
JFP 15 (1): 33–52, 2005. c© 2004 Cambridge University Press

DOI: 10.1017/S0956796804005362 Printed in the United Kingdom

33

An intuitionistic λ-calculus with exceptions

R. DAVID and G. MOUNIER

Laboratoire de Mathématiques, Université de Savoie Campus Scientifique,

73376 Le Bourget du Lac cedex, France

(e-mail: david@univ-savoie.fr, Georges.Mounier@ac-lyon.fr)

Abstract

We introduce a typed λ-calculus which allows the use of exceptions in the ML style. It is

an extension of the system AF2 of Krivine & Leivant (Krivine, 1990; Leivant, 1983). We

show its main properties: confluence, strong normalization and weak subject reduction. The

system satisfies the “the proof as program” paradigm as in AF2. Moreover, the underlined

logic of our system is intuitionistic logic.

1 Introduction

The major benefit of the “proof as program” paradigm (also known as Curry–

Howard isomorphism) is that the proof itself ensures that the program extracted is

correct. For a long time it has been restricted to intuitionistic logic. This had a major

drawback: the programs extracted from intuitionistic proofs have no mechanisms

for non local exit. However, in practical programming, these instructions play an

important role to handle exceptional situations: Catch and throw in Lisp, raise,

handle in ML or raise, try with in CAML (a variant of the ML family) are

some examples of such instructions. The call-cc (call with current continuation)

of Scheme is an even more powerful facility.

Since Griffin (1990) has shown that Felleisen’s operator C (Friedman et al., 1987)

may be typed by using classical logic, and thus has opened the proof as program

paradigm to classical logic, many type systems were proposed to extend the Curry–

Howard isomorphism: De Groote’s λ−→exn calculus (de Groote, 1995), Krivine’s λc-

calculus (Krivine, 1994), Parigot’s λµ-calculus (Parigot, 1992) or Nakano’s catch and

throw mechanism (Nakano, 1994) are some of them.

The logic “behind” these systems is classical logic, in the sense that the system

allows to prove formulas that are not provable in intuitionistic logic. The programs

extracted provide an unlimited access to the current continuation. Unlike the call-cc

of Scheme, try with in CAML or catch and throw in Lisp provides only a

restricted access to the current continuation.

None of the systems mentioned above are totally satisfactory because first order

either is missing or does not allow a correct treatment of exceptions: the proof that

gives a program satisfying the specifications is too far from intuition.

https://doi.org/10.1017/S0956796804005362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005362

34 R. David and G. Mounier

• De Groote’s λ−→exn calculus uses a ML-like mechanism to capture exceptions,

but it uses propositional logic, and it is not clear how to extend it to second

order logic.

• Nakano’s system (we have not looked at it in detail) seems to have the same

drawbacks as λ−→exn.
• Krivine’s λc-calculus uses a term C of type ∀X(¬¬X → X) that looks like the

call-cc of Scheme, but this calculus is not confluent, and thus a particular

reduction strategy (the head reduction) is needed. Moreover, the only type

preserved by reduction is ⊥.

• Parigot’s λµ-calculus is based on a proof system with several conclusions, and

thus is classic, but it is not clear how to extract programs from a proof of the

totality of a function.

The systems above have the full power of classical logic. We do not care a priori

about which logic we use. We would like a language having an exception mechanism

similar to that of CAML and such that programs can be extracted from proofs.

We started from AF2, the second order type system introduced by Krivine (1990a)

Leivant (1983), where the specification of a program is given by equations which

correspond to a particular algorithm, and we tried to add exception mechanisms

to this system while preserving its basic principle: a term computing a function is

extracted from any proof of the totality of this function.

This paper introduces a typed λ-calculus called EX2 which is an extension of

AF2 and satisfies the following properties:

• There is an exception mechanism “à la CAML”.

• The program extracted from any proof of the totality of some function

computes this function.

• A well typed program will never raise an uncaught exception. Note that this

is not the case in CAML!

• The (untyped) λ-calculus is confluent, and typed λ-terms are strongly normal-

izable.

• The system satisfies the subject reduction property. Actually, it satisfies only a

weak form of this property, but this is enough for safe programming.

• The induced logic is intuitionistic logic. This shows that intuitionistic logic is

enough to get restricted access to the current continuation.

The paper is organized as follows. In section 2 we define the syntax of EX2 terms

and the typing system. Section 3 gives some examples: we show that, by using

exceptions, we may get more efficient programs. In section 4 we state the main

properties of EX2: confluence of the reduction, strong normalization and parallel

subject reduction. We also show that the induced logic is intuitionistic logic.

The proofs of the various results are not given in this paper. The appendix gives

the main ideas, and points out the main difficulties. Complete proofs can be found

in Mounier (1999), which is available on the web page of the first author.

https://doi.org/10.1017/S0956796804005362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005362

An intuitionistic λ-calculus with exceptions 35

2 The system

2.1 The untyped calculus

Notations

1. A data type is given by a list of typed constructors. For example, the data

type of

(a) natural numbers is given by N = {0:N, S:N → N};
(b) booleans is given by Bool = {true:Bool, false:Bool};
(c) lists of elements of type N is given by L = {nil:L, cons:N × L → L}.

2. An exception is related to a data type, but we want to be able to distinguish

several exceptions on the same data type. We use indices for that: an exception

constructor (or simply an exception) is the name of a data type, possibly

indexed by a natural number. Data types indexed by distinct natural numbers

are considered as distinct exceptions: for an example, see section 3.3. In the

rest of the paper, if α is an exception and D is a data type, “α is an exception

of type D” means α = D or α = Di.

3. In the rest of the paper, D, F represents data types, α, β exceptions and L a set

(possibly empty) of exceptions. L + α represents the set L ∪ {α} in case α �∈ L.

Definition 2.1

The set of EX2 terms (also called λ-terms) is given by the following grammar:

T = x| λxT | (T T)| εα〈T 〉| τα〈T ,T 〉

where x (resp. α) ranges over variables (resp. exceptions).

Comments and notations

• To help understand the meaning of the new symbols, we give the same example

written both in EX2 (section 3.1) and CAML (section 3.2). To be short εα〈T 〉
is the way to raise an exception and τα〈T1, T2〉 catches the exception in T1 (if

any) using the filter T2.

• As usual, (u v) will often be written u v and ((u t1) · · · tn) as u t1. . . tn.

