Cover 1967). Consequently, the kNN method serves, to date,
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as an important baseline algorithm and is frequently used as a benchmark to compare
with.

Figure 1 (left panel) depicts the NN classifier schematically and shows how the system
implements piecewise linear decision boundaries. Several key difficulty become apparent
already in the simple illustration: Class boundaries can become overly complex, e.g. in
the presence of single data points which are potentially mislabeled. The fact that every
exemplar contributes with equal weight can lead to undesired over-fitting effects where
the classifier is overly specific to the stored examples, but does not generalize well with
respect to novel data.

In naive implementations of kNN one would have to compute and sort the distances
of x from all available examples. While efficient sorting strategies can reduce the com-
putational complexity, the problem persists for very large data sets, in principle.

It should be possible to mitigate both difficulties by reducing the number of exemplars
in an intelligent fashion, keeping essential properties of the data set. In fact, the selection
of a suitable subset of reference vectors was already suggested by Hart (1968).

2.2. Learning Vector Quantization

This particularly intuitive approach to classification was introduced by Kohonen (1990).
The basic idea is to represent the example data in terms of a (typically small) set of
prototype vectors which capture the characteristics of the classes.

As pointed out in (Kohonen 1990), LVQ can be motivated as an approximation of a
Bayes classifier assuming that the underlying density of data is a mixture of Gaussians
(Duda et al. 2001). In Kohonen’s LVQ, the actual density estimation is replaced by the
much simpler and more robust method of supervised Vector Quantization: Each of the
C classes is to be represented by at least one of the M labeled prototypes:

{
wj , cj

}M

j=1 where wj ∈ IRN and cj ∈ {1, 2, . . . C}. (2.1)

In analogy to the NN scheme, a Nearest Prototype classifier (NPC) assigns a feature
vector x to the class

y(x) = c∗ where c∗ is the label of w∗(x) = argminw j

{
d(x,wj)

}M
j=1 . (2.2)

The term winner is used for the closest prototype w∗(x). Alternative voting rules, proba-
bilistic or soft assignments can be used instead of Eq. (2.2), but we restrict the discussion
to the simple and intuitive NPC scheme in the following. The right panel of Fig. 1 il-
lustrates the concept: Class borders resulting from a few, carefully placed prototypes
are much smoother than the corresponding NN decision boundaries (left). Obviously,
an NPC classifier will be more robust with respect to details of the data set, outliers
or mis-classified training samples. Consequently, one would expect better generalization
behavior, as an LVQ classifier should be less data set specific.

The performance of LVQ systems has proven competitive in a variety of practical
contexts. Moreover, the flexibility and intuitive accessibility of LVQ constitute the most
striking advantages of this prototype-based approach to supervised learning. Prototypes
are obtained and can be interpreted within the space of observed data, which makes
possible direct discussion with domain experts. This is in contrast to many other, less
transparent machine learning frameworks.

A variety of schemes have been suggested for the training, i.e. the computation of
prototypes from a given set of data. The term LVQ1 refers to the original prescription
suggested by Kohonen (1990). It includes essentially all aspects of the many modifications
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that were suggested later (e.g. Kohonen 1990, Nova & Estévez 2014). LVQ1 training can
be summarized in terms of the following steps:

(1) Random sequential presentation of data: A single feature vector xμ with class label
yμ is randomly selected from the given data set with uniform probability.

(2) Identification of the winning prototype: The currently closest prototype, the so-
called winner w∗(xμ), abbreviated as w∗ in the following, is determined according to
(squared) Euclidean distance; it carries the class label y∗ = y(w∗(xμ)).

(3) Winner-Takes-All (WTA) update:

w∗ ← w∗ + η Ψ(y∗, yμ) (xμ − w∗) where Ψ(y, ŷ) =
{

+1 if y = ŷ
−1 else. (2.3)

In step (3), the winning prototype is moved closer to the presented feature vector if w∗

and the example carry the same class label (as indicated by Ψ = 1). If the prototype
represents a class different from yμ , it is moved away from xμ (Ψ = −1). The magnitude
of the update is controlled by the so-called learning rate η. One possible initialization
strategy is to place prototypes close to the class-conditional mean vectors in the data set.
After repeated presentations of the entire training set, the prototypes should represent
their respective class by assuming class–typical positions in feature space.

