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1. Introduction. We investigate the Dirichlet problem

−u′′ = f (t, u) + λg(t, u) a.e. in (0, 1) (1)

u(0) = u(1) = 0

under the following assumptions:

(H1) there exists d > 0 such that f, g : (0, 1) × (−ε, d + ε) → R are Caratheodory
functions, f + λg is nondecreasing with respect to the second variable in
(−ε, d + ε), ε is given positive number.

(H2) max
u∈[0,d]

|f (t, u) + λg(t, u)| belongs to L2(0, 1); f (t, 0) + λg(t, 0) �= 0.

In the literature there are many papers devoted to singular second-order differential
equations (see [1, 2, 5, 8, 9]). Most papers discuss the case when the nonlinearity is
positive in a certain neighbourhood of zero and it is sublinear with respect to the
second variable at infinity. In this paper, we consider (1) where the right-hand side
may be singular at t = 0 or t = 1. Moreover, our results will cover both sublinear and
superlinear cases at zero and/or at infinity. Our approach is based on assumptions on
the nonlinearity in the interval (−ε, d + ε) only (see Section 2). Assumptions (H1) and
(H2) allow us to obtain an existence result for our problem in each nonempty subset
Xλ of H1

0 (0, 1) ∩ H2(0, 1) such that:
(i) Xλ has property (D), namely for each u ∈ Xλ there exists u ∈ Xλ such that

−u′′ = f (t, u) + λg(t, u) a.e. in (0, 1) (D)

u(0) = u(1) = 0.

(ii) for each u ∈ Xλ, u(t) ∈ [0, d] for all t ∈ [0, 1].
In the next section we shall give two examples of Xλ satisfying (i) and (ii).
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We shall apply variational methods (as in [4, 6, 7]), thus equation (1) will be
treated as the Euler–Lagrange equation of the integral functional Jλ : Xλ → R defined
as follows:

Jλ(u) :=
∫ 1

0

1
2
|u′(t)|2 − H(t, u(t), λ)dt,

where H(t, u, λ) := ∫ u
0 (f (t, r) + λg(t, r)) dr for each (t, u) ∈ (0, 1) × [0, d] and λ ∈ R.

Our first task is to describe the numerical characterization of solutions by a minimizing
sequence of Jλ (Theorem 5). Next we apply this result to prove the existence of solution
for (1) in the set Xλ. To give the explicit definition of Xλ we use additional assumptions
e.g. (H3) or (H4), which describe the eigenvalue intervals for our problem. In the
last section we discuss the continuous dependence of solutions of (1) on functional
parameters. Precisely we show that the sequence of solutions (um)∞m=1 (corresponding
to parameters (vm)∞m=1) tends uniformly (up to a subsequence) to a certain solution
u0 of the limit problem (corresponding to parameter v0) provided that (vm)∞m=1 tends
to v0 a.e. in (0, 1). We also investigate the asymptotic behaviour of the solution of the
limit problem.

2. Existence of Xλ.

EXAMPLE 1. (with positive right-hand side of the equation) Assume (H1), (H2)
and

(H3) f + λg ≥ 0 in (0, 1) × [0, d] and the following estimations hold

0 <

∫ 1

0
(f (t, d) + λg(t, d)) dt ≤ 4d (2)

or

0 <

∫ 1

0
t(1 − t) (f (t, d) + λg(t, d)) dt ≤ d. (3)

Then we define Xλ as follows:

Xλ := {
u ∈ H1

0 (0, 1) ∩ H2(0, 1), 0 ≤ u(t) ≤ d in [0, 1]
}
.

To prove that Xλ satisfies (i) and (ii) we fix u ∈ Xλ and consider

u(t) =
∫ 1

0
G(t, s)(f (s, u(s)) + λg(s, u(s)))ds for all t ∈ [0, 1],

where G : [0, 1] × [0, 1] → [0,+∞) is Green’s function

G(s, t) :=
{

s(1 − t) for 0 ≤ s ≤ t

t(1 − s) for t ≤ s ≤ 1.

It is clear that

−u′′ = f (t, u) + λg(t, u) a.e. in (0, 1)

u(0) = u(1) = 0.
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Moreover, in the case when (2) holds we get

0 ≤ u(t) ≤ t(1 − t)
∫ 1

0
(f (s, u(s)) + λg(s, u(s)))ds

≤ 1
4

∫ 1

0
(f (s, u(s)) + λg(s, u(s)))ds ≤ d.