Definition 2.2

1. We define the reduction δ as the least congruence satisfying the following

reduction rules (the left member of a rule is called a redex and the right

member the reduct):

(λx u v) →δ u[x:=v]

(εα〈u〉 v) →δ εα〈u〉
τα〈λx u, v〉 →δ λx u

τα〈εα〈u〉, v〉 →δ (v u)

τα〈εβ〈u〉, v〉 →δ εβ〈u〉 for α �= β

2. t →∗
δ t′ if t′ is obtained from t by reducing some (possibly zero) δ-redexes.

3. A λ-term is normal if it contains no δ-redex.

https://doi.org/10.1017/S0956796804005362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005362

36 R. David and G. Mounier

2.2 The type system

As already mentioned, the typed calculus is an extension of AF2. For self-containment,

we recall the types of AF2.

Definition 2.3 (Types of AF2)

1. First order terms are built from variables, constant and function symbols.

2. The set F of formulas is defined by the following rules.

• If X is a n-ary predicate variable and t1, · · · , tn are first order terms then

X(t1, · · · , tn) ∈ F.

• If F,G ∈ F, then (F → G) ∈ F.

• If F ∈ F and x (resp. X) is a first order variable (resp. predicate variable)

∀xF ∈ F (resp. ∀XF ∈ F).

Definition 2.4 (Types of EX2)

1. For each exception α, let rα (resp. tα, casα) be a new unary (resp. binary, ternary)

function symbol. Actually, tα also is a kind of binder (see the comment below).

2. For first order terms, we also allow the new function symbols.

3. For formulas in F, we also allow the following atomic formulas:

• If t is a first order term and α is a exception, then Eα[t] ∈ F.

• If t is a first order term, L is a set of exceptions and D a data type, then

DL[t] ∈ F.

4. The set of EX2 types is the quotient of F by � where � is the smallest

congruence by which, for each data type D, D∅[t] is related to the formula

which, in AF2, defines the data type D.

Comments and notations

• The function symbols rα, tα and casα deal with exceptions at the level of first

order terms: rα to build exceptions, tα to catch exceptions and casα to give

names to terms which may depend on the value – exception or not – of

another term. See also Definition 2.5.

• The fact that types are quotient of formulas means, for example, that N∅[t]

and ∀X(X0, ∀y(Xy → Xs(y)) → Xt) are considered as the same type.

• Note that tα is not, strictly speaking, a binary symbol because it binds a

variable of the second argument: this will be denoted by tα(a, x → b) instead

of tα(a, b). Intuitively, x → b represents the function that maps x to b. This is,

however, not a problem because such a function cannot be applied to a term to

build another term. Note that we consider tα(a, x → b) and tα(a, y → b[x := y])

represent the same term.

• The intuition for Eα[t] and DL[t] is the following: if α is an exception of type

D, Eα[t] means that t is an exceptional value of type D. From the logical point

of view, DL+α[t] can be understood as the disjunction DL[t] ∨ Eα[t] and D∅[t]

by D[t]. From the computational point of view, this is a union type that can

https://doi.org/10.1017/S0956796804005362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005362

An intuitionistic λ-calculus with exceptions 37

Table 1. Typing rules

Name Conditions Conclusion

ax Γ contains x : A Γ � x : A

→i Γ, x : B � u : C Γ � λx u : B → C

→e Γ � u : B → C and Γ � v : B Γ � (u v) : C

∀i,1 Γ � u : A

and x does not occur free in Γ Γ � u : ∀xA
∀e,1 Γ � u : ∀xA and a is a term Γ � u : A[x:=a]

∀i,2 Γ � u : A

and X does not occur free in Γ Γ � u : ∀XA
∀e,2 Γ � u : ∀XA and F is a formula Γ � u : A[X:=F]

eq Γ � u : A[x:=a1]

and l(Γ) �a1 = a2 Γ � u : A[x:=a2]

exc Γ � u : D[a] and α is of type D Γ � εα〈u〉 : Eα[rα(a)]

prop Γ � u : Eα[a] and T is a type Γ � u : T → Eα[a]

∨i,1 Γ � u : Eα[a] Γ � u : Dα[a]

∨i,2 Γ � u : DL[a] Γ � u : DL+α[a]

∨e Γ, x : DL[a] � u : T

and Γ, x : Eα[a] � u : T

and Γ � v : DL+α[a] Γ � u[x:=v] : T

try Γ � u : DL+α[a]

and Γ � v : ∀x(F[x] → DL[b])

and α is of type F Γ � τα〈u, v〉 : DL[tα(a, x → b)]

be seen as the locative form of disjunction according to Girard’s terminology,

and our work points out an interesting use of union types. Note that union

types are more less frequent in the literature than intersection types. See the

typing rules (Table 1), and the remarks after Definition 2.6.

• Though a type is the equivalence class of a formula, in the rest of this paper

we use indifferently the words formula and type.

• As usual, A1 → (A2 → (· · · (Ak → B) · · ·)) will also be written A1, A2, · · · , Ak

→ B. ⊥ in an abreviation for ∀XX and ¬F for F → ⊥.

Definition 2.5

• An equation is (the universal closure of) a formula of the form u = v i.e.

∀X(Xu → Xv). A specification is a set of equations.

• Let Ax be the set of the following (conditional) equations:

casE :Eα[x] → casα(x, y, z) = y

casD :DL[x] → casα(x, y, z) = z (for α �∈ L).

trapE :D∅[x] → tα(rα(x), y → b) = b[y := x] (α is of type D)

trapD :DL[x] → tα(x, y → b) = x (for α �∈ L).

Comments

In these equations, the symbol = denotes the usual second-order encoding of equal-

ity, i.e. ∀X(Xa → Xb). These equations simply say that, whether we know if x is an

exception or not, we know the value of casα(x, y, z) and tα(x, y → b).

https://doi.org/10.1017/S0956796804005362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005362

38 R. David and G. Mounier

Notations

• A context Γ is a function that assigns types to λ-variables. It will be denoted

by x1:A1, · · · , xn:An.

• If Γ = x1:A1, · · · , xn:An is a context, the set of types A1, A2, · · · , An will be

denoted l(Γ) and called the logical content of Γ.

• Let r be a typing rule of Table 1. The logical rule l(r) is obtained from r

by “forgetting” the algorithmic content. For example, l(→i) is the rule: if

Γ, B �C then Γ �B → C .

Definition 2.6

Let E be a specification.

1. Let t be a λ-term and Γ be a context. t is typable of type A in the context

Γ (with respect to E) if the judgement Γ �E t:A can be obtained by using the

typing rules of Table 1. Note that the rule (eq) uses the logical notion of

consequence l(Γ) �u = v defined in the next point.