Numerous modifications of the basic LVQ scheme have been considered in the liter-
ature, see for instance (Kohonen 1990, Nova & Estévez 2014) and references therein,
mostly aiming at faster convergence or better generalization behavior. Most importantly,
approaches that are based on suitable cost-functions have been suggested, which allow
for training in terms of gradient-based or other well-known optimization schemes. Note
that LVQ1 and other heuristic schemes cannot be interpreted as descent algorithms in a
straightforward fashion.

A popular cost function algorithm is Robust Soft LVQ (RSLVQ), which can be mo-
tivated in the context of statistical models of the observed data (Seo et al. 2003). The
so-called Generalized LVQ (GLVQ) (Sato & Yamada 1996) is guided by a cost function
which can be related to the concept of large margin classifiers:

E =
∑P

μ=1 Φ(eμ) with eμ = d(wJ
μ ,xμ )−d(wK

μ ,xμ )
d(wJ

μ ,xμ )+d(wK
μ ,xμ ) . (2.4)

It is defined as a sum over all example data. Given a particular xμ , the vector wJ
μ

denotes the closest of all prototypes which carry the same label as the example. Likewise,
wK denotes the closest prototype with a label different from yμ . Popular choices for
the increasing function Φ(e) in Eq. (2.4) are the identity Φ(e) = e or the sigmoidal
Φ(e) = 1/[1 + exp(−γ e)], where γ > 0 controls its steepness (Sato & Yamada 1996).
The arguments of Φ obeys −1 � eμ � 1 and negative values eμ < 0 indicate that the
corresponding training example is correctly classified in the NPC scheme. Note that for
large γ the costs approximate the number of misclassified training data, while for small
γ the minimization of E corresponds to maximizing the margin-like quantities eμ .

A popular and conceptually simple strategy to optimize E is stochastic gradient descent
in which single examples are presented in randomized order (Robbins & Monro 1951,
Bottou 1998). In contrast to LVQ1, two prototypes are updated in each step:

wJ ← wJ − η ∂Φ(e)
∂wJ and wK ← wK − η ∂Φ(eμ )

∂wK . (2.5)

Note that if Euclidean distance is used the gradient ∂d(w,x)/ ∂w ∝ (w − x) yields
updates which move the correct (incorrect) prototype towards (away) from the example,
respectively. Hence, the basic concept of the intuitive LVQ1 is maintained in GLVQ.
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In practice, very often a decreasing learning rate η is used to ensure convergence of
the prototype positions (Robbins & Monro 1951). Alternatively, schemes for automated
learning rate adaptation or more sophisticated optimization methods can be applied (e.g.
Sra et al. 2011).

3. Unconventional distance measures and Relevance Learning
So far, the discussion focussed on Euclidean distance as a standard measure for the

comparison of data points and prototypes. This choice appears natural and it is arguably
the most popular one. One has to be aware, however, that other choices may be more suit-
able for real world data. Depending on the application at hand, unconventional measures
might outperform Euclidean distance by far. Hence, the selection of a specific distance
constitutes a key step in the design of prototype-based models. In turn, the possibility to
choose a distance based on prior information and insight into the problem, contributes
to the flexibility of the approach.

3.1. Unconventional distances
A large variety of dissimilarity measures could be employed in order to compare given
N -dimensional vectors. We mention just a few prominent alternatives to the standard
Euclidean metrics. In, for instance, (Hammer & Villmann 2005, Biehl et al. 2014, Biehl
et al. 2016), more detailed discussions and further references can be found.

Statistical properties of a given data set can be taken into account explicitly by em-
ploying the so-called Mahalanobis distance (Mahalonobis 1936). This classical measure
is a popular tool in the analysis of data sets. Duda et al. (2011) present a detailed dis-
cussion and application examples. The Mahalanobis distance can be used for comparing
two vectors x,y which are assumed to be generated according to the same distribution:

dM (x,y) =
[
(x − y)�C−1 (x − y)

]1/2
, (3.1)

where C is the covariance matrix of the data. A diagonal approximation of C would
rescale all features according to their empirical standard deviation, while replacing C by
the identity matrix obviously recovers Euclidean metrics.