In the case when (3) holds we obtain

0 ≤ u(t) ≤
∫ 1

0
s(1 − s)(f (s, u(s)) + λg(s, u(s)))ds ≤ d.

In both cases 0 ≤ u(t) ≤ d in [0, 1]. �

REMARK 2. If g > 0 and f (·, d), g(·, d) belong to L1(0, 1) then conditions (H3) can
be rewritten as follows:

−
∫ 1

0
f (t, d)dt∫ 1

0
g(t, d)dt

< λ ≤
4d −

∫ 1

0
f (t, d)dt∫ 1

0
g(t, d)dt

(4)

or

−
∫ 1

0
t(1 − t)f (t, d)dt∫ 1

0
t(1 − t)g(t, d)dt

< λ ≤
d −

∫ 1

0
t(1 − t)f (t, d)dt∫ 1

0
t(1 − t)g(t, d)dt

. (5)

EXAMPLE 3. Suppose that (H1) and (H2) hold and assume

(H4)

∫ 1

0
max
u∈[0,d]

|f (t, u) + λg(t, u)|dt ≤ 4d (6)

or ∫ 1

0
t(1 − t) max

u∈[0,d]
|f (t, u) + λg(t, u)|dt ≤ d. (7)

In the case when the right-hand side of (1) can change sign we can show that
the set

Xλ := {
u ∈ H1

0 (0, 1) ∩ H2(0, 1), |u(t)| ≤ d in [0, 1]
}

has property (D) and show the existence of solution of (1) in Xλ. Of course
then the definition of Xλ gives us no information about sign of solution. I keep
working on this case.
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3. Variational principle for a minimizing sequence. We start with the auxiliary
property of the domain Xλ of the functional Jλ.

REMARK 4. Since for each u ∈ Xλ there exists u ∈ Xλ such that (D) holds, we can
state that

v(t) := u′(t) a.e. in (0, 1)

belongs to H1(0, 1) and

−v′(t) ∈ ∂uH(t, u(t), λ) a.e. in (0, 1),

which follows from property (D) and the convexity of H with respect to the second
variable. (∂uH denotes the subdifferential of H(t, ·, λ).)

From Remark 4 and the properties of the Fenchel transform we prove the
approximation of a solution by a minimizing sequence of the action functional Jλ.

THEOREM 5. Assume that (H1) and (H2) hold. Let Xλ be an nonempty set satisfying
(i) and (ii). For each sequence (um)m∈N ⊂ Xλ minimizing Jλ : Xλ → R there exists
sequence (vm)m∈N ⊂ H1(0, 1) such that

−v′
m(t) ∈ ∂uH(t, um(t), λ) = {f (t, um(t)) + λg(t, um(t))} a.e. in (0, 1) (8)

and

lim
m→∞

∫ 1

0

1
2
|vm(t)|2 + 1

2
|u′

m(t)|2 − u′
m(t)vm(t))dt = 0. (9)

Proof. Let us note that Jλ is bounded from below in Xλ. Indeed, for each u ∈ Xλ

Jλ(u) =
∫ 1

0

1
2
|u′(t)|2 − H(t, u(t), λ)dt ≥ −

∫ 1

0

∫ u(t)

0
(f (t, r) + λg(t, r)) dr dt

≥ −
∫ 1

0
u(t) max

u∈[0,d]
|f (t, u) + λg(t, u)|dt ≥ −d

∫ 1

0
max
u∈[0,d]

|f (t, u) + λg(t, u)| dt, (10)

so that −∞ < Min := inf u∈Xλ
Jλ(u) < +∞. This assertion means that for a given ε > 0

there exists m0 ∈ N such that for all m ≥ m0, Jλ(um) < ε + Min. Since (um)m∈N ⊂ Xλ,
condition (i) guarantees the existence of (um)m∈N ⊂ Xλ such that

−u′′
m(t) = f (t, um(t)) + λg(t, um(t)) a.e. in (0, 1)

um(0) = um(1) = 0.

Let us define (vm)m∈N ⊂ H1(0, 1) as follows:

vm(t) := u′
m(t) a.e. in (0, 1).