2. Let F (resp. A) be a formula (resp. a finite set of formulas). F is a logical

consequence of A (with respect to E) if F is obtained from A ∪ A x∪ E by

using the logical rules obtained from all the typing rules except the rule eq.

This is denoted by A �EF .

Remarks

1. Typing rules

• For simplicity of notation, we forget the subscript E when it is clear from

the context.

• The typing rules from (ax) to (∀e,2) are those of AF2 (Krivine, 1990).

• The rule (eq) of AF2 has been slightly modified to allow equalities with

typing conditions.

• The rule (exc) builds an exceptional value from a λ-term whose type is a

data type.

• The rule (prop) ensures the propagation of exceptions in head position: if

Γ �u : Eα[a] and Γ �v : T , we have Γ �(u v) : Eα[a], where T is any type. We

could have given a general version of this rule: Γ � u : T1, . . . , Tn → Eα[a].

It seems that this n-ary propagation rule is not a consequence of the given

rule (although it can be mimicked by performing η-expansions). Even

though this more liberal rule is aesthetically more pleasant, we choose not

to do so both for simplicity and because we do not really need it.

• The rules (∨i,1), (∨i,2) and (∨e) show that DL+α[t] is more a union of DL[t]

and Eα[t] than a disjunction since, in the premises, the same proof-term

must appear.

• These typing rules have the following consequence: if Γ, x : DL[a] �u : T

and Γ, x : Eα[a] �u : T then Γ, x : DL+α[a] �u : T .

• The rule (try) also is an elimination rule for ∨, but rather unusual.

https://doi.org/10.1017/S0956796804005362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005362

An intuitionistic λ-calculus with exceptions 39

2. The use of specifications

• First note that the rule l(eq) has been ommited in the logical rules because

it is useless: this rule follows immediately from the definition of u = v.

• Ax is a schemata of axioms: the free variables can be instantiated by any

first order terms.

• Finally, note that in the rule of AF2 corresponding to eq, only the instances

of the equations in E are allowed, whereas in the eq rule of EX2, we allow

any equation that can be proved in the system.

2.3 Reduction rules and cut elimination

The reduction rules on typed λ-terms correspond to cut elimination on the logical

side. For example, the reduction of τα〈εα〈u〉, v〉 into (v u) corresponds to the

transformation of the proof (where α is an exception of type F):

Γ �u : F[a]
(exc)

Γ �εα〈u〉 :Eα[rα(a)]
(∨i)

Γ �εα〈u〉 :DL+α[rα(a)] Γ �v : ∀x(F[x] → DL[f(x)]
(try)

Γ �τα〈εα〈u〉, v〉:DL[tα(rα(a), f)]

into the proof

Γ �v :F[a] → DL[f(a)] Γ �u :F[a]
(app)

Γ �(v u) :DL[f(a)] F[a] → f(a) = tα(rα(a), f) (trapE)
(eq)

Γ �(v u) :DL[tα(rα(a), f)]

3 Examples

In this section we first give a typical example of the use of exceptions. Let BT

be the data type of binary trees whose leaves contain natural numbers. We want

to compute the product of the leaves in such a way that, when a zero is found,

the answer is given without looking at the remaining leaves. Note that in a lazy

language such as Haskell it is possible to use the same shortcut without exceptions.

We then give a more elaborate example which shows that, to import a procedure,

it is enough to know its specification, i.e. its type.

We denote by N[x] the formula ∀X(X0, ∀y(Xy → Xs(y)) → Xx) and by Bool[x]

the formula ∀X(Xtrue → Xfalse → Xx).

We use the storage operators introduced by Krivine (1990a) to simulate the

“call by value” in the “call by name” strategy. For example, let δ = λf (f 0)

and G = λx λy (x λz (y (S z))), where 0 (resp. S) is any λ-term of type N[0] (resp.

∀x(N[x] → N[s(x)])). Then T = λn(n δ G) is a storage operator for N. The storage

operators are used here to force the propagation of exceptions.

Since, in the following examples, we only use terms such as casα(x, x, t), to simplify

notations Casα(x, t) will denote casα(x, x, t).

https://doi.org/10.1017/S0956796804005362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005362

40 R. David and G. Mounier

3.1 The product of the leaves in a binary tree

BT is defined by the formula

BT [x] : ∀X(∀l∀r(Xl,Xr → Xtree(l, r)), ∀n(N[n] → Xleaf(n)) → Xx).

The product h is defined by the specification

h(leaf(n)) = n and h(tree(l, r)) = mult(h(l), h(r))

where mult computes the product of two natural numbers.

It is easy to give a typed λ-term computing h. However, by using exceptions, we

can get a more efficient term: if a recursive call finds a leaf which contains 0, the

other parts of the tree do not have to be examined, since we know the result is 0.

The idea of the faster algorithm is thus: if a leaf contains zero, return an exception.

This exception will be propagated, and finally caught (to give 0). This new function

h′ is defined by the following specification:

f(leaf(n)) = if(test(n), rα(0), n)

f(tree(l, r)) = prod(f(l), f(r))

h′(a) = tα(f(a), x → x)

where the auxiliary functions are defined by the following specification:

prod(x, y) = Casα(x, Casα(y, mult(x, y))))

if(true, a, b) = a and if(false, a, b) = b

test(0) = true and test(s(x)) = false.

Note that we wrote f(tree(l, r)) = prod(f(l), f(r)), instead of f(tree(l, r)) = mult(f(l),

f(r)) as would be expected (and is actually done in CAML). This is because EX2 is

governed by call by name evaluation (unlike CAML). Instead of using the evaluation

mode of CAML, this makes the definition more explicit, even though it is a bit less

aesthetic.

Proposition 3.1

Assume � P : ∀x∀y(N[x], N[y] → N[mult(x, y)]) and � Z: ∀n(N[n] → Bool[test(n)]).

Let V = λl λr (T l (T r λx λy (P y x))),

U = λn ((Z n) εα〈0〉 n) and Prod = λa τα〈(a V U), λz z〉.
Then � Prod : ∀a(BT [a] → N[h(a)]).

The proof that � Prod : ∀a(BT [a] → N[h′(a)]) is a rather standard typing exercice

(see the appendix). The result follows from (1) �∀a(BT [a] → h′(a) = h(a)) using (eq).

To prove (1), it seems to be necessary to prove (2) �∀x(Eα[x] → ¬D[x]) but this

is impossible in our logic, the intuitive semantic argument is the following: it is easy

to have a model with one single point and, in this model, the result is not true!

