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Abstract

The main aim of this paper is to derive a condition whose satisfaction ensures
that the Euler-Lagrange equations of a non-linear scale covariant Lagrangian
are satisfied by the metric of a space reciprocal to an arbitrary static Einstein
space.

1. Introduction

In an earlier paper [1], hereafter referred to as N, the possibility of finding r-,
invariant non-linear Lagrangian densities 2, that is, Lagrangian densities unaffected
by the replacement of a given static metric by its reciprocal [2], was examined.
Thus, let greek indices go over the range 1,2,...,«, whilst roman indices go over
the same range with one particular, fixed value excluded which is henceforth taken
to be n without loss of generality. In appropriate coordinates the metric then
satisfies the conditions gjn = 0, g^ „ = 0 and the metric reciprocal to it is

y,(0nJ"1), g:=2/(n-3). Evidently if the "field equations"
= 0 are satisfied by the static metric g^ they will also be satisfied by the

reciprocal metric g^, granted that 2 is r-invariant. In principle the situation
would obtain also if 2 were merely r-semi-invariant, if fi[gpv] differed from
£[#,«] by an ordinary divergence. It is, however, not fruitful to contemplate this
possibility in the present context.

In N it was shown that the Lagrangian density

21 = \g(R2-2R^R"v)\i (1-1)
is /--invariant and it has every appearance of being unique except to the extent
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that the sum £2 = 91 —[«/(«—2)]* £j is /--semi-invariant. It was further shown
that the equations <5£2/̂ ff̂ v = 0 are satisfied by the metric tensor reciprocal to
that of an arbitrary static Einstein space. It is this latter result which is to be
generalized in the present paper by inferring the existence of a wide class of
Lagrangian densities £ such that the equation SQ/Sg^ = 0 are satisfied by the
metric reciprocal to that of an arbitrary static Einstein space. The latter itself will
also satisfy these equations provided a further condition is satisfied by 2.

2. Allowed Lagrangians. Scale weight

The only Lagrangians to be contemplated are those which are composed of the
mixed Ricci tensor RJ alone, that is, the uncontracted components of the Riemann
tensor do not appear. The RJ may be considered as the elements of an nxn
matrix R. Then I, is a function of the invariants

/ , : = t r ( R 0 , (2.1)

where tr denotes the trace. Because of the operation of the Cayley-Hamilton
theorem the "elementary invariants" Ir (r > n) are functions of the Im (m =$ n).
Accordingly

/ 2 , . . . , / n ) . (2.2)

Under a scale transformation, that is, the multiplication of g^v by a constant
(positive) factor a, R goes into a~l R, Is into a"s/s and so

£- ,L(a- 1 / 1 ,a - 2 / 2 , . . . , a -" / n ) . (2.3)
At the same time

w := | g |* := | det g^ |* -• a"'2 w.

A Lagrangian or Lagrangian density will be said to be scale covariant and to
have scale weight a if under a scale transformation it merely takes the factor a""
It is scale invariant when a = 0. Note that if L has the definite scale weight a

isIs^=aL. (2.4)

3. Einstein spaces and scale invariant Lagrangians

Let the metric gnv be specifically that of a (non-special) Einstein space so that

-Rpv = ^ » • 0* = constant # 0). (3.1)
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(3.1) may be looked upon as the Euler-Lagrange equations of the variational
principle

S\[R-(n-2)X]wdx=0. (3.2)

For further use set

i wdx =: A, (3.3)
j

so that (3.2) implies that

w8Rdx= -2/A. (3.4)

Throughout, the sign = indicates that equality holds when (3.1) obtains and
likewise quantities distinguished by an asterisk are to be thought of as evaluated
by using (3.1). For example,

/*=nAs. (3.5)

Bearing (2.2) in mind and writing Ls: = dLjdIs,

2dx = L*A+ £ L* wdlsdx.

Now
Sls=StT (Rs) ^

In view of (3.4) it follows that

8 fi<*x = ( I * - 2 f sA 'LMA. (3.6)

If £ is scale invariant (2.3) shows that one must have

of2 Lfcx-1/„...,a-/,) =£(/„...,/„), (3.7)

which implies that
Z (3.8)

and, in particular, from (3.5), that

£>;isL*=iL*. (3.9)

Inspection of (3.6) thus leads to the conclusion that the Euler-Lagrange equations
of a scale-invariant Lagrangian density are satisfied by the metric of an arbitrary
Einstein space. This known result [3] will be referred to again in Section 7.
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4. The reciprocal Lagrangian

Suppose now that g^ is static (with respect to x") and contemplate the metric
g^ reciprocal to it. From N(4.1)

