Hence if OS be drawn parallel to MR , the tangent at M to $y=f(x)$, to cut PM produced at S and SS^{\prime} be taken $=\mathrm{PM}, \mathrm{PS}^{\prime}$ will $=y+x \tan \alpha$; if $S^{\prime} Q$ be joined, since $P Q=1, S^{\prime} Q$ will be parallel to the tangent at N to the curve $z=x f(x)$. The tangent required is \therefore NT, drawn parallel to $\mathrm{S}^{\prime} \mathrm{Q}$.
§9. Equations of higher degree than the 5th.
To find the real roots of an equation of the m th degree we have to find the points of intersection of one of the curves

$$
y=x^{m}-x^{m-2}, \quad y=x^{m}, \quad y=x^{m}+x^{m-2}
$$

and of a parabolic curve of degree $m-3$ at most.
A combination of this method and of the following will often simplify the solution. It consists in substituting for the curve whose equation is

$$
y=\mathrm{A} x^{n}+\mathrm{B} x^{m-1}+\ldots+\mathrm{G} x^{m-n}+\mathrm{H} x^{m-n-1}+\ldots+\mathrm{P}
$$

the curve whose equation is

$$
z=\frac{x^{m-n}\left(\mathrm{~A} x^{n}+\mathrm{B} x^{n-1}+\ldots+\mathrm{G}\right)}{\mathrm{H} x^{m-n-1}+\ldots+\mathbf{P}}
$$

and drawing the straight line $z=-1$, to cut it.
The solution of an equation of degree m may thus be reduced to the solution of equations of much lower degrees.

On the Teaching of Geometry.
By John Turner, M.A., B.Sc.