To prove (2), an additional axiom is necessary, that we call the plurality axiom:

¬(0 = s(0)). This axiom (which is also necessary in AF2), simply ensures that there

are at least two points in the model. Note that, if there is only one point in the model,

(1) is trivial. Thus, if we could distinguish between the two cases (either there is

only one point or not) we would not need this new axiom, but this needs the axiom

A ∨ ¬A, i.e. classical logic, and we shall see in section 4 that the logic of our system

is . . . intuitionistic logic.

https://doi.org/10.1017/S0956796804005362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005362

An intuitionistic λ-calculus with exceptions 41

3.2 The same example in CAML

To help readers familiar with the use of exceptions in computer science, we give

below the corresponding program written in CAML, a functional language (Leroy &

Weis, 1993) of the ML family with exception mechanisms, and where types are auto-

matically generated. Readers will note that the CAML program and the EX2 program

are very similar.

We first recall briefly the exception mechanism in CAML.

Declare an exception. There is a predefined type exn which behaves essentially as

any type. The terms of type exn are called exceptions.

It is possible to add new constructors for the type exn: for example, the instruction

exception alpha of int creates a constructor alpha of type int -> exn.

Raise an exception. The predefined function raise has type exn -> a (for any

type a). It is used to raise exceptions:

1 + raise (alpha (2+3));;

Uncaught exception: alpha 5

When the expression raise (alpha 5) is evaluated, the exception is propagated.

If it is not caught (see below), the computation stops at the global level and the

exceptional value is printed.

Catch an exception. The predefined function try e with filter is used to catch an

exception: if e is evaluated without giving an exception, the value of e is returned.

Otherwise, the exceptional value is filtered through clauses of filter.

Example. The type of binary trees is defined by:

type tree = LEAF of int | NODE of tree * tree ;;

Type tree defined.

The product is defined by:

let rec prod = function

(LEAF n) -> n | NODE (l,r) -> (prod l) * (prod r) ;;

prod : tree -> int = <fun>

prod (NODE(NODE((LEAF 1), (LEAF 0)),(LEAF 2))) ;;

- : int = 0

The faster algorithm requires two functions: fastprod1 returns an exception if a

leaf contains 0. fastprod catches the exception and returns 0.

exception alpha of int;;

Exception alpha defined

let rec fastprod1 = function

(LEAF n) -> if (n = 0) then (raise (alpha 0)) else n

| NODE (l, r) -> (fastprod1 l) * (fastprod1 r) ;;

fastprod1 : tree -> int = <fun>

https://doi.org/10.1017/S0956796804005362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005362

42 R. David and G. Mounier

Note that, despite the type computed by Caml for the function fastprod1, this

function may raise an uncaught exception:

fastprod1 (NODE(NODE((LEAF 1), (LEAF 0)), (LEAF 2))) ;;

Uncaught exception: alpha 0

let fastprod a = try (fastprod1 a) with (alpha x) -> x ;;

fastprod : tree -> int = <fun>

fastprod (NODE(NODE((LEAF 1), (LEAF 0)), (LEAF 2))) ;;

#- : int = 0

3.3 Search in diaries

This example shows an important property of EX2: to use an imported procedure,

it is enough to know its specification, i.e. its type.

Assume we have a diary, i.e. a list of address books each one being a list of pairs

(name, phone number). We have a program (call it g) which, given a name, returns

the corresponding phone number, if the name is present in the address book and an

exception otherwise. We want a program which searches in the diary by examining

successively each of the address books.

Assume, for simplicity, that names and phone numbers are natural numbers. Let

g be a function that returns a natural number (the phone number) if the name is

found and rβ(0) otherwise (where β is an exception of type N). The natural number

0 returned by g in case the name is not found will not be used, and is thus arbitrary.

The desired function is defined by the following specification (where cons repre-

sents the addition of an element at the beginning of a list both for address books

and diaries and α is an exception of type N).

f(nil, n) = rα(0) and f(cons(l, q), n) = tβ(g(l, n), x → f(q, n))

It returns the phone number if the name is found in the diary and an exception

otherwise. Note that we use two exceptions: the first one β for the exception raised

by the function g and the second one α for the exception raised by the function f.

Let C denote the type of pairs of natural numbers. The type AdB[x] (resp. Di[x])

of address books (resp. diaries) is given by

AdB[x] : ∀X(∀y∀z(C[y], Xz → Xcons(y, z)), Xnil → Xx)

Di[x] : ∀X(∀y∀z(AdB[y], Xz → Xcons(y, z)), Xnil → Xx)

These types are the usual codings of term algebras: for example, AdB represents

the least set that contains the empty list nil and that is closed by the cons operation:

if y is in C , i.e. y is a pair of natural numbers and z is in Adb, then cons(y, z) is in

Adb.

Proposition 3.2

Assume � G : ∀l∀n(AdB[l], N[n] → Nβ[g(l, n)]).

Let t = λa λn (a V U) where V = λl λq τβ〈(G l n), λx q〉 and U = εα〈0〉.
Then � t : ∀a∀n(Di[a], N[n] → Nα[f(a, n)]).

https://doi.org/10.1017/S0956796804005362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005362

An intuitionistic λ-calculus with exceptions 43

4 The main properties of the calculus

4.1 Confluence

Theorem 4.1

The δ-reduction is confluent (even in the untyped system).

Proof

This is proved by using the standard method of parallel reduction. It can also be

shown that the δ-reduction is an orthogonal combinatory reduction system (see van

Oostrom et al., 1993), and this implies confluence. �

4.2 Strong normalization

Theorem 4.2

EX2 is strongly normalizing.

The proof uses the standard method of reducibility candidates. We only give here

the main ideas. More details are given in the appendix.

We first define a new system which consists in forgetting the first order in EX2:

this system, that we call FX2 is thus system F (Lafont et al., 1989) with the addition

of types for second order exceptions. The strong normalization of EX2 follows

immediately from the one of FX2.

For FX2, the proof follows the one of system F: we first give the definition of

the reducibility candidates and the notion of interpretation. Finally, we prove the

adequation theorem from which the strong normalization follows immediately. As

usual, a candidate of reducibility is a saturated set A such that N0 ⊂ A ⊂ N where

N is the set of strongly normalizing λ-terms and N0 is the set of λ-terms of the

form (x t1. . . tn) where x is a variable and t1, · · · , tn ∈ N. The main difficulty is the

definition of the notion of saturation: this is not immediate because it seems to need

a loop.

