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1. Introduction. Geometrically, a graph is a collection of points (or 
vertices) together with a set of edges (or curves) each of which joins two distinct 
vertices of the graph, and no two of which have points in common except 
possibly end points. Two given vertices of the graph may be joined by no edge 
or one edge, but may not be joined by more than one edge. From an abstract 
point of view, a graph G is a collection of elements {xi, x2, . . .} called points or 
vertices, together with a second collection ^ of certain pairs (xa, Xp) of distinct 
points of G. It is helpful to retain the geometric language, and refer to any pair 
in ^ as an edge (or a curve) of G that joins the points xa and Xp. 

A family of sets Si, 52, . . . gives a graph in a natural way, if to each set Sa 

we associate a point xa and agree that 

(1) xa and xp are joined by an edge of G if and only if a 9e ($ and Sa C\ Sp 9^ 0, 

where 0 denotes the empty set. As far as we know it was E. Szpilrajn-
Marczewski (2) who first proved that the converse is also true; see also Culik 

THEOREM SM. Let G be an arbitrary graph. Then there is a set S and a family 
of subsets Si, S2, . . . of S which can be put into one-to-one correspondence with the 
vertices of Gin such a way that (1) holds. 

Notice that Theorem SM remains true if we replace Sa P\ Sp 9^ 0 by 
Sa P\ Sp = 0 in (1), because we can always replace G by its complement. 

Our objective in this paper is to determine the minimum number of elements 
in the set S. In fact we shall prove the following theorem. 

THEOREM I. If G is any graph with n vertices, then there is a set S with [n2/A] 
elements and a family of n subsets of S such that (1) holds. Further [w2/4] is the 
smallest such number. 

2. Coverings by complete graphs. A graph G is said to be complete if 
every pair of points of G is joined by an edge of G. A complete graph on two 
points is just a line segment, and a complete graph on three points is just a 
triangle. We define the sum G = Gi + G2 of two graphs as follows: (1) x is a 
vertex of G if it is a vertex of Gi or of G2, (2) xa and xp are connected by an 
edge in G if they are connected by an edge in Gi or in G2. We remark that if 
they are connected in both Gi and G2, then they are still connected by just a 
single edge in the sum. If a graph G is the sum of graphs Gi, G2, . . . , Gky we 
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shall say that these graphs cover G. An isolated point of a graph is a point that 
does not belong to any edge of the graph. The number of vertices of G is called 
the order of G. With these agreements we have the following theorem. 

THEOREM 2. Any graph G{n) of order n > 2 with no isolated points can be covered 
by at most [w2/4] complete graphs. Further, in the covering we need to use only 
edges and triangles. 

Proof. We use induction, going from index n to index n + 2. The theorem is 
obviously true for n = 2 and n = 3. Further, we note that for any positive 
integer n 

(2) [(» + 2)2/4] = [rc2/4] + n + 1. 

Now let G(w+2) be a graph of order n -\- 2 and let xi and x2 be any two points 
that are connected by an edge of G(n+2). Let G(w) be the subgraph consisting of 
the vertex set V = jx3, x4, . . . , xn+2} and those edges of G(n+2) that connect 
pairs of points in V. By hypothesis, this graph can be covered by at most 
[w2/4] triangles and edges. Consider xk £ V. If xk is joined to both x\ and x2 in 
G(w+2), then we introduce a triangle Xi X2 Xk and call this G .̂ If xk is connected 
to JCI or JC2, but not both, then we introduce for Gk an edge X\ xk or x2 xk. If xfc is 
not connected to either Xi or x2, then there is no need to introduce a line seg­
ment or triangle. Hence for k = 3, 4, . . . , n + 2 we have at most w complete 
graphs Ga. Finally we need Gi, the edge connecting xi and x2. Since G(n) is a sum 
of at most [n2/4i] edges and triangles, G(w+2) is the sum of at most [w2/4]+ (w+1) 
edges and triangles. From (2), this completes the proof of the theorem. 

Theorem 2 was also proved independently by L. Lovâsz (oral communication). 

I t is easy to prove that the number [w2/4] that occurs in Theorem 2 cannot 
be replaced by any smaller number. Let n = 2k or 2k + 1 and let A be a col­
lection of k points and B be a collection of the remaining points (either k or 
k + 1 in number). We define T(w) to be the special graph of order n in which 
xa and x$ are joined by an edge, if and only if one of the points is in A and the 
other point is in B (3). Clearly T(n) has no triangles and the number of edges is: 

k2 = [(2&)2/4] = [w2/4], if n is even, 

and 

k(k + 1) = [(2k + l)2/4] = [w2/4], if n is odd. 

Hence the graph T(n) will always require [w2/4] complete graphs for a cover. 
We shall give a refinement of Theorem 2 in §4. 