The family of Minkowski distances satisfies metric properties for values of p � 1 in

dp(x,y) =
[∑N

j=1 |xj − yj |p
]1/p

for x,y ∈ IRN . (3.2)

Obviously, it includes the Euclidean measure as the special case with p = 2. Larger
(smaller) values of p put emphasis on the components xj and yj with larger (smaller)
deviations |xj − yj |. Setting p �= 2 has been shown to improve performance in several
applications, see (Biehl et al. 2007, Golubitsky & Watt 2010) for specific examples.

Note that the squared Euclidean distance can be rewritten as d(x,w)2 = (x · x− 2x ·
w + w · w). So-called kernelized distances (Schölkopf 2001) replace the inner products
x · w by a function κ(x,w):

dκ(x,w)2 = [κ(x,x) − 2κ(x,w) + κ(w,w)] . (3.3)

A proper kernel function κ can be interpreted as an inner product of transformed feature
vectors (Schölkopf 2001). Frequently, the kernel is associated with a non-linear transfor-
mation from IRN to a potentially higher-dimensional feature space.

The so-called kernel trick has become popular in the context of the Support Vector
Machine (SVM) (Taylor & Cristianini 2004, Schölkopf & Smola 2002). It exploits the
fact that the transformation itself does not have to be known explicitly. Instead it is
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possible to work with the kernel function only, which represents the non-linear mapping
implicitly. For mathematical conditions on κ which justify this approach, see e.g. (Taylor
& Cristianini 2004, Schölkopf & Smola 2002).

In SVM training one takes advantage of the fact that data which is difficult to separate
in the original feature space can become linearly separable in the high-dimensional trans-
formed space. Similarly, kernel distances can be used in the context of LVQ to translate
complex classification tasks into simpler problems in higher dimensions. Villmann et al.
(2012) provide an example in the context of face recognition.

As a last example, statistical divergences can be interpreted as measures of dissimi-
larity between densities or histograms representing the data. For example, image data is
frequently characterized by color or other histograms. Similarly, text can be represented
by frequency counts in a bag of words approach.

In the corresponding classification problems, the task could be to discriminate, for
instance, uni-modal from multi-modal histograms or to detect the presence of a charac-
teristic skewness. The Euclidean metric is often insensitive to these or similar proper-
ties. Hence, the efficient comparison of histogram data can benefit from using specific
divergence-based measures, see (Cichocki et al. 2009) for a systematic description.

For an example application of divergences in the context of classification see (Mwebaze
et al. 2011). There, it is also demonstrated that even non-symmetric divergences can be
employed properly in the context of LVQ, as long as the measure is used consistently.

3.2. LVQ training based on generalized distances
As discussed above, training prescriptions based on Euclidean metrics generically yield
prototype displacements along the vector (xμ −w) which can be related to the gradient
of the distance measure. Replacing the Euclidean distance by a general, differentiable
measure δ(xμ ,w), allows for the analogous derivation of LVQ training schemes. This is
particularly straightforward in cost function based schemes like GLVQ, cf. Eq. (2.4), but
it is also possible for the heuristic LVQ1, which we present here as an example. As a
generalization of Eq. (2.3) we obtain the WTA update

w∗ ← w∗ − η Ψ(y∗, yμ) 1
2

∂δ(w∗,xμ )
∂w∗ . (3.4)

Obviously, the winner w∗ has to be determined according to the measure δ, consistently.
Along these lines, LVQ1- or GLVQ-type update rules can be derived for quite general

dissimilarities, provided δ is differentiable with respect to the prototype positions. Note
that the formalism does not require metric properties like symmetry or the triangular
inequality. As a minimal condition, non-negativity δ(w,x) � 0 should be satisfied for
w �= x and δ(x,x) = 0.