Then we get

−v′
m(t) ∈ ∂uH(t, um(t), λ)

= {f (t, um(t)) + λg(t, um(t))} a.e. in (0, 1). (11)

Thus (8) follows.
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Coming to the second part of the proof we infer, by the Fenchel equality for
L2(0, 1) � u 
→ ∫ 1

0 H(t, u(t), λ)dt, that for each m ≥ m0

Min + ε > Jλ (um) =
∫ 1

0
H∗(t,−v′

m(t), λ)dt +
∫ 1

0
um(t)v′

m(t)dt +
∫ 1

0

1
2
|u′

m(t)|2dt,

(12)
where H∗(t, v, λ) := sup

u∈R
(uv − H(t, u, λ)) for all (t, v, λ) ∈ (0, 1) × R × R.

Moreover, the definition of the Fenchel conjugate gives

Min = inf
u∈Xλ

Jλ(u) ≤
∫ 1

0

1
2
|u′(t)|2dt −

∫ 1

0
H(t, u(t), λ)dt

≤
∫ 1

0

1
2
|u′(t)|2dt +

∫ 1

0
H∗(t,−v′

m(t), λ)dt −
∫ 1

0
u′(t)vm(t)dt

for all u ∈ Xλ and further, we get for all m ∈ N

Min ≤ inf
u∈Xλ

[∫ 1

0

1
2
|u′(t)|2dt +

∫ 1

0
H∗(t,−v′

m(t), λ)dt

−
∫ 1

0
u′(t)vm(t)dt

]

=
∫ 1

0
H∗(t,−v′

m(t), λ)dt − sup
u∈Xλ

[∫ 1

0
u′(t)vm(t)dt −

∫ 1

0

1
2
|u′(t)|2dt

]
. (13)

Now we show that

sup
u∈Xλ

[∫ 1

0
u′

m(t)vm(t)dt −
∫ 1

0

1
2
|u′

m(t)|dt
]

=
∫ 1

0

1
2
|vm(t)|dt. (14)

Indeed, since vm(t) := u′
m(t) a.e. in (0, 1) for certain um ∈ Xλ, we can see that

∫ 1

0

1
2
|vm(t)|dt =

∫ 1

0
u′

m(t)vm(t)dt −
∫ 1

0

1
2
|u′

m(t)|dt

≤ sup
u∈Xλ

[∫ 1

0
u′(t)vm(t)dt −

∫ 1

0

1
2
|u′(t)|dt

]

≤ sup
z∈L2(0,1)

[∫ 1

0
z(t)vm(t)dt −

∫ 1

0

1
2
|z(t)|dt

]

=
∫ 1

0

1
2
|vm(t)|dt.

Therefore (13) leads to the conclusion that for all m ∈ N

Min ≤
∫ 1

0
H∗(t,−v′

m(t), λ)dt −
∫ 1

0

1
2
|vm(t)|2dt. (15)
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Finally (12) and (15) imply

0 ≤
(∫ 1

0

1
2
|u′

m(t)|2dt +
∫ 1

0

1
2
|vm(t)|2dt −

∫ 1

0
u′

m(t)vm(t)dt
)

=
{∫ 1

0

1
2
|vm(t)|2dt −

∫ 1

0
H∗(t,−v′

m(t), λ)dt
}

+
∫ 1

0

1
2
|u′

m(t)|2dt +
∫ 1

0
um(t)v′

m(t)dt +
∫ 1

0
H∗(t,−v′

m(t), λ)dt

≤ −Min + Min + ε = ε

for all m ≥ m0. Since ε > 0 was arbitrary, we get

lim
m→∞

(∫ 1

0

1
2
|u′

m(t)|2dt +
∫ 1

0

1
2
|vm(t)|2dt −

∫ 1

0
u′

m(t)vm(t)dt
)

= 0. �

4. Existence result.

THEOREM 6. Assume hypotheses (H1)–(H2) and suppose that Xλ is a nonempty set
satisfying (i) and (ii). Then there exists u ∈ H1

0 (0, 1) ∩ H2(0, 1) being a solution of (1)
such that

inf
u∈Xλ

Jλ(u) ≥ Jλ(u). (16)

Proof. Let us consider a minimizing sequence (um)m∈N ⊂ Xλ of Jλ. Without loss of
generality we can assume that Jλ(um) ≤ M for M > 0 sufficiently large. Now applying
(10) we obtain

M ≥ Jλ(um) =
∫ 1

0

(
1
2
|u′

m(t)|2 − H(t, um(t), λ)
)

dt ≥ −d
∫ 1

0
max
u∈[0,d]

|f (t, u) + λg(t, u)| dt.

