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Summary

Based on a deterministic mutation–selection model the concept of error thresholds is critically

examined. It has often been argued that genetic information – for instance, an advantageous allele

– can be selectively maintained in a population only if the mutation rate is below a certain limit,

the error threshold, which is inversely related to the genome size. Here, I will show that such an

inverse relationship strongly depends on the fitness model. To produce the error threshold, as

given by Eigen (1971), requires that the fitness model is an extreme form of diminishing epistasis.

The error threshold, in a strict sense, vanishes as epistasis changes from diminishing to synergistic.

In the latter case even the usual definition of error thresholds becomes ambiguous. Initially, a finite

sites model has been used to describe error thresholds. However, they can also be defined within

the framework of the infinite sites model. I study both models in parallel and compare their

properties as far as error thresholds are concerned. It is concluded that error thresholds possibly

play a much less important role in molecular evolution than has often been assumed in the past.

1. Introduction

A discussion about the evolutionary role of what was

later called error threshold was initiated in the early

1970s. Underlying this discussion is a model of

biochemical replicator systems, devised by Eigen

(1971) for a description of prebiotic evolutionary

processes. A somewhat simplified version of this

model is equivalent to the deterministic population

genetical mutation–selection equation (see Crow &

Kimura, 1970, and references therein). The concept of

error thresholds translates to the question of how

large the mutation rate can be in order not to

completely eliminate an advantageous allele from the

population,whenmutation and selection are balanced.

For a finite sites model the answer may – among other

quantities – depend on the genome size, measured by

the number of sites. Error thresholds are usually

associated with an in�erse relationship between per

nucleotide mutation probability (p) and genome size

(ν). The formula given by Eigen (1971) is

ν
max

¯
logσ

p
, (1)

where σ is a so-called superiority parameter which

depends on the fitness model. The interpretation of

this equation is the following. For a given mutation

rate there is a maximal evolutionarily permissible

genome size if genetic information (in the form of an

advantageous allele) is to be maintained in the

population. As a corollary, a given sequence length

defines a maximal permissible mutation rate, the error

threshold. Based on these relations, it was argued

(Eigen & Schuster, 1979) that evolution at the early

stages of life was confronted with a catch-22 situation

(no enzymes without a large genome and no large

genome without enzymes, which enhance the rep-

lication accuracy), also named ‘ information crisis ’.

In this article I revisit the deterministic mutation–

selection model and investigate the dependency of

error thresholds on assumptions such as the underlying

fitness function or the finite (cf. Wright, 1949) versus

infinite sites model (Kimura, 1969). Both turn out to

be crucial for the existence and magnitude of error

thresholds.

Based on an infinite sites model and using discrete

time difference equations Wagner & Krall (1993)

reported a condition under which no error threshold

exists. However, their model is somewhat more

restrictive than the one used here. It allows only for

single-step mutations and considers merely fitness

functions which decrease monotonically as the number

of mutations increases. For the continuous time

model, I found results which are analogous to those of
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the former authors. Further, I treated several

generalizations of fitness functions for the finite and

infinite sites models in parallel. In particular, explicit

threshold formulae are derived. Since one of the

important characteristics of error thresholds is the

limit they set on genome size (Nee & Maynard Smith,

1990), an essential point is missed if the study of error

thresholds and their dependence on fitness functions is

restricted to the infinite sites model.

Here, I concentrate on the haploid version of the

coupled (Hadeler, 1981) mutation–selection model. It

has been used previously in this context (e.g. Wiehe et

al., 1995). It describes the dynamics of a wild-type

allele and its variants, derived by mutation, for an

infinitely large population. In this model alleles are –

for simplicity – binary nucleotide sequences with a

common length ν%¢, but which may differ by point

mutations. Furthermore, it is assumed that reverse

mutations can be neglected, and that alleles which

differ from a particular type, called wild-type in the

following, by the same number of point mutations

have identical fitness.

Afitnessmodelwhich is often adopted in discussions

of error thresholds (Swetina & Schuster, 1982; Nowak

& Schuster, 1989; Wiehe et al., 1995) is the so-called

single-peaked fitness landscape: only the wild-type is

distinguished by some fitness advantage. Any other

type, differing in as little as a single mutated site, is at

a disadvantage, expressed in its fitness 1®s. Such a

two-class model was found to be adequate, for

instance, to describe evolution of the coliphage Qβ

(Domingo et al., 1978). Other examples discussed

(Eigen & Biebricher, 1988) in this context are the

highly error-prone replication of viruses (Ortin et al.,

1980; Martinez-Salas et al., 1985) or the serial transfer

experiments of in �itro replication of RNA (Spiegel-

man et al., 1965). However, concerns about the

biological adequacy of a single-peaked model and its

more general applicability, for instance to evolution

of higher organisms, have been raised (Maynard

Smith, 1983; Charlesworth, 1990; A. S. Kondrashov,

personal communication).