3. Proof of the main result. If the graph G of Theorem 1 has any isolated 
points xa, we can select the empty set for Sa and for such points condition (1) 
will be satisfied. Hence in proving Theorem 1 we may assume that G has no 
isolated points. We next cover G with N complete graphs Gi, G2, . . . , GN, 
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where N < [w2/4]. By Theorem 2, this can be done and in fact in such a way 
that each Gk must be either an edge or a triangle. With each graph Gk we 
associate an element ek and with each point xa we associate a set Sa of elements 
ek1 where 

(3) ek £ Sa if and only if xa € Gk, 

i.e. Sa is the collection of those elements for which the corresponding complete 
graphs contain xa. If we set 

s = usa, 
then clearly S contains N elements. Further, Sa r\ Sp ^ 0 if and only if there is 
a common element ek. This means that xa and xp belong to the same complete 
graph Gk, and this means that xa and xp are joined by an edge in G. Conversely, 
if xa and Xp are joined by an edge in G, this edge will appear in some Gk in the 
cover and hence ek will be in both Sa and Sp. Consequently, the sets constructed 
by condition (3) will satisfy condition (1). This concludes the proof of the first 
part of Theorem 1. 

To see that [n2/4] is the smallest number for which Theorem 1 is true, we 
turn again to the special graph T(n). Here each edge must give rise to at least 
one element, for if xa and xp are joined, then Sa f^ Sp contains some element 
eap. But if this element were present in any other intersection, such as Sy Pi 5a, 
then the points xa Xp xy or xa xp x$ would be vertices of a triangle in T{n). But 
r(w) contains no triangles. Hence each edge in Tw gives rise to at least one 
distinct element. Hence any representation of T(n) by the intersection of sets 
satisfying the condition (1) must use at least [n2/4t] elements. 

In the reverse direction of Theorem 2 we can prove: 

THEOREM 3. Let G be a graph and suppose that for each point xa £ G there is a 
set Sa such that condition (1) is satisfied. If the set S = VJ Sa contains N elements, 
then G is the sum of N complete graphs. 

Proof. For each fixed ek in 5 we form a complete graph Gk using those points 
xa for which Sa contains ek. Clearly each Gk is a complete subgraph of G and 
G = Gi + G2 + . . . + GN. 

4. A refinement. Let Ga and Gp be two of the complete subgraphs con­
structed in the proof of Theorem 2. It is easy to see that Ga and Gp may have an 
edge in common. With a little more labour we can avoid this. 

THEOREM 4. Any graph G(w) of order n > 2 with no isolated point can be covered 
by at most [n2/4] complete graphs Gi, G2, . . . , GNl and no two of the graphs G«, Gp 
will have an edge in common. Further, in the covering we need to use only edges and 
triangles. 

Proof. We say that a vertex x has valence kiik edges terminate at x. 
The theorem is obviously true for n = 2. We assume that it is true for all 
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graphs of order less than n and note that for any positive integer n 

(4) [»2/4] = [(» ~ 1)74] + [n/2]. 

Hence in the induction we must show that in going from G(w_1) to G(n) we need 
add at most [n/2] complete graphs that are pairwise edge disjoint. 

Suppose G(n) has a vertex of valence < [n/2]. Call this vertex x\ and let G(w_1) 

be the subgraph on the points {x2, x3, . . . , xn}. Then in going from G{n~l) to 
G{n) we only need to use the edges joining xi to the other points of G{n) for our 
complete graphs, and there are at most [n/2] of these. In this case the proof is 
complete. 

In the contrary case, every vertex of G(n) has valence > [n/2]. Let xi be the 
vertex with the smallest valence /, and set t = [n/2] + r, where by hypothesis 
r > 0. Let Xi be joined to the vertices 3/1, y 2,. . . , y t and let G( ° be the subgraph 
of G(n) spanned by yi, y2, . . . , yt. Suppose that G (0 has r independent edges; 
that is, no two edges have a common vertex. Call these edges 

(yi,y2), (y*,y*),.. •, (y2r-u yzr) 
and remove them from G{n~l). Cover the resulting graph with at most 
[(n — l)2/4] edges or triangles, that are pairwise edge disjoint. Then G(n) is the 
sum of these complete graphs together with the triangles 

(*i, y h y'2), (*i, y*, y A), • • , (*i, y 2 r - i , 3>2r) 

and the edges (#1 3^), & = 2r + 1, 2r + 2, . . . , t. The number of graphs in the 
sum is at most 

[(n - l)2/4] + r + t - 2r = [{n - l)2/4] - r + [n/2] + r = [n2/±]. 

To complete the proof, we shall show that G{t) must have r independent edges. 
Assume that G( l) has only r — 1 independent edges 

(yi, y2), (ys, y 0 , . . . , ( 3 ^ - 3 , 3 , 2 r - 2 ) . 