Thus, we have the boundedness of (u′
m) in L2(0, 1), and further the boundedness of

(um)m∈N in H1
0 (0, 1). Therefore (um)m∈N (up to a subsequence) is weakly convergent

to u ∈ H1
0 (0, 1), and as a result, by the Rellich–Kondrashov theorem, (um)m∈N tends

uniformly to u (um ⇒
m→∞

u ) in [0, 1]. Moreover u ∈ C([0, 1]), u(0) = u(1) = 0 and

0 ≤ u ≤ d on [0, 1].
Our task is now to prove that u is the solution of (1). To this effect we apply

Theorem 5 to guarantee the existence of the sequence (vm)m∈N ⊂ H1
0 (0, 1) such that

−v′
m(t) = f (t, um(t)) + λg(t, um(t) a.e. in (0, 1) (17)

and

lim
m→∞

∫ 1

0

1
2
|vm(t)|2 + 1

2
|u′

m(t)|2 − u′
m(t)vm(t))dt = 0. (18)

Due to (17)

|v′
m(t)| ≤ max

u∈[0,d]
|f (t, u) + λg(t, u)| a.e. in (0, 1).
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Since max
u∈[0,d]

|f (t, u) + λg(t, u)| belongs to L2(0, 1) (assumption (H2)) we can see that

(v′
m)m∈N is bounded in L2 (0, 1). Taking into account the boundedness of (um)m∈N

in H1
0 (0, 1) and (18) we see that (vm)m∈N is bounded in L2(0, 1) which gives the

weak convergence of (vm)m∈N (up to a subsequence) in L2(0, 1).
Finally, (vm)m∈N is weakly convergent also in H1(0, 1). Applying again the Rellich–

Kondrashov theorem, we see that (vm)m∈N tends uniformly to v ∈ H1(0, 1). Now we
can calculate

0 = lim
m→∞

∫ 1

0

1
2
|vm(t)|2 + 1

2
|u′

m(t)|2 + um(t)v′
m(t))dt

≥
∫ 1

0

1
2
|v(t)|2 + 1

2
|u′(t)|2 + u(t)v′(t))dt ≥ 0.

Thus

v(t) = u′(t) a.e. in (0, 1).

From (17), we can use the weak convergence of (vm)m∈N and the uniform convergence
of (um)m∈N to obtain the following chain of equalities:

∫ 1

0
u′(t)h′(t)dt =

∫ 1

0
v(t)h′(t)dt = lim

m→∞

∫ 1

0
vm(t)h′(t)dt = − lim

m→∞

∫ 1

0
v′

m(t)h(t)

= lim
m→∞

∫ 1

0
(f (t, um(t)) + λg(t, um(t))) h(t)dt

=
∫ 1

0
(f (t, u(t)) + λg(t, u(t))) h(t)dt,

for all h ∈ H1(0, 1), where the last inequality is due to (H2) and the Lebesgue’a-
dominated theorem. Now the du Bois–Reymond lemma yields that there exists u′′ a.e.
in (0, 1) and

−u′′(t) = f (t, u(t)) + λg(t, u(t)

for a.e. t ∈ (0, 1). By the second part of (H2), u is the nontrivial solution.
As a consequence of the previous theorem and examples (1) and (3) we get the

following. �
COROLLARY 7. Assume hypotheses (H1)–(H3) (or (H4)). Then there exists u ∈

Xλ := {u ∈ H1
0 (0, 1) ∩ H2(0, 1), 0 ≤ u(t) ≤ d in [0, 1]} (or respectively u ∈ Xλ := {u ∈

H1
0 (0, 1) ∩ H2(0, 1), |u(t)| ≤ d in [0, 1]}) being a nontrivial solution of (1) such that

inf
u∈Xλ

Jλ(u) = Jλ(u).

COROLLARY 8. Under the assumptions (H1)–(H3) we have 0 < u(t) in (0, 1).