Although some consideration has been given by

Eigen & Biebricher (1988) to the ‘fitness topography

of sequence space’, the dependency of error thresholds

on this topography has not been investigated. In

particular, one is left with the impression that any

fitness topography with a ‘superior master ’ allele

(Eigen & Biebricher, 1988, p. 222) might produce an

error threshold which is inversely related to genome

size.

It therefore still appears worthwhile to ask how

general error thresholds are and, if possible, to

quantify them in terms of the usual parameters.

Despite numerous studies, there is no unambiguous or

generally accepted definition of the term ‘error

threshold’. I will adhere to two characterizations

which are commonly used. One is to determine the

mutation parameter such that the equilibrium fre-

quency of the wild-type becomes zero. Alternatively,

overall population statistics may be used, such as the

average distance E of an allele from the wild-type (in

terms of number of mutations) or the index of

dispersion D, both defined below.

Mutation–selection balance had been an extensively

discussed topic long before it attracted the attention

of biochemically motivated research. Kimura &

Maruyama (1966) investigated the effect of epistasis

on the mutation load. Their interest has been in

quantifying the genetic load for different models of

selection and contrasting sexual and asexual rep-

lication. They found that diminishing epistasis pro-

duces a much higher mutational load than synergistic

epistasis, if reproduction is diploid. However, they did

not directly compare the magnitudes of mutation

rates which are permissible for the different fitness

models so as not to stall natural selection. This is done

below and it is found that the kind of epistasis also

strongly influences the (haploid) error threshold.

The model

The fundamental mutation–selection equation, in the

form of coupled mutation and selection terms, is

yd
k
¯ 3

ν

i=!

y
i
�
i
m

ki
®y

k
�a , 0%k%�, ν%¢. (2)

Here, y
k

denotes the frequency of the class of alleles

which differ from the wild-type (class 0) by exactly k

point mutations. �
k
are their associated fitness values.

The mean fitness of the population is �a ¯3ν

i=o
y
i
�
i
.

m
ki

are entries of a mutation matrix M. They describe

transitions from type i to type k. For the finite and the

infinite sites models the mutation rates have to be

defined separately. In the former case, single sites

mutate with probability p ; in the latter, p has to be

substituted by a genome mutation rate, denoted λ.

The probabilities m
ij

are from a binomial distribution

in the former case (see (3)). They are replaced by

Poisson mutation rates mW
ij

in the second case. To first-

order accuracy, p and λ are related b λ¯ νp. M has

size (ν1)¬(ν1) and entries (cf. Higgs, 1994)

m
ij
¯

1

2

3

4

0ν®j

i®j1 pi−j(1®p)ν−i, if i& j

0, if i! j.

(3)

The Poisson approximation of Mq of M has entries

m
ij
¯

1

2

3

4

e−λ
λi−j

(i−j)!, if i& j

0, if i! j.
(4)

Matrices M and Mq are asymptotically equivalent (i.e.

entries of M converge to the respective entries of Mq )
as ν becomes large and p small. When working

without reverse mutation (see m
ij

in (3)), this follows

immediately from the approximation of a binomial

distribution by a Poisson distribution. However, with

https://doi.org/10.1017/S0016672397002619 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672397002619


Error thresholds and fitness functions 129

little more effort it can be shown that it is still true

even if this condition is dropped (proof not shown).

Therefore, if ν is large, model assumptions about

reverse mutation do not have a bearing on the

existence or magnitude of error thresholds nor is it the

suppression of back mutations which distinguishes

models of Muller’s ratchet (Muller, 1964; Felsenstein,

1974) from those of error thresholds, as was previously

suggested (Nowak & Schuster, 1989).

Further general definitions are the a�erage distance

from the wild-type, given by E(p)¯3ν

i=!
iy

i
(p), and

the �ariance in distance from the wild-type V(p)¯
3ν

i=!
(i®E(p))#y

i
(p) (respectively for λ instead of p).

Derived from these, the index of dispersion D(p)¯
V(p)}E(p) is used to measure the concentration of the

population around the wild-type allele.