The framework can be extended to non-differentiable measures, if differentiable ap-
proximations are available as in the case of the Manhattan distance, p = 1 in Eq. (3.2),
see (Lange & Villmann 2013) for an example. Cost function based approaches could also
employ non-differentiable measures if one resorts to alternative optimization strategies
which do not require the computation of gradients (Sra et al. 2011).

3.3. Adaptive Distances in Relevance Learning
In the previous subsections, a few alternative distance measures have been discussed. In
a given practical problem, a specific measure could be selected based on prior insights
or according to an empirical comparison of performances. The framework of Relevance
Learning allows for a significant conceptual extension of dissimilarity-based classification.
It was introduced and extended in (e.g. Hammer & Villmann 2002, Schneider et al.
2009, Schneider et al. 2010, Bunte et al. 2012) and has proven useful in a variety of
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applications, including biomedical problems and image processing tasks, see for instance
(Arlt et al. 2011, Denecke et al. 2009).

In this very elegant approach, only the parametric form of the distance measure is fixed
in advance. Its parameters are considered adaptive quantities which can be adjusted or
optimized in the data-driven training phase. The basic idea is very versatile and can
be employed in a variety of learning tasks. We present here only one particularly clear-
cut and successful example in the context of supervised learning: the so-called Matrix
Relevance LVQ for classification (Schneider et al. 2009).

As suggested also in several other schemes (e.g. Weinberger & Saul 2009, Backhaus
et al. (2012), Boareto et al. 2015), Matrix Relevance LVQ employs a generalized quadratic
distance of the form

δΛ(x,y) = (x − y)� Λ (x − y) . (3.5)

Here, the elements of the so-called relevance matrix Λ ∈ IRN ×N are considered degrees
of freedom which are optimized in the training process. Note that, while the measure
formally resembles the Mahalanobis distance, Eq. (3.1), it cannot be computed directly
from the data and its statistical properties.

Diagonal entries of Λ represent the importance of single feature dimensions in the
distance and can also account for potentially different magnitudes of the features. The
contributions of pairs of features are weighted by the off-diagonal elements, which enables
the system to reflect the interplay of different dimensions in feature space.

In order to fulfill the minimal requirement of non-negativity, δΛ(x,y) � 0, a re-
pameterization is introduced in terms of an auxiliary matrix Ω ∈ IRN ×N with

Λ = Ω�Ω, i.e. δΛ(x,y) = [Ω (x − y)]2 . (3.6)

Hence, δΛ can be interpreted as the conventional Euclidean distance after a linear trans-
formation of feature space. Note that (3.5) defines only a pseudo-metric in IRN : Λ can
become singular implying that δΛ(x,y) = 0 for particular x �= y is possible.

Several extensions and modifications of the basic idea have been considered in the lit-
erature: The restriction to diagonal matrices Λ corresponds to the original formulation of
Relevance LVQ in (Hammer & Villmann 2002), which assigns a single adaptive weight to
each feature. Rectangular (N×M , with M < N) matrices Ω can be used to parameterize
a low-rank relevance matrix. The corresponding low-dimensional intrinsic representation
of data facilitates, for instance, the class-discriminative visualization of complex data
(Bunte et al. 2012). The flexibility of the LVQ classifier is enhanced significantly when
local distances are used, i.e. when separate relevance matrices are employed per class or
even per prototype (Schneider et al. 2009).

Here we restrict ourselves to the simplest case of a single quadratic matrix Ω with Λ =
Ω�Ω defining a global distance. Gradient based updates for the simultaneous adapation
of prototypes and relevance matrices can be derived from cost functions, observing that

∂δΛ (w ,x)
∂w = Ω�Ω(x−w∗) and ∂δΛ (w ,x)

∂Ω = Ω (x−w∗) (x−w∗)� . (3.7)

Schneider et al. (2009) present the full form of the update equations based on the GLVQ
cost funtion, yielding the so-called Generalized Matrix Relevance LVQ (GMLVQ). The
extension of the heuristic LVQ1 prescription by means of relevance matrices is briefly
discussed in (Biehl et al. 2016) and its convergence behavior is analysed in (Biehl et al.
2015).