K{=f-2*(R{+q8JT), R« = -f-2<>T, R=f-2"{R+2qT). (4.1)

Here f2 := e2t := gnn and T = / - ' • / , where D / i s the contracted second co-
variant derivative of / , denned in the Vn_x whose metric tensor is gtJ. If
Is:= tr(Rs), then

fls"ls = tr (R' + qTl)+(-l)s T, (4.2)

where R' is the matrix whose elements are R{. The first term on the right of (4.2)
is, with /0 : = n,

(

Thus

(4.3)

When (3.1) obtains, T* == (7? )̂* = A. Using also (3.5) it follows from (4.3) after
a little simplification that

;* =f-*«X'[(n-lHq + lYH-in (4-4)

It is convenient to write

l.=f-2«l. (4.5)
and

+( - l ) s . (4.6)

The reciprocal Lagrangian is

Let it now be assumed that Z. has the definite scale weight p. Then

Bearing in mind that w =f2qw it follows that

£ =y2(i-p)i/£
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Accordingly, choosey = 1, so that

S = £. (4.7)

5. The variation of \2dx

In view of (4.7),

<5 I fldx = L*A + £ I f f wSl.dx. (5.1)

As regards the second term on the right, one has from (4.3,5)

fWSlsdx = | w | E fj«s-'[As-W,)*+(s-r)2!-r-'/,'

Here one has to insert (3.5) and

wdlrdx = -2rArA, w<5rdx = - M . (5.2)

This leads directly to

1 + ( - l ) s ] AsA=:-ysA
!A (5.3)

say. (5.1) thus becomes

J ( t ) (5.4)5 J fi rfx = (t* - t y, V 4*) A.

6. The main result derived

According to (5.4), the variation of j£ dx will vanish if the factor multiplying
A on the right vanishes, that is to say,
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Here I has been set equal to unity since it disappears from the equation because
of the assumed scale weight unity of L; L(i) stands for L(i1,i2,-.,in); and the is

are not to be regarded as standing for the numbers given by (4.6) until after the
differentiations have been carried out. Equation (6.1) may be written

t m~1 = L(i)- (6-2)

However, since L has the scale weight a = 1, one has from (2.4) that

sis—^=L(i). (6.3)

Upon using this equation in (6.2) the latter reduces to

£ ( - l ) I s ^ = L(0. (6.4)

One thus has the desired result that, if the Lagrangian UJU ...,/„) of scale weight
unity satisfies the condition (6.4), then the field equations dLjSg^ = 0 are satisfied
by the metric of a space reciprocal to an arbitrary static Einstein space.

7. Miscellaneous remarks

(a) As mentioned in Section 1, if

L=/ 1 +a( / J -27 2 )* a = - [ n / ( n - 2 ) ] * (7.1)

then SL/Sg^ = 0 when g^ is the metric reciprocal to that of an arbitrary static
Einstein space. Evidently L has the scale weight required for the applicability of
the result of Section 6. Thus

whence (6.4) becomes in particular

* 1 0. (7.2)

Here one now has to insert

q, i2 =

After some manipulation it turns out that

« = -[(3<?+2)/(<7+2)]* = - [ « / ( « - 2 ) ] * ,

in agreement with (7.1).

(b) According to iv", in the case of the Lagrangian (7.1), the equations
= 0 are satisfied also by the metric of an arbitrary Einstein space. Now
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the scale weight of L is 1, whereas that the the Lagrangians contemplated in
Section 3 was \n. The conflict is only apparent: (3.8) is a sufficient but not a
necessary condition. In fact it is only necessary that (3.9) should be satisfied.
That L has a = 1 is compatible with (3.9) if L satisfies the additional condition
L* = 0, that is

L(n,n,...,n)=0, (7.3)

and this is indeed the case for the Lagrangian (7.1).
(c) In this subsection it will suffice to make the special choice n = 4. Then one

may think of the Lagrangian

L = A-16/2/57, (7.4)

as the "simplest" rational Lagrangian of the kind under consideration—rational in
the sense that it is a rational function of the invariants 7S. It satisfies (6.3) and (6.4),
but not (7.3). To accommodate the latter as well one has to add at least one
further term on the right of (7.4). Indeed, an example of a rational Lagrangian
which satisfies (7.3) as well is

L = 71-672//1 + 8/3/7j. (7.5)

On the other hand,

L = 11 -16a/2/57! + 64(a - 1 ) 73/77f,

where a is an arbitrary constant, is an example of a one-parameter family of
rational Lagrangians all of which satisfy (6.3) and (6.4).
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