3. Results

(i) Single-peaked and multiplicati�e fitness functions

The single-peaked function, F
SP

, is defined by two

fitness levels : one for the wild-type, �
!
¯1, and one

for the mutants �
i
¯1®s, i&1, s" 0. Under the

multiplicative function, F
M
, the fitness values are �

i
¯

(1®s)i, i& 0. This fitness function is often associated

(Haigh, 1978; Stephan et al., 1993) with the process

known as Muller’s ratchet : the accumulation of

deleterious mutations, together with random loss of

rare alleles, leads to a ratchet-like decrease of mean

fitness of a population. Analytical expressions for the

equilibrium frequencies ya
i
and the average distance,

E{ (p), can readily be obtained for F
M

(cf. Kimura &

Maruyama, 1966, for the infinite sites case). For the

finite sites model, it is a straightforward calculation to

show that ya
i
(see Table 1) satisfy 3i

j=!
y
j
�
j
m

ij
¯ y

i
�a .

For F
SP

the frequencies ya
i
, i&1 may be ob-

tained recursively from the relation 3i

j=!
y
j
�
j
m

ij
¯

0

2

4
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Fig. 1. Left : Comparison of single-peaked (F
SP

) and multiplicative (F
M
) fitness functions for finite ν. Plot of the index of

dispersion V(p)}E(p). Parameters are s¯ 0.1 (F
M
), s¯ 0±95 (F

SP
), ν¯ 30. Right : Index of dispersion V(λ)}E(λ) for

infinite ν. Parameters are s¯ 0±1 (F
M
), s¯ 0±95 (F

SP
). The error threshold is located where the dispersion function

becomes singular (case F
SP

). Obviously, mutation has no influence on dispersion in case F
M
.

y
i
((1®s)sy

!
) ; an easy representation in closed form

is not available. However, analytical expressions for

ya
!
and E{ (p) can be derived (see Appendix). For both

fitness functions the condition

ya
!
¯ 0

is equivalent to

ya
i
¯ 0, i! ν and ya ν ¯1 (ν finite)

ya
i
¯ 0, i& 0 (ν infinite),

indicating that the equilibrium is unique in these cases

(note that the theorem which states uniqueness and

global stability of the equilibrium distribution for the

haploid mutation–selection equation (Moran, 1976)

does not a priori hold if reverse mutation is suppressed,

as in the model above). The error threshold may

therefore either be identified as the smallest p¯ p
max

(λ¯λ
max

) which yields ya
!
¯ 0 (property of a single

type) or, equivalently, via a property of the entire

population, namely

E{ (p
max

)¯ ν,

E{ (λ
max

)¯¢, (5)

for finite and infinite ν, respectively. The analytical

expressions are given in Table 1. The threshold for

finite ν and the single-peaked function F
SP

is to a first-

order approximation p
max

E s}ν (valid if rsr'1). This

coincides with the formula (1), given by Eigen (1971),

as his superiority parameter σ equals 1}(1®s) for the

single-peaked fitness function. For F
M
, a threshold

can be found if ν is finite. Interestingly, it does not

depend on ν. Furthermore, for infinite ν, both criteria

fail to detect any threshold at all. Obviously, under

multplicativity no limiting relationship exists between

genome size andmutation rate. The index of dispersion

(depicted in Fig. 1) captures the qualitative difference

between the two fitness models and its bearing on the
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Table 1. Analytical expressions for equilibrium frequencies ya
i
, a�erage

distance from wild type E{ , index of dispersion D{ and error threshold for

fitness functions F
SP

and F
M

Model F
SP

F
M

ν finite
ya
i
(p) (1®p)ν®(1®s)

s 0νi1 (p}s)i(1®p}s)ν−i

E{ (p) νp(1®p)ν−"

(1®p(ν−"®(1®s)

νp

s

D{ (p) (see Appendix) 01®
p

s1
p
max

1®(1®s)("/ν) s

ν infinite
ya
i
(λ) e−λ®(1®s)

s

e−(λ/s)
(λ/s)

i

i!

E{ (λ) λ

1®(1®s)eλ

λ

s

D{ (λ) 1®(1®λ) (1®s)eλ

1®(1®s)eλ

1

λ
max

®log (1®s) ¢

In case F
SP

entries ya
i
(p) and ya

i
(λ) refer only to i¯ 0.

error threshold. Under the multiplicative model the

index of dispersion remains bounded. Under the

single-peaked model, the index of dispersion increases

around p
max

(λ
max

) dramatically and exhibits a

singularity, if ν is infinite. The singularity reflects the

sudden loss of localization of the allele distribution.