4.3 Subject reduction

Usually, subject reduction is easy to prove. Here the unusual rule (∨e) causes

some problems. A redex occurring in v may be duplicated in u[x:= v]. Since these

occurrences come from the same proof, subject reduction seems to need that these

redexes are reduced in the same way.

Look at the following example. Let v = (z (λt t εα〈0〉) 1) and v′ = (z εα〈0〉 1). Let

f be the function x → xx and t = If(z, rα(0), s(0)) where the function If is defined by

If(true, a, b) = a and If(false, a, b) = b.

The terms (v v) and (v′ v′) are typable of type Nα[Casα(t, f(t))] in the context

Γ = z : Bool[z]:

• Γ, y : N[x] �(y y) : N[f(x)] and thus (by ∨i,1 and casD) Γ, y : N[x] �(y y) :

Nα[Casα(x, f(x))].

• Γ, y : Eα[x] �(y y) : Eα[x], and thus (by ∨i,2 and casE) Γ, y : Eα[x] �(y y) :

Nα[Casα(x, f(x))].

https://doi.org/10.1017/S0956796804005362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005362

44 R. David and G. Mounier

• It is easy to check that Γ �v : Nα[t] and Γ �v′ : Nα[t] and thus the rule ∨e

gives the result.

It is clear that (v v) →∗
δ (v v′) and (v v) →∗

δ (v′ v). However, we do not know how

to type (v v′) or (v′ v).

We only show subject reduction for a parallel reduction, which consists in reducing

simultaneously the redexes of v duplicated in u[x:=v]. The same kind of problem

appears in Barbanera & Berardi (1993) and Pierce (1990), and was solved similarly

in Barbanera & Berardi (1993).

Open question

We do not know whether the (full) subject reduction holds for the δ-reduction.

Definition 4.3

Let t be a λ-term.

1. Let E be a set of sub-terms of t. E is primary if all the elements of E are

syntactically identical.

2. t→‖ t
′ if t’ is obtained from t by δ-reducing each element of some primary set

of redexes of t.

3. t→∗
‖ t′ if t’ is obtained from t by some (possibly zero) steps of ‖-reduction.

Note that, since a term is only defined up to α-equivalence, the syntactical identity

mentioned above also is up to α-equivalence. Also note that two sub-terms in a

primary set, since they are identical, are disjoint, and thus the ‖-reduction is well

defined and the order in which the δ-reductions are done does not matter.

Theorem 4.4

1. Assume t→∗
‖ t′ and Γ �t : A. Then Γ �t′ : A.

2. Assume Γ �t : A and t̄ is the δ-normal form of t. Then Γ �̄t : A.

Remark

The previous weak subject reduction property is enough for us to use EX2 as a proof

system for programming: it ensures that the result of a program, once completely

reduced, will have the right type.

4.4 Programming with EX2

The following theorem (which characterizes λ-terms whose type is N or an exception

in the empty context) implies that the main property of AF2 is preserved: if �E t :

∀x(N[x] → N[f(x)]) and the specification E is consistent, then t computes the

function f (i.e. for all natural number n, (t n) →∗
δ
f(n)). The result is given for N

but the same holds for any data type. To prove the consistency we have to build a

model (in a sense near from the use of this term in AF2) but, in fact, it is enough

to prove that the equations are consistent on the concerned data types (see Mounier

(1999) for more details).

Note that this also implies that, if the type of a program is N, then its execution

cannot raise an uncaught exception.

https://doi.org/10.1017/S0956796804005362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005362

An intuitionistic λ-calculus with exceptions 45

The use of the plurality axiom (see section 3.1) introduces a problem. We cannot

realize it by, typically, the identity, because then we would have to prove the

normalization for the extended system but our proof does not work, since when

we erase first order terms this axiom becomes: ∀X(X → X) → ⊥, and this is false.

We thus introduce a new constant to type it. The programs we get are not closed,

but it is not difficult to see that, because of its type, this constant cannot appear

in head position of a term whose type is a data type, and thus it is useless in the

computation.

Theorem 4.5

Assume α is an exception of type N.

1. If �t : N[a], there is a natural number n such that t→∗
δ
n = λx λf (fn x) and

�a = sn(0).

2. If �t : Eα[a] then t→∗
δ
εα〈u〉 for some u such that �u : N[b] and �a = rα(b).

3. If �t : Nα[a] then:

• either t→∗
δ
n for some n such that �a = sn(0).

• or t→∗
δ
εα〈n〉 for some n such that �a = rα(s

n(0)).

4.5 The logic of EX2

The next theorem shows that the logic of EX2 is intuitionistic logic. Denote by �F

(resp. �EX2
, �FX2

) the notion of logical consequence associated to system F (resp.

EX2 and FX2).

Theorem 4.6

Let A (resp. A) be a formula (resp. a finite set of formulas) of system F . A �EX2
A

if and only if A �FA.

This is proved by giving a translation from formulas of EX2 into formulas of

Girard’s system F (Lafont et al., 1989).

5 Conclusion and future work

We have introduced a new typed λ-calculus EX2 by adding to AF2 a mechanism

for handling exceptions. We have proved the expected properties of the system:

confluence, strong normalization and preservation of the type by reduction to the

normal form. We have shown that the logic of EX2 is intuitionistic logic.

The fundamental paradigm of AF2 (“a proof of the totality of a function is an

implementation of that function”) still holds for exceptions (“a proof that a function

raises an exception is . . . an exception”). Moreover, if a program is well typed, we

have the guarantee that its execution will not raise an uncaught exception. This is

not the case in CAML. Nevertheless, some variants of the type system of Caml have

been proposed to solve this problem (see, for instance, Pessaux (1999)). It would be

interesting to study the connections between these pure “typing” approaches with

ours, which is more oriented towards proofs.

https://doi.org/10.1017/S0956796804005362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005362

46 R. David and G. Mounier

The proof terms we obtain with our system are much more efficient than what

would be obtained by simply performing some kind of monadic transformation

(using the exception monad). This is due to the fact that (a) we use exceptions even

at the level of proofs, and (b) that DL[t] works like an union type rather than like

a disjunction (that would be more or less the result of a monadic transformation).

The program Propre introduced by Manoury & Simonot (1993) is able to construct

automatically a proof of totality of a very large class of functions defined by

equations in AF2. This program is already implemented in the proof assistant CoQ.

It will be very interesting to extend this program to EX2.

6 Appendix

6.1 Proof of propositions 3.1 and 3.2

Lemma 6.1 gives the main properties of the storage operators. Lemma 6.3 shows

how, by using a storage operator, we can extend a function from N × N into N to

exceptional values.