In both, GMLVQ and Matrix LVQ1, the relevance matrix is updated in order to de-
crease or increase δΛ(w∗,xμ), depending on the class labels of the winning prototypes
and the example vector. The matrix Ω can be initialized as the N -dimensional identity
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Figure 2. Visualization of the Generalized Matrix Relevance LVQ system as obtained from the
z-score transformed Iris flower data set, see Sec. 3.3 for details. Panel (a), left column, displays
the class prototypes as bar plots with respect to the four feature space components. The right
column in panel (a) shows the eigenvalue spectrum of Λ in the uppermost bar plot, the diagonal
elements of Λ, and the off-diagonal elements in a gray-scale representation. Panel (b) displays
the projection of the entire data set onto the leading eigenvectors of the relevance matrix.

or in terms of independent random elements. In order to avoid numerical difficulties, a
normalization of the form

∑
i Λii =

∑
i,j Ω2

i,j = 1 is frequently imposed (Schneider et al.
2009).

In the following we illustrate Matrix Relevance LVQ in terms of a classical data set
which is available from (Lichman 2013): We revisit the famous Iris data (Fisher 1936),
in which four features are used to represent 150 samples from three different classes,
i.e. species of Iris flowers. A simple LVQ system with one prototype per class and a
single adaptive Ω ∈ IR4×4 was trained by use of the freely available GMLVQ beginner’s
toolbox (Biehl 2014). An additional z-score transformation was applied, resulting in re-
scaled features with zero mean and unit variance in the data set. The resulting LVQ
system achieves almost perfect, error-free classification of the training data and very
good generalization behavior with respect to test set performance.

Figure 2 visualizes the obtained classifier. The left column of panel (a) displays the
prototypes after training while the right column shows the resulting relevance matrix
and its eigenvalues. As discussed above, the diagonal elements Λii can be interpreted
as the relevance of features i in the classification. Apparently, features 3 and 4 are the
most important ones in the Iris classification problem. The off-diagonal elements (lower
graph) represent the contribution of pairs of different features. Here, also the interplay
of features 3 and 4 appears to be important.

In more challenging, realistic data sets, Relevance Matrix LVQ can provide valuable
insights into the problem. The formalism has been used to identify most relevant or
irrelevant features, e.g. in the context of medical diagnosis problems: The analysis of
steroid excretion data for the classification of adrenal tumors facilitated the identification
of a discriminative subset of bio-markers as documented in (Arlt et al. 2011, Biehl et al.
2012). In the analysis of cytokine expressions, GMLVQ revealed the dominant role of
two particular markers in early stage Rheumatoid Arthritis, see (Yeo et al. 2015) for a
detailed presentation from the medical perspective.
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Nominally, the relevance matrix comprises on the order of O(N 2) adaptive parame-
ters in an N -dim. feature space. Hence, one might expect unfavorable over-fitting effects.
However, as observed empirically, relevance matrices display a strong tendency to be-
come singlar with very low rank in the course of training, see (Schneider et al. 2009) for
illustrative examples and (Biehl et al. 2015) for a theoretical analysis of this property.
This phenomenon can be understood as an intrinsic regularization which limits the com-
plexity of the distance measure and prevents over-fitting in many situations. In addition,
the low rank of Λ facilitates the discriminative visualization of labelled data sets in terms
of projections onto its leading eigenvectors. As an example, Fig. 2 displays the Iris flower
data set.

4. Summary and Outlook
The aim of this paper is far from giving a complete review of the ongoing fundamental

and application oriented research in this fascinating area of machine learning. The article
provides, at best, first insights and can serve as a starting point for the interested reader.

The presentation is centered on Kohonen’s Learning Vector Quantization. Examples
for training prescriptions are given and the use of unconventional distance measures is
discussed. As an important conceptual extension of LVQ, Relevance Learning is intro-
duced, with Matrix Relevance LVQ serving as an example.

Prototype-based models continue to play a highly significant role in putting forward
advanced machine learning techniques. We can only encourage the reader to explore
recent developments in the literature. Challenging problems, such as the analysis of
functional data, non-vectorial data or relational data, to name only very few, are currently
being addressed. At the same time, exciting application areas are being explored in a large
variety of domains.
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