(ii) A more general fitness function

An obvious generalization is to combine functions F
SP

and F
M
. The superposition, called F, sheds some more

light on the dependencies of the error threshold. Let

�
i
¯ t(1®s)i(1®t), (0% s, t%1). (6)

Letting t¯1 yields the multiplicative and s¯1 the

single-peaked fitness functions. s¯ 0 or t¯ 0 produce

a neutral model. For fitness functions with parameters

on the boundaries of the s–t unit square, error

thresholds can be detected using either one of the two

criteria. Assuming this is true also for parameters in

the interior, an analytical threshold formula can be

obtained as follows. At equilibrium, the wild-type

frequency satisfies

(1®p)ν ¯3
k

y
k
�
k
¯ t3

k

y
k
(1®s)k(1®t)

¯ t(1®s)ν(1®t)

since the distribution will be concentrated in class ν

once the threshold is surpassed (saturation of E(p)).

Thus, for the finite sites model one has

p
max

¯ p
max

(s, t)¯1®(t(1®s)ν(1®t))"/ν. (7)

The analogue for the infinite sites model is obtained

when one multiplies the latter equation by ν and takes

the limit. The result is

λ
max

¯λ
max

(s, t)¯®log (1®t). (8)

As expected, the limiting threshold is independent of

the multiplicative part described by the decay terms

(1®s)i.

To test the assumption that both threshold criteria

can be used equivalently, I compared the analytical

formula (7) with a numerical evaluation of the ODE

system for various parameter choices, and found that

both criteria, saturation of E and vanishing of the

wild-type, yield identical error threshold values (results

not shown).

In the finite sites case either parameter t or

parameter s predominantly characterizes the error

threshold. This depends on whether 1®t& (1®s)ν or

1®t! (1®s)ν, i.e. the structure of the component �ν,

the minimum of the fitness function, is the decisive

factor. Furthermore, the negative correlation between

error threshold and genome size is weak if the slope of

the fitness landscape around its ‘adaptive peak’ is

moderate (s small).

If νU¢, and in agreement with (8), only parameter

t plays a role. The error threshold does not depend on

whether the decay in fitness around the adaptive peak

is smooth or abrupt (s small versus s large). The error

threshold may not exist at all (t¯1). This observation,

as shown in the next section, can be generalized to

non-Fisherian fitness functions, i.e. to cases without

an unique adaptive peak.
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(iii) Strictly positi�e fitness and truncation selection

Since for large ν the quantity y
!

may not be robust

enough to detect thresholds numerically, in this section

the population statistics E(λ) and V(λ) are used to

identify possible error thresholds. The following two

examples represent possible generic cases. Let F∆
δ be

defined by

0! δ% �
i
%∆!¢ (0% i%¢) (9)

and FνW by

�
i
¯

1

2

3

4

arbitrary for i% νW

¯ 0 for i" νW .
(10)

F∆
δ contains F

SP
as a special case. FνW is a model of

truncation selection: carrying more than νW mutations

is lethal for an individual. From the equilibrium

condition

3
k

i=!

y
i
�
i
mW

ki
¯ y

k
�a , (k& 0) (11)

follows

�a E(λ)¯ �a 3
k

ky
k
¯3

k

3
k

i=!

iy
i
�
i
e−λ

λk−i

(k®i)!

3
k

3
k

i=!

(k®i) y
i
�
i
e−λ

λk−i

(k®i)!
. (12)

The two series on the right side in (12) are each

products of series. The first one simplifies to

e−λ 3
k

ky
k
�
k
±3

k

λk

k!
¯3

k

ky
k
�
k
,

the second one to

e−λ 3
k

y
k
�
k
±3

k

k
λk

k!
¯λ�a ,

which together gives

�a E(λ)¯λ�a 3
k

ky
k
�
k
. (13)

For F∆
δ , the last series is trivially bounded from below

by

3
k

ky
k
�
k
& δE(λ).

This yields

E{ (λ)&
λ�a

�a ®δ
&

λδe−λ

∆e−λ®δ
. (14)

The last inequality can be seen as follows. Let kW be (for

a fixed λ) the lowest index such that y
k
W 1 0. Then y

k
W

�
k
W mW

k
W
k
W ¯ y

k
W �a . Thus, �a ¯ e−λ�

k
W & e−λδ and �a % e−λ∆,

independent of kW . Clearly, the last expression shows a

singularity for

λ¯®log 0δ∆1 . (15)

Thus, an upper bound for the error threshold for any

fitness function of type F∆
δ is given by

λ
max

%®log 0δ∆1 . (16)

To calculate the index of dispersion more must be

known about the individual fitness assignments. The

general expression is

D{ (λ)¯
λΣ

k
k#y

k
�
k
}�a ®(Σ

k
ky

k
�
k
}�a )#

λΣ
k
ky

k
�
k
}�a

.