Definition 6.1

• Let O be a new 0-ary predicate symbol and, for each formula F, denote F → O

by ¬F .

• Let N∗[x] = ∀X(¬X0, ∀y(¬Xy → ¬Xs(y)) → ¬Xx).

Lemma 6.2

Let α be a exception.

1. � T : ∀O∀x(N∗[x] → ¬¬N[x]).

2. If Γ �t : N[n] and Γ �F : ∀x(N[x] → N[f(x)]) then Γ �(T t F) : N[f(n)].

3. �T : ∀x(Eα[x] → Eα[x]).

4. If Γ �t1 : N[a] and Γ �t2 : Eα[b] then Γ �(T t1 t2) : Eα[b].

Lemma 6.3

Let f be a function from N × N into N and assume that F is a λ-term such that

�F : ∀x∀y(N[y], N[x] → N[f(x, y)]).

Let g be the function defined by g(x, y) = Casα(x, Casβ(y, f(x, y))) and let t =

λx λy (T x (T y F)). Then � t : ∀x∀y(Nα[x], Nβ[y] → Nα,β[g(x, y)]).

Proof

First note that the order of the arguments in the type of t has been reversed with

respect to the one of F . This is due to the use of T and could be easily repaired by

changing slightly T . The same change appears in Proposition 3.1.

1. Γ �u : Nα,β[g(x, y)] where Γ = x : N[x], y : Nβ[y] and u = (T x (T y F)).

This is proved in the following way: let Γ1 = x : N[x], y : N[y] and Γ2 = x :

N[x], y : Eβ[y].

(a) Γ1 �u : Nβ[Casβ(y, f(x, y))]. From

https://doi.org/10.1017/S0956796804005362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005362

An intuitionistic λ-calculus with exceptions 47

• �T : N∗[y] → ((N[y] → A) → A) with A = N[x] → N[f(x, y)],

• x : N[x] �x : N∗[x]. Use N[x] with ¬X.

• �T : N∗[x] → ((N[x] → B) → B) with B = N[f(x, y)].

we get Γ1 �u : N[f(x, y)]. By (∨i,1) we get Γ1 �u : Nβ[f(x, y)] and by (eq),

(casD) Γ1 �u : Nβ[Casβ(y, f(x, y))]

(b) Γ2 �u : Nβ[Casβ(y, f(x, y))].

Γ2 �u : Eβ[y] follows immediately from Lemma 6.1. Again, by (∨i,2) we get

Γ2 �u : Nβ[y] and by (eq), (casE) Γ2 �u : Nβ[Casβ(y, f(x, y))]

(c) From (a) and (b) we get Γ �u : Nβ[Casβ(y, f(x, y))], then we get the result

by using again (∨i,2), (eq) and (casD).

2. ∆ �u : Nα,β[g(x, y)] where ∆ = x : Eα[x], y : Nβ[y]. This is proved in the

following way: it follows easily from Lemma 6.2 by using (prop) and (app)

that ∆ �u:Eα[x]. The result follows then by using (∨i,1), (∨i,2), (eq) and (casE).

3. The result follows from (1) and (2). �

6.1.1 Proof of Proposition 3.1

1. We first prove a : BT [a] �(a V U) : Nα[f(a)].

• �V : ∀x∀y(Nα[x], Nα[y] → Nα[prod(x, y)] is an immediate consequence of

lemma 6.1 with P and mult.

• We get �V : ∀l∀r(Nα[f(l)], Nα[f(r)] → Nα[f(tree(l, r))] by using (eq).

• �U : ∀n(N[n] → Nα[if(test(n), rα(0), n)] is easy and thus again by (eq)

�U : ∀n(N[n] → Nα[f(leaf(n))].

• We get the desired result by replacing, in BT [a], X(.) by Nα[f(.)].

2. We get a : BT [a] �τα〈(a V U), λz z〉 : N[tα(f(a), x → x)] by applying (try) to

a : BT [a] �(a V U) : N[f(a)] and we conclude

a : BT [a] � τα〈(a V U), λz z〉 : N[h′(a)] by (eq).

Lemma 6.4

Let α be a exception and assume E contains the plurality axiom. Then, �∀a(BT [a] →
h′(a) = h(a))

Proof

By induction on a, using a case analysis. Actually, a stronger induction hypothesis

is necessary. We prove the following, by simultaneous induction on a: N[f(a)] →
f(a) = h(a), Eα[f(a)] → f(a) = rα(0) and Eα[f(a)] → h(a) = 0. We will not detail

this proof, which is straightforward, but uses at many points Lemma 6.1.1 below.

The result follows then easily. �

Lemma 6.5

Let α be a exception and assume E contains the plurality axiom. Then, �∀x(Eα[x] →
¬D[x]).

Proof

We know (casE) that Eα[x] �casα(x, 0, s(0)) = 0, and (casD), and that D[x] �
casα(x, 0, s(0)) = s(0). Since the equality is transitive, Eα[x], D[x] �s(0) = 0 and

the plurality axiom gives Eα[x], D[x] �⊥. �

https://doi.org/10.1017/S0956796804005362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005362

48 R. David and G. Mounier

6.1.2 Proof of Proposition 3.2

• Let Γ = l : AdB[l], n : N[n]. Since Γ �(G l n) : Nβ[g(l, n)], using (∨i,2) we

get, Γ �(G l n) : Nα,β[g(l, n)] and it follows that Γ, z : Nα[z] �τβ〈(G l n), λx z〉 :

Nα[tβ(g(l, n), x → z)] and thus n : N[n] �V : ∀l∀q(AdB[l], Nα[f(q, n)] →
Nα[f(cons(l, q), n)]).

• It is easy to check that n : N[n] �U : Nα[f(∅, n)] and, by induction on a, that

a : Di[a], n : N[n] �(a V U) : Nα[f(a)])

• The result follows immediately.

6.2 Proof of Theorem 4.2

6.2.1 The system FX2

The λ-terms are those of EX2. The formulas are those of system F with the addition,

for each exception α (resp. data type D and finite set L of exceptions) of a constant

predicate Eα (resp. DL).

The rules are those of system F plus the following rules – we give them the name

of the corresponding rules of EX2 (where D, F are data types, α is a exception and

L is a set of exceptions such that α �∈ L).

(exc) If Γ �F u : D then Γ �F εα〈u〉 : Eα where α is an exception of type D.

(prop) If Γ �F u : Eα then Γ �F u : T → Eα where T is any type.

(try) If Γ �F u : DL+α and Γ �F v : F → DL

then Γ �F τα〈u, v〉 : DL where α is an exception of type F .