Proof. Suppose the contrary, that there exists t0 ∈ (0, 1) such that u(t0) = 0. Since
u(0) = u(1) = 0 and u ∈ C1(0, 1) ∩ C([0, 1]), Rolle’s theorem leads to the existence of
0 < t1 < t0 < t1 < 1 such that u′(t1) = u′(t1) = 0. Moreover, by the fact that u′′(t) ≤ 0
a.e. in (0, 1), we note that u′ is nonincreasing in (0, 1). Thus, assertion u′(t1) = u′(t1) =
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0 implies u′(t) = 0 for all t ∈ [t1, t1]. It is clear that applying again Rolle’s theorem
we can derive the existence of t2 and t2 such that 0 < t2 < t1 < t0 < t1 < t2 < 1 and
u′(t2) = u′(t2) = 0, which gives u′(t) = 0 for all t ∈ [t2, t2]. Iterating this process we can
construct sequences

(
tm

)∞
m=1 and (tm)∞m=1 such that u′(t) = 0 for all t ∈ [tm, tm] and⋃∞

m=1[tm, tm] = (0, 1), so that u(t) = const in (0, 1). Finally, by the boundary condition
and the continuity of u, we note that u(t) = 0 in (0, 1). This contradicts the fact that u
is nontrivial solution of our problem. �

5. Continuous dependence of solutions on functional parameters. Now we
investigate the Dirichlet problem

−u′′ = f (t, u, v) + λg(t, u, v) a.e. in (0, 1)

u(0) = u(1) = 0 (19)

where v ∈ V ⊂ L2(0, 1), under the following assumptions:
(H1v) There exists dv > 0 such that f, g : (0, 1) × (−ε, dv + ε) × R → R are

Caratheodory functions, f + λg is nondecreasing with respect to the second
variable in (−ε, d + ε), ε is given positive number.

(H2v) For all v ∈ V, max
u∈[0,d]

|f (t, u, v) + λg(t, u, v)| belongs to L2(0, 1); f (t, 0, v(t)) +
λg(t, 0, v(t)) �= 0.

Since we will consider the case when Xλ := {u ∈ H1
0 (0, 1) ∩ H2(0, 1), |u(t)| ≤ d in

[0, 1]} or Xλ := {u ∈ H1
0 (0, 1) ∩ H2(0, 1), 0 < u(t) ≤ d in [0, 1]} we need the following

additional assumptions:
(H3v) For all v ∈ V, f + λg ≥ 0 in (0, 1) × [0, dv] × R and the following estimations

hold

0 <

∫ 1

0
(f (t, dv, v(t)) + λg(t, dv, v(t))) dt ≤ 4dv

or

0 <

∫ 1

0
t(1 − t) (f (t, dv, v(t)) + λg(t, dv, v(t))) dt ≤ dv.

(H4v) For all v ∈ V, there exists 0 < dv ≤ d such that∫ 1

0
max

u∈[0,dv ]
|f (t, u, v(t)) + λg(t, u, v(t))|dt ≤ 4dv

or ∫ 1

0
t(1 − t) max

u∈[0,dv ]
|f (t, u, v(t)) + λg(t, u, v(t))|dt ≤ dv.

(H5v) There exists d > 0 such that for all v ∈ V , dv ≤ d.

THEOREM 9. Assume (H1v)–(H2v), (H4v) (or (H3v) for positive solutions) and
(H5v) and suppose that the sequence of parameters {vm}∞m=1 ⊂ V is convergent to
v0 ∈ V a.e. in (0, 1). Let us denote by um a solution (positive if (H3v) holds) of (19)
with v = vm, m = 1, 2, . . . , such that um(t) ≤ dvm for all t ∈ (0, 1). (Their existence
follows form Corollary 7.) Then there exists a subsequence, still denoted by {um}∞m=1,
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uniformly convergent to u0 which is a solution (positive if (H3v) holds) of (19) with
v = v0 and u0(t) ≤ d for all t ∈ (0, 1). Also we have

u0(t) = O(1 − t) for t → 1−,

and

u0(t) = o(φ(t)) for t → 1−,

for all functions φ ∈ C1(0, 1) such that lim
t→1−

φ(t) = 0 and lim
t→1−

φ′(t) = +∞.