On the other hand, for FνW any finite λ produces E(λ)

!¢. No error threshold exists. This can easily be seen

by studying the worst case scenario �
i
¯ 0 for all i1

νW . Then �a ¯ �νW yνW and from (11) follows for k& νW

y
k
¯ e−λ

λk−νW

(k®νW )!
. (17)

The latter is independent of the particular choice for

�νW . Since y
k
¯ 0 for k! νW , by summing over k one

derives

E{ (λ)¯3
k

ky
k
¯λνW . (18)

E{ (λ) is therefore limited from above by an affine linear

function and cannot exhibit a singularity for finite λ.

The variance in this case is V{ (λ)¯λ. Therefore, the

index of dispersion in the worst case scenario has an

upper bound of 1, supporting the claim that there is

no error threshold. These results agree with the

findings by Wagner & Krall (1993). For a slightly

different model, these authors proved that error

thresholds may be produced by monotonically de-

creasing fitness functions which are bounded from

below by a strictly positive value. As shown above,

monotony is not even necessary; what matters is only

the ratio of lowest and highest fitness values.

Analogous arguments apply to the finite sites case.

An upper bound to the error threshold for F∆
δ is given

by

p
max

%1®0δ∆1
"/

ν

. (19)

For truncation selection a new property is

encountered: the two threshold criteria may yield

differing results. This fact is dealt with more

thoroughly in the following section.

(iv) Epistasis

Error thresholds depend strongly on the amount and

kind of epistasis. Let the epistatic fitness function F
E(α)

be defined by

�
i
¯ (1®s)i

α

, (20)

with α a positive parameter. One distinguishes

(a) diminishing epistasis (0!α!1),

(b) multiplicativity or absence of epistasis (α¯1),

(c) synergistic epistasis (α"1).
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F
M

and F
SP

are again special cases of the epistatic

functions : F
SP

is an extreme case of diminishing

epistasis and recovered when αU 0; F
M

corresponds to

the case when α¯1. The extreme form of synergistic

epistasis is truncation selection (α¯¢). Unfortu-

nately, for general α, no analytical solution for the

stationary frequencies ya
i

is known. However, ana-

lytical threshold formulae can still be derived. The

two threshold conditions ‘ loss of wild-type’ and

‘saturation of E(p) ’ are in general not equivalent. The

conditions coincide only if α%1. There is a simple

heuristic explanation for this. The fraction �
i
}�

i−"
is

1®s[iα®(i®1)α]O(s#). For diminishing epistasis the

expression in brackets tends to 0 as i increases. That

means additional mutations cause a smaller decline

of relative fitness than previous mutations. Thus,

maximal mutation pressure is needed to remove the

wild-type from the population. As soon as this is

accomplished the stationary distribution is concen-

trated in the most distant mutation class ν and E(p)

has saturated. For synergistic epistasis (α"1) the

situation is reversed. Each additional mutation causes

a larger decline of relative fitness. Thus, to remove

class i from the population requires stronger mutation

pressure than is needed for removal of class i®1. In

particular, the wild-type is lost long before E(p)

saturates. Therefore, one has to distinguish between

p
max

(loss of the wild-type) and the higher mutation

probability pmax (saturation of E(p)). Below are

analytical formulae for both.

To derive pmax let p be sufficiently large such that

the second-to-last mutation class is just lost by

mutation from a stationary population (any other

class, but the last, is already lost for smaller p). The

following three algebraic equations have to be satisfied

in this case:

yν−"
�ν−"

pyν �ν ¯ yν(yν−"
�ν−"

yν �ν),

yν−"
�ν−"

(1®p)¯ yν−"
(yν−"

�ν−"
yν �ν),

yν−"
yν ¯1.

The solution is

p¯
((1®s)(ν−")

α

®(1®s)να

)(1®yν−"
)

(1®s)(ν−")
α , (21)

which, for yν−"
¯ 0, yields

pmax¯1®(1®s)να
−(ν−")

α

, (α&1). (22)

On the other hand, the wild-type is already lost if

p
max

¯ s, (α&1). (23)

Eq. (23) holds for any α&1 and independently of ν.