(∨i,1) If Γ �F u : Eα then Γ �F u : Dα.

(∨i,2) If Γ �F u : DL then Γ �F u : DL+α.

(∨e) If Γ, x : DL �F u : T and Γ, x : Eα �F u : T and Γ �F v : DL+α then Γ �F u[x:=v] : T .

Note that these rules are those of EX2 without first order and (∀i,1), (∀e,1), (eq) are

useless.

Definition 6.6

Let A be a formula of EX2. Its translation A0 is the formula of FX2 defined by

• X(t1. . . tn)
0 = X, Eα[t]0 = Eα and DL[t]0 = DL.

• (∀xF)0 = F0, (F → G)0 = F0 → G0 and (∀XF)0 = ∀XF0

Lemma 6.7

Assume Γ � t : A. Then, Γ0 �F t : A0

6.2.2 Reducibility candidates and interpretations

Definition 6.8

1. Let N be the set of strongly normalizing λ-terms and N0 be the set of

λ-terms of the form (x t1. . . tn) where x is a variable and t1, · · · , tn ∈ N.

2. Let Eα be the set of terms in N that reduce to a term of the form εα〈u〉.
3. A set A of λ-terms is saturated if it satisfies the following properties:

https://doi.org/10.1017/S0956796804005362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005362

An intuitionistic λ-calculus with exceptions 49

(sat1) ∀u, t1. . . tn, ∀t ∈ N if (u[x:=t] t1. . . tn) ∈ A then (λx u t t1. . . tn) ∈ A.

(sat2) For each type denotation α, ∀t1. . . tn, ∀t, v ∈ N:

if (t t1. . . tn) ∈ A and t �∈ Eα then (τα〈t, v〉 t1. . . tn) ∈ A.

(sat3) For each type denotation α, ∀v, t1. . . tn, ∀t ∈ Eα:

if, for all w such that t→∗
δ
εα〈w〉, (v w t1. . . tn) ∈ A

then (τα〈t, v〉 t1. . . tn) ∈ A.

(sat4) ∀t ∈ A, ∀t′ if t→∗
δ
t′ then t′ ∈ A.

4. The set R of reducibility candidates is the set of saturated A such that

N0 ⊂ A ⊂ N.

Remark

The choice of the saturation properties is the difficult point of the proof. In particular,

we have to mention the exceptional λ-terms but we cannot use the interpretation

|Eα| since the definition of |Eα| needs the notion of reducibility candidates. Eα may

be seen as a first approximation of |Eα|.

Proposition 6.9

N is a reducibility candidate.

We now define the interpretation of a formula: the interpretation of Dα will be

the union of the interpretations of D and Eα. We define first the sets used in the

definition of the interpretation of Eα.

Definition 6.10

1. Let α be an exception of type D. Fα is the set of λ-terms t ∈ N such that:

(a) t reduces to a λ-term of the form εα〈w〉 where w ∈ |D|
(b) t does not reduce to a λ-term of the form εα〈w〉 where w �∈ |D|

2. Let N1 be the least saturated set such that N0 ⊂ N1.

3. A set A is E-closed if ∀t ∈ A, ∀v ∈ N : (t v) ∈ A.

Remark

We believe that condition (a) above implies condition (b) but we have not been able

to prove that.

See the remark below for the definition of |D|.

Definition 6.11

An interpretation I is a function which assigns to each second order variable X a

set |X|I of λ-terms. Let I be an interpretation. I is extended to a function T �→ |T |I
from types to sets of λ-terms in the following way:

1. |A → B|I = |A|I → |B|I
2. |∀XB|I = ∩F∈R|A|I[X:=F] where I[X:=F] is the interpretation such that

|X|I[X:=F] = F and |Y |I[X:=F] = |Y |I for Y �= X.

3. |Eα| = N1 ∪ Fα

4. |DL+α| = |DL| ∪ |Eα| where D is a data type, L is a set of exceptions, and α is

a exception such that α �∈ L.

https://doi.org/10.1017/S0956796804005362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005362

50 R. David and G. Mounier

Remark

The reader might think there is a loop in the previous definitions: the interpretation

of D is needed to define Fα (cf. Definition 6.10) and Fα is needed to define the

interpretation of D (cf. Definition 6.11). This is not a loop because, for a data

type D, the definition of |D| uses only the first two rules of Definition 6.11. For

example, the interpretation of the data type N = ∀X(X → (X → X) → X) is

∩F∈R(F → (F → F) → F).

Proposition 6.12

The interpretation of any formula is a candidate of reducibility.

Proof

We first show that Fα is saturated and E-closed. We then show that |Eα| has the

same properties. �

Proposition 6.13

Let I be an interpretation. Assume Γ = x1:A1, · · · , xn:An �F u : A and ti ∈ |Ai|I (1 �
i � n). Then u[x1:=t1, · · · , xn:=tn] ∈ |A|I .

Proof

By induction on Γ �F u : A. The saturation properties of the candidates of reducibility

have been chosen for that. We only give the cases where the last rule is (prop) or (try).

The other cases are similar. For any term t, t′ will represent t[x1:=t1, · · · , xn:=tn]:

1. (prop) Assume Γ �F u : Eα. We have to show that u′ ∈ |T → Eα|I . By induction

hypothesis , u′ ∈ |Eα|I . Since |Eα|I is E-closed and |T |I ⊂ N we have |Eα|I ⊂
|T |I → |Eα|I = |T → Eα|I .

2. (try) Assume Γ �F u : Dβ,α and Γ �F v : G → Dβ where α is an exception of

type G. By induction hypothesis we have v′ ∈ |G|I → |Dβ |I and u′ ∈ |Dβ,α|I =

|D|I ∪ |Eβ |I ∪ |Eα|I .
• If u′ ∈ |D|I then u′ �∈ Eα, and thus τα〈u′, v′〉 ∈ |D|I since v′ is strongly

normalizable and |D|I satisfies sat2.

• If u′ ∈ |Eβ |I the proof is the same as in the previous case, since |Eβ |I
satisfies sat2.