Proof. We start our proof with the observation that

∫ 1

0
(u′

m(t))2dt = −
∫ 1

0
u

′′
m(t)um(t)dt

=
∫ 1

0
f (t, um, vm(t)) + λg(t, um, vm(t))um(t)dt ≤ 4d2,

which follows from the fact that um satisfies (19) a.e. in (0, 1) (with vm) and |um(t)| ≤ d in
[0, 1]. Thus {u′

m}∞m=1 is bounded in L2(0, 1), and further {um}∞m=1 (up to a subsequence)
is weakly convergent in H1

0 (0, 1) to a certain u0 ∈ H1
0 (0, 1). Applying the Rellich–

Kondrashov theorem we see that {um}∞m=1 is uniformly convergent to u0 in [0, 1].
Consequently u0 ∈ C([0, 1]), (um ∈ C([0, 1])). This implies 0 ≤ u0(t) ≤ d ∈ for t ∈ [0, 1]
and u0(0) = u0(1) = 0. Our task is now to show that u0 is a solution of (19) with v = v0.

To this end we calculate for each h ∈ H1
0 (0, 1)

∫ 1

0
u′

0(t)h′(t)dt = lim
m→∞

∫ 1

0
u′

m(t)h′(t)dt = lim
m→∞

∫ 1

0

(
−u

′′
m(t)h(t)

)
dt

= lim
m→∞

∫ 1

0
f (t, um, vm(t)) + λg(t, um, vm(t))h(t)dt.

Taking into account (H2v) and using the Lebesgue’a dominated theorem one sees that

lim
m→∞

∫ 1

0
f (t, um(t), vm(t)) + λg(t, um(t), vm(t))h(t)dt

=
∫ 1

0
f (t, u0(t), v0(t)) + λg(t, u0(t), v0(t))h(t)dt.

Finally, for each h ∈ H1
0 (0, 1) the following equality holds

∫ 1

0
u′

0(t)h′(t)dt =
∫
0

1

f (t, u0(t), v0(t)) + λg(t, u0(t), v0(t))h(t)dt.

Now, the du Bois–Reymond Lemma leads to the conclusion that

−u′′(t) = f (t, u0(t), v0(t)) + λg(t, u0(t), v0(t)) a.e. in (0, 1).

Summarizing, u0 ∈ H1
0 (0, 1) ∩ H2(0, 1), 0 ≤ u0(t) ≤ d in [0, 1] and satisfies (19) a.e. in

(0, 1) in the case when v = v0. As in Corollary 8, we can show 0 < u0(t) for all t ∈ (0, 1).
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Employing the approach similar to that in the paper [3] we investigate the asymptotic
behaviour of u0. To this end we have to note that u0 satisfies

u0(t) =
∫ 1

0
G(t, s)(f (s, u0(s)) + λg(s, u0(s)))ds.

Thus ∫ 1

0
s(f (s, u0(s)) + λg(s, u0(s)))ds = − lim

t→1−
u′

0(t) = lim
t→1−

u0(t)
1 − t

0 = lim
t→1−

u′
0(t)

ϕ′(t)
= lim

t→1−

u0(t)
ϕ(t)

for each φ ∈ C1(0, 1) such that lim
t→1−

φ(t) = 0 and lim
t→1−

φ′(t) = +∞. �

EXAMPLE 10. For each m = 1, 2, . . . , the Dirichlet problem

−u′′(t) = 1

8 4
√

t
(u(t))5 + λ

(
1 + t

1 + m2t2

)
u(0) = u(1) = 0, (20)

with 0 < λ ≤ 8
6 , possesses at least one positive solution um such that um(t) ≤ 2.

Moreover, there exists at least one positive solution u0 for the limit problem

−u′′(t) = 1

8 4
√

t
(u(t))5 + λ

u(0) = u(1) = 0, (21)

such that (um)m tends uniformly (up to a subsequence) to u0 in [0, 1].

Proof. It is easy to note that for each v ∈ V := {1 + t
1+m2t2 , m = 1, 2, . . .} ∪ {1} the

functions

f (t, u, v) = 1

8 4
√

t
(u(t))5 and g(t, u, v) = v

satisfy assumptions (H1v)–(H2v) and (H5v) with dv = d = 2, ε = 0.1 and f + λg is
increasing with respect to the second variable. Thus, we have to show only that one of
the inequalities from (H3) also holds. To this end we note

∫ 1

0
max
u∈[0,2]

[
1

8 4
√

t
(u(t))5 + λ

(
1 + t

1 + m2t2

)]
dt

≤
∫ 1

0

4
4
√

t
dt + 2λ ≤ 8.