To justify this, note that it holds for α¯1 (see above).

Letting α go to ¢ one obtains fitnesses �
!
¯1, �

"
¯

1®s and �
i
¯ 0 (i1 0,1). At equilibrium y

!
satisfies

(1®p)ν ¯ y
!
y

"
(1®s). Putting y

!
¯ 0 the latter

implies p¯1®(y
"
(1®s))"/ν. Furthermore, y

"
has to

0

0·2

0·25 0·5 0·75 1
α

pmax

0·4

0·6

0·8

1

pmax

1·25 1·5 1·75 2

Fig. 2. Error thresholds p
max

(see (23) and (25)) and pmax

(see (22)) versus epistasis parameter α. A ‘bifurcation’ of
thresholds occurs at α¯1 (absence of epistasis).
Parameters are ν¯10$ and s¯ 0±5.

satisfy (according to (2)) y
"
(1®s) (1®p)ν−"¯ y#

"
(1®s).

Thus, y
"
¯ (1®p)ν−". Inserting this into the equation

for p yields (1®p)ν ¯ (1®p)ν−"(1®s), or p¯ s. For

fitness functions of type F
E(α)

the relation α
"
!α

#

implies y
!(α

"
)

% y
!(α

#
)

(as functions of p). Now, by

continuity, it is concluded that

0¯ y
!(α=")

(p¯ s)% y
!(α)

(p¯ s)% y
!(α=¢)

(p¯ s)¯ 0.

This means y
!(α)

(p¯ s)¯ 0 for all 1%α%¢.

In agreement with the results before, (22) and (23)

coincide for α¯1 (the two threshold criteria are

equivalent for F
M
).

To treat the case of diminishing epistasis note that

the two detection criteria are equivalent (since F
SP

and F
M

both have this property, a similar continuity

argument can be invoked to prove the property for 0

!α!1). When the threshold is surpassed then �a ¯
(1®s)να

, since the distribution is then concentrated in

mutation class ν. This, together with the condition for

the wild-type frequency to satisfy y
!
�
!
m

!!
¯ y

!
�a ,

implies

(1®p)ν ¯ (1®s)να

. (24)

Solving for p leads to

p
max

¯1®(1®s)να−", (α%1). (25)

These results have been validated numerically (results

not shown). Results for the extrapolation to ν¯¢
are given in Table 2.

Most important to note about these formulae is

that the error threshold is uniquely defined (in the

sense used here) and inversely related to sequence

length ν, only if α!1. A ‘bifurcation’ occurs for α¯
1 and two threshold ‘branches’ split off (see Fig. 2).

One of them is independent of the sequence length, the

other is even positively correlated with ν. This is in

sharp contrast to the negative correlation of ν and p

observed for F
SP

and which originally stimulated the

debate about the information crisis. Furthermore,

note that the error threshold (pmax) is an increasing

function of the parameter (α) of epistasis. The lower
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Table 2. Comparison of thresholds for different fitness functions

Error threshold

Fitness function ν finite ν infinite

F
SP

(single-peaked) 1®(1®s)"/ν ®log (1®s)
F
M

(multiplicative) s ¢
F
E(α)

(epistatic) 0!α%1 : 1®(1®s)ν
α−" ¢

α"1 : (p
max

: s

pmax : 1®(1®s)ν
α
−(ν−")

α

¢

F∆
δ (arbitrary, bounded above and below)

%1®0δ∆1
"/

ν

%®log 0δ∆1
FνW (truncation selectiona) (p

max
: s

pmax : 1

¢

F (superimposed) 1®(t(1®s)ν(1®t))"/ν ®log (1®t)

For definition of the fitness functions see the text. Function F∆
δ is not unambiguously defined. In this case, only an upper

bound to a threshold can be given. Note that thresholds in the cases of finite ν refer to p (nucleotide mutation probability),
whereas in the case of infinite ν they refer to λ (genome mutation rate).
a For finite ν truncation at νW ¯1, for infinite ν the truncation point is arbitrary.

bound is given by the threshold of the single-peaked

fitness function (α¯ 0), the upper bound by the one

for truncation selection (α¯¢) ; in this latter case one

has pmax¯1.

The effect of synergistic epistasis on Muller’s ratchet

has been studied by Kondrashov (1994). He showed

that synergistic epistasis may effectively halt Muller’s

ratchet. This parallels the effect on the threshold.

Synergism can – for any mutation rate – protect the

fittest allele from extinction.