• If u′ ∈ |Eα|I :
— If u′ ∈ N1. Since N1 satisfies sat2 we have τα〈u′, v′〉 ∈ N1 ⊂ |D|I ⊂

|Dβ |I .
— If u′ ∈ Fα. By definition of Fα, we know that if u′ →∗

δ
εα〈a〉 then

a ∈ |G|I and thus (v a) ∈ |Dβ |I . Since |Dβ |I satisfies sat3, it follows that

τα〈u′, v′〉 ∈ |Dβ |I . �

6.2.3 Proof of the theorem

Let I be the interpretation defined by |X|I = N for each variable. Since xi ∈
N0 ⊂ |Ai|I Proposition 6.13 shows that if x1:A1, · · · , xn:An �F u : A, then u =

u[x1:=x1 · · · xn:=xn] ∈ |A|I ⊂ N.

https://doi.org/10.1017/S0956796804005362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005362

An intuitionistic λ-calculus with exceptions 51

6.3 Proof of Theorem 4.3

It follows easily from the following lemmas. The crucial point is Lemma 6.14:

Lemma 6.14

Assume u[x:=v] →∗
‖ t′ and v is not redex-creating (i.e. v is neither λx.u nor εα〈u〉 for

some u). Then t′ = u′[x:=v′] with u→∗
‖ u′ and v →∗

‖ v′.

Lemma 6.15

Let t be a λ-term.

1. If t →δ t1, there is a λ-term t2 such that t→‖ t2 and t1 →‖ t2;

2. If t is strongly normalizable and t̄ is the δ-normal form of t then t→∗
‖ t̄.

6.4 Proof of Theorem 4.4

We only give a sketch of the proof of the first item of the theorem. The other points

are similar.

Let �t : N[a]. Then t is strongly normalizable. Its normal form t̄ is closed and,

by subject reduction, �̄t : N[a]. The proof follows the usual one: we show that t̄

must be of the form λxλf v where f : ∀y(Xy → Xs(y)) and x : X0. For that, some

lemmas are needed: for example, t̄ cannot be εα〈u〉.
We then prove, by induction on the complexity of v, that, if x : X0, f : ∀y(Xy →

Xs(y)) �v : Xa, then there exists a natural number n such that v = (fn x) and

�a = sn(0).

6.5 Proof of Theorem 4.5

A formula A of EX2 is first translated into a formula A0 of FX2 by forgetting the

first order (as in the proof of strong normalization). Then a formula A of FX2 is

translated into a formula A of system F in the following way.

Definition 6.16

1. Let A be a formula of FX2. A is defined by:

• X = X if X is a second order variable, A → B = A → B and ∀XA = ∀XA.

• Eα = D∅ = D0 if α is an exception of type D.

• DL+α = DL ∨ Eα where A ∨ B is the abbreviation of: ∀X((A → X) →
(B → X) → X).

2. Let A be a formula of EX2. Denote by A′ the formula A0.

Since, for a formula A of system F , A′ = A the theorem follows immediately from

Lemma 6.17 below.

Lemma 6.17

1. Let A (resp. A) be a formula (resp. a finite set of formulas) of EX2. If

A �EX2
A then A′ �FA

′.

2. Let A (resp. A) be a formula (resp. a finite set of formulas) of system F . If

A �FA then A �EX2
A.

https://doi.org/10.1017/S0956796804005362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005362

52 R. David and G. Mounier

Proof

The second point is immediate. For the first one, since A �EX2
A easily implies

A0 �FX2
A0, it is enough to show the result for formulas of FX2, i.e. it is enough to

show that, if A �FX2
A, then A �FA. This is done by induction on the derivation.

The only non-trivial case is when the last rule is (try). From A �FX2
DL+α and

A �FX2
G → DL, we have deduced A �FX2

DL (where α is an exception of type

G). Since G = G and DL+α = DL ∨ Eα = DL ∨ G, the induction hypothesis gives

A �FDL ∨ G and A �FG → DL from which we get A �FDL. �

References

Friedman, D. P., Duba, B., Felleisen, M. and Kohlbecker, E. (1987) A syntactic theory of

sequential control. Theor. Comput. Sci. 52, 205–237.

Barbanera, F. and Berardi, S. (1993) Extracting constructive content from classical logic via

control-like reductions. Proc. Int. Conf. Typed Lambda Calculi and Applications: LNCS 664,

pp. 45–59. Springer-Verlag.

de Groote, P. (1995) A simple calculus of exception handling. Second Int. Conf. on Typed

Lambda Calculi and Applications: LNCS 902, pp. 201–215.

Dezani-Ciancaglini, M., Cardone, F. and de’Liguoro, U. (1994) Combining type disciplines.

Ann. Pure Appl. Logic, 66, 197–230.

Griffin, T. (1990) A formulae-as-types notion of control. Proc. ACM Conf. Principle of Pro-

gramming Languages, pp. 47–58. ACM Press.

Lafont, Y., Girard, J. L. and Taylor, P. (1989) Proofs and types. Cambridge University Press.

Krivine, J.-L. (1990) Lambda-Calcul, Types et Modèles. Masson.

Krivine, J.-L. (1990a) Opérateurs de mise en mémoire et traduction de Gödel. Archive Math.

Logic, 30, 241–267.

Krivine, J.-L. (1994) Classical logic, storage operators and second order λ-calculus. Ann. Pure

Appl. Logic, 68, 53–78.

Krivine, J. L. and Parigot, M. (1990) Programming with proofs. Inf. Process. Cybern. 26(3),

149–167.

Leivant, D. (1983) Reasoning about functional programs and complexity classes associated

with type disciplines. 24th Annual Symp. on Found. of Comp. Sc., pp. 460–469.

Leroy, X. and Weis, P. (1993) Le Langage Caml. InterEditions.

Manoury, P. and Simonot, M. (1993) Des Preuves de Totalité de Fonctions comme Synthèse de

Programmes. PhD thesis, Université de Paris VII.

Mounier, G. (1999) Un λ-calcul intuitionniste avec exceptions. PhD thesis, Université de Savoie.

Nakano, H. (1994) A constructive logic behind the catch and throw mechanism. Ann. Pure

Appl. Logic, 69, 269–301.

Nour, K. (2000) Mixed logic and storage operators. Archive Math. Logic, 39, 261–280.

Parigot, M. (1992) λµ-calculus: an algorithmic interpretation of classical natural deduction.

Proc. Int. Conf. Logic Programming and Automated Reasoning: LNCS 624, pp. 190–201.

Springer-Verlag.

Pessaux, F. (1999) Détection statique d’exceptions non rattrapées en Objective Caml. PhD thesis,

Université de Paris VI.

Pierce, B. (1990) Preliminary investigation of a calculus with intersection and union types.

Internal report, Carnegie Mellon University.

van Oostrom, V., Klop, J. W. and van Raamsdonk, F. (1993) Combinatory reduction systems:

introduction and survey. Theor. Comput. Sci. 121, 279–308.

https://doi.org/10.1017/S0956796804005362 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005362