Now taking into account the fact that (1 + t
1+m2t2 )∞m=1 tends uniformly to 1 in [0, 1], we

can apply Theorem 9 and see that the sequence (um)m of solutions (20) tends uniformly
(up to a subsequence) to u0 in [0, 1], where u0 is positive bounded solution for (21) �
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EXAMPLE 11. Let us consider the sequence of problems

−u′′(t) = a(t) (sin t)8

4
√

t

(
eu(t) + λ

(u(t))4(cos t)2

(2 − u(t))(3 + u(t))

)√
arctg2(t)

m2
+ 4

√
t a.e. in (0, 1)

u(0) = u(1) = 0 (22)

for all m = 1, 2, . . . , 0 < λ < 35.36 and a ∈ L∞(0, 1), 0 < a(t) < 1 for a.e. t ∈ (0, 1).
Then for each m there exists a positive solution um such that um(t) ≤ 1, 5. Moreover
there exists at least one positive solution u0 for the limit problem

−u′′ = a(t)
(sin t)8

4
√

t

(
eu + λ

u4(cos t)2

(2 − u)(3 + u)

)
8
√

t a.e. in (0, 1) (23)

u(0) = u(1) = 0

such that (um)m tends uniformly (up to a subsequence) to u0 in [0, 1].

Proof. Let V := (vm)∞m=1 ∪ {v0}, with

vm =
√

arctg2(t)
m2

+ 4
√

t and v0 = 8
√

t.

We start the proof with the observation that (vm)∞m=1 converges uniformly to v0 in
[0, 1]. Our task is now to show that for each v ∈ V, (H1v)–(H3v) and (H5v) hold with
dv = d = 1.5. First we note that

f (t, u, v) = a(t)
(sin t)8

4
√

t
euv and g(t, u, v) = a(t)

(sin t)8

4
√

t
u4(cos t)2

(2 − u)(3 + u)
v (24)

are measurable in t and continuous with respect to the pair (u, v) in [−0.1, 1.6] × R.

Since for each v ∈ V

d
du

((f (t, u, v) + λg(t, u, v)))

= a(t) (sin t)8

4
√

t

(
eu + λ(cos t)2u3

(−2u2 − 3u + 24
)

(−u2 − u + 6
)2

)
v > 0

for (t, u) ∈ (0, 1) × (−0.1, 1.6), we see that f (t, u, v) + λg(t, u, v) is increasing with
respect to u in (−0.1, 1.6)‘. To show that for all v ∈ V, t 
→ max

u∈[0,d]
|f (t, u, v(t)) +

λg(t, u, v(t))| belongs to L2(0, 1), it suffices to use the estimation

max
u∈[0,d]

|f (t, u, v(t)) + λg(t, u, v(t))| = f (t, d, v(t)) + λg(t, d, v(t))

≤
(

9
4
λ + e

3
2

)√
1
4
π2 + 1

1
4
√

t
.

Finally we get (H1v)–(H2v) satisfied. Our task is now to prove that (H3v) follows.
To this end we note, by (24), that for all v ∈ V, f + λg ≥ 0 in (0, 1) × [0, 1.5] × R.
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Moreover for all m = 1, 2, . . .∫ 1

0
max
u∈[0,d]

(f (t, u, vm(t)) + λg(t, u, vm(t))) dt

≤
∫ 1

0

(sin t)8

4
√

t

(
eu + λ

u4(cos t)2

(2 − u)(3 + u)

) √
arctg2(t)

m2
+ 4

√
tdt

≤
√

π2

4m2
+ 1

∫ 1

0

(sin t)8

4
√

t

(
e

3
2 + λ

( 3
2

)4( 1
2

) ( 9
2

)
)

dt

≤
√

π2

4
+ 1

(
e

3
2 + λ

( 3
2

)4( 1
2

) ( 9
2

)
) ∫ 1

0

(sin t)8

4
√

t
dt

= 0.160 62λ + 0.319 93 < 6.

In the same way we see that∫ 1

0
max
u∈[0,d]

(f (t, u, v0(t)) + λg(t, u, v0(t))) dt ≤ 6.

Finally, we see that the assumptions of Theorem 9 are satisfied. Thus we derive that
(um)m tends uniformly (up to a subsequence) to u0 in [0, 1], where u0 is positive bounded
solution for (23). �
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9. H. Lü, D. O’Regan and R. P. Agarwal, Existence to singular boundary value problems
with sign changing nonlinearities using an approximation methods approach, Appl. Math. 52
(2007), 117–135.

https://doi.org/10.1017/S0017089510000716 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000716