Summarizing, the results of this section show that

(a) error thresholds do not generally exist (de-

pendency on the fitness function),

(b) error thresholds are ambiguous (dependency on

the definition in terms of a population property

or that of an individual allele),

(c) error thresholds need not be negatively corre-

lated with the size of the genome (epistatic

effects).

4. Discussion

Error thresholds have originally been described for a

finite sites model, termed the quasispecies model

(Eigen & Schuster, 1979). They have been interpreted

as the minimal required replication accuracy to ensure

that heredity of self-replicating molecules at the early

stages of life does not break down. It has been

suggested that the replication process of viruses and

phages is adequately described within the quasispecies

concept and that these organisms replicate under

conditions close to an error threshold (e.g. Domingo

& Holland, 1988; Eigen & Biebricher, 1988). However,

even if one or a few types of the viral quasispecies may

be distinguished by a fitness advantage due to better

adaptation to the host environment, a full charac-

terization of the fitness function remains largely

speculative. Insight into the shape of fitness functions

associated with short sequences has been gained by

examining cases with a simple relationship between

genotype and phenotype. For instance, for tRNAs the

phenotype may be associated with the molecular

secondary structure, and folding properties of the

primary sequence into its secondary structure are

viewed as a principal determinant for the performance

(fitness) (Fontana & Schuster, 1987; Schuster et al.,

1994). Such models, reflecting sequence–structure

relations (Forst et al., 1995), show a threshold

phenomenon, closely related to that observed under a

single-peaked fitness function. These results, however,

rely mainly on theoretical models and computer

simulations, and remain to be confirmed experi-

mentally. There seems to be little biological reason to

assume that a single-peaked fitness function provides

a generally applicable model underlying the evolution-

ary dynamics across a wide spectrum of genes and

species. Whether multiplicative or epistatic models are

closer to reality may surely be questioned as well. The

latter have initially been studied with emphasis on

theoretical aspects. The view that synergistic epistasis

must be more common in nature than diminishing

epistasis has been prevalent since the 1960s (Kimura

& Maruyama, 1966, and references therein). The

discussion of the evolution of sex has often been

linked to that of the operation of Muller’s ratchet in

natural populations. Fitness models used in this

context are the multiplicative and epistatic ones (e.g.

Felsenstein, 1974; Kondrashov, 1988; Charlesworth,

1990). Experimental evidence for the operation of

Muller’s ratchet in populations of various species has

been compiled (Bell, 1988; Chao, 1990; Duarte et al.,

1992; Clarke et al., 1993). A recent study by Lynch

(1996) detects Muller’s ratchet and a gradual loss of

fitness in mitochondrial tRNAs. For many nuclear

eukaryotic genes synergistic epistasis appears to be a
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more appropriate model than a single-peaked fitness

function. For instance, some genetical disorders are

associated with an excess in the number of trimer

repeats in certain genes (e.g. the number of CTG

repeats involved in penetrance of myotonic dystrophy:

Harley et al., 1992, 1993). A suitable fitness function,

drawn over the number of trimer repeats, may be of

the synergistic epistatic or truncation selection type.

More generally, truncation selection is believed to

play an important role in the evolutionary dynamics

of repetitive sequences in eukaryotes (for a review see

Charlesworth et al., 1994).

With the conceptual dichotomy between models of

error thresholds and Muller’s ratchet (cf. the title of

Wagner & Krall, 1993) which currently exists, it

appears natural to concentrate the analysis on two

special fitness functions, which are representative of

the two models : the single-peaked (F
SP

) and the

multiplicative function (F
M
). I investigated several

extensions; first, the superposition (function F ) of

both. The single-peaked, multiplicative and the neutral

models arise as special cases of F. Furthermore,

special attention has been paid to truncation selection

and a general function with the only restriction that it

is bounded (a special case of which, again, is F
SP

). In

agreement with the finding by Wagner & Krall (1993),

they harbour the minimum requirements to distinguish

fitness functions which are error threshold free from

those which are not. Finally, the set of functions F
E(α)

provides the possibility for a unified treatment of both

models within the concept of epistasis. Two generic

cases emerge: synergistic and diminishing epistasis.

For the finite sites case, I showed that error thresholds

exist in a strict sense (inverse relationship with genome

size, uniqueness) only if epistasis is diminishing (α!
1). Any form of synergistic epistasis implies absence of

a (strict) error threshold. For the infinite sites model,

the existence of error thresholds reduces even to a

non-generic special case (α¯ 0) (see Table 2).

Despite the study by Wagner & Krall (1993) and

their proof that certain fitness functions do not

produce error thresholds, the perception that the

latter ubiquitously and independently of the shape of

fitness functions set a limit to the evolutionary

potential of a species continues to persist (Schuster,

1995, pp. 45f). Obviously, there is still a need to raise

more caution about such a viewpoint. Even recent

textbook accounts of error thresholds (Maynard

Smith & Szathma! ry, 1995) seem to overlook the fact

that the superiority parameter σ (see (1)) need not be

a constant for general fitness functions (but may itself

depend on the mutation rate), and therefore the error

threshold need not be a general phenomenon.

Furthermore, other forces, recombination for in-

stance, have a high impact on shaping the genetic

material as it is passed on from generation to

generation. Boerlijst et al. (1996) studied recombina-

tion in a viral quasi-species and its influence on the

error threshold. Nee & Maynard Smith (1990) point

out that, depending on the kind of epistasis, re-

combination can alter the error threshold. Based on

simulations, they observe that recombination together

with synergistic or diminishing epistasis increases or

decreases permissible mutation rates and genome

sizes. They suggested that the presence of recombina-

tion might allow viruses to have larger genomes and

yet avoid the pitfalls of the information crisis.

Another problem with error thresholds arises from

the lack of a generally accepted definition. Two

approaches have been taken in the past to identify

error thresholds. One is via a property of the entire

population, the other is via a property of an individual

allele. The above analysis shows that the two

definitions need not be congruent (i.e. produce the

same threshold value).Rather, the presence of epistasis

may make any definition in these terms obsolete.

The dynamics of the haploid model, treated here, is

equivalent to that of a diploid model as long as

dominance defects are absent (i.e. fitness of the

heterozygotes is intermediate between that of the

homozygotes). Qualitative new features, however,

emerge if dominance plays a role. Its impact on error

thresholds has been treated for the diploid analogue

of the single-peaked fitness function (Wiehe et al.,

1995) and, recently, for a more general fitness model

as well (Baake & Wiehe, 1996).

In a strict sense, the above deterministic analysis is

valid for an infinitely large population only. Stochastic

versions – accounting for random drift – have been

studied as well (Nowak & Schuster, 1989; Stephan et

al., 1993; Wiehe et al., 1995). The qualitative features

of the deterministic model are recovered. The presence

of random drift and – in its wake – random loss of

rare alleles may only emphasize that it is an imminent

ratchet mechanism, possibly not an information crisis,

evolution has primarily to cope with.

After all, in the light of the different fitness models

discussed above, it appears that the importance of

error thresholds as a limiting factor to molecular

evolution has been greatly overrated.

Appendix

For function F
SP

and the mutation matrix as in (3) hold

ya
!
¯max 00,

(1®p)ν®(1®s)

s 1 ,
and

E{ (p)¯
νp(1®p)ν−"

(1®p)ν−"®(1®s)
.

P. The first part follows immediately from the

equation for the wild-type

y
!
�
!
(1®p)ν ¯ y

!
�a

and the fact that for the single-peaked fitness function

�a ¯1®ssy
!
.
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As long as y
!
1 0 one has �a ¯ (1®p)ν. To calculate

E{ (p), one multiplies the equilibrium equation on both

sides by k, then sums over k to obtain

3
ν

k=!

3
k

i=!

ky
i
(1®s) 0ν®i

k®i1 pk−i(1®p)ν−k

sy
!
νp¯E(p) ± (1®p)ν.

On changing the order of summation and readjusting

summation indices the latter equation becomes

(1®s) 03
ν

i=!

y
i
3
ν−i

k=!

k 0ν®i

k 1 pk(1®p)ν−i−k

3
ν

i=!

iy
i
3
ν−i

k=!

0ν®i

k 1 pk(1®p)ν−i−k1sy
!
νp

¯ (1®s) 03
ν

i=!

y
i
(ν®i) p3

ν

i=!

iy
i1((1®p)ν®(1®s)) νp

¯ (1®s) (νpE(p) ± (1®p))((1®p)ν®(1®s)) νp

¯E(p) ± (1®p)ν.

The last equation may be solved for E(p). *
In a similar manner one can find an analytic

expression for the variance V{ (p). The ratio V{ (p)}E{ (p),

the index of dispersion, is

D{ (p)¯

(1®s®(1®p)ν) ((1®p)ν−"®(1®s) (1®νp))

(1®s®(1®p)ν−") ((1®p)ν−"®(1®s) (1®p))
,

p! p
max

.
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