By hypothesis, yir-\ has valence > [w/2] + r. It can be joined to at most 
2r — 2 of the points 3/1, 3/2, . . . , 3>2r-2, and to at most n — t of the points not in 
G( °. Hence the valence of y^r-i is at most 

2 r - 2 + rc-/ = 2 r - 2 + rc- [n/2] - r = n - [n/2] + r - 2 < [n/2] + r. 

But this is the minimum valence. Hence y^r-i is joined to some other point in 
G( ° and G( l) has at least r independent edges. This completes the proof. 

The graph T{n) shows that the number [w2/4], mentioned in the theorem, 
cannot be replaced by any smaller number. 

5. Open questions. These results suggest a number of related problems. 
For example, suppose that the graph G(n) has [w2/4] + k edges, where k is a 
fixed positive integer. Then it is clear that G(n) can be covered by fewer than 
[w2/4] complete graphs. What then is the new minimum as a function of k? 
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Here it may be advantageous to use complete graphs of order greater than 3 if 
k is large. 

In another direction it seems as though every G(n) can be covered by at most 
n — 1 circuits (here a single edge is counted as a circuit) but so far we have not 
been able to prove this. If we add the side condition that the circuits be pair-
wise edge disjoint (no two circuits have an edge in common), then n — 1 
circuits will not suffice as T. Gallai proved in the following way (oral communi­
cation). Let the vertices be denoted by xi, x2, x3, 3>i, y2, yz, . . . , yn-z and let 
G*(n) be the particular graph with the 3(n — 3) edges (xa, yp), a = 1, 2, 3, 
0 = 1, 2, 3, . . . y n — 3. Aside from the trivial circuits consisting of single 
edges, all other circuits have either the form C\ : (xi, yp, x2, yy, Xi), or the form 
Ci : (xi, yp, x2, yy, x3, y&, Xi), or suitable permutations of these. The requirement 
that the cover be edge disjoint forces the inclusion of the single edge circuits 
(#3> yp) and (x3, yy) in any cover that includes C\. Hence if all pairs yp, yy are 
covered by circuits of type C\, the number of circuits required would be 
3(w - 3 ) /2 i fn i sodd ,and3 + 3(w - 4)/2 if wis even. 

If the edge-disjoint cover includes a circuit of type C2, then it must also 
include the single-edge circuits (xi, yy), (x2, y8), and (x3, yp). Suppose that 
n = 0 (mod 3) and the yt vertices are grouped in sets of three and that the 
covering is made up of circuits of type C2 and single-edge vertices. Then the 
number of circuits is 4(w — 3)/3. Since this is less than the number of circuits 
used in the first case, it is clear that for n = 0 (mod 3), the smallest number of 
edge-disjoint circuits needed to cover the special graph G*(n) is 4t(n — 3/)3. 
The cases n = 1, 2 (mod 3) lead to a similar result. 

Let f(n) denote the smallest integer such that every graph with n vertices can 
be covered hyf(n) or fewer edge-disjoint circuits. The graph G*(n) proposed by 
Gallai shows that lim inf f(n)/n > 4/3 . It can be shown that 

f(n) < \n log n + 0(n), 

but it may be true that f(n) < en for some suitable c. 

6. Representation of a graph by distinct sets. In the proof of Theorem 1, 
the sets obtained need not be distinct. Indeed there may be two different 
vertices xa and Xp for which Sa = Sp. Both James H. Reed and G. Sabidussi have 
pointed out that if the n sets corresponding to the vertices of G are required to 
be all different, then the proof of Theorem 1 is not sufficient. However, if n > 4, 
we obtain the same minimum as in Theorem 1. 

THEOREM 5. Let d(n) be the smallest number of elements in S with the property 
that for each graph on n vertices, there is a family of n different subsets 

Sa(a = 1, 2, . . . , n) 

of S such that the relation (1) holds. Then d (2) = 2, d (3) = 3, and 
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(5) d{n) = [rc2/4] 

ifn > 4. 

Proof. The exceptional cases n = 2 and ft = 3 are trivial. We proceed by 
induction from n to n + 2, and we first prove that if d(n) < [ft2/4] for w = 4 
and w = 5, then the same inequality holds for all n > 4. 

If the graph G(n+2) on n + 2 points has no edges, then we set S = {ea} for 
a = 1, 2, . . . , n + 2. This selection is satisfactory because w < [ft2/4], for 
w > 4. Suppose that in the induction from « to n + 2 the graph G(n+2) has 
an edge (xn+i, xn+2) and that neither of these two points are terminal points of 
any other edge. Let G(n) be the graph on the n points {xi, #2, . . . , xn). Then we 
add two new elements e\* and e2* to the set for G(n) and take for our new sets 
Sn+\ = {ei*}, Sn+2 = {ei*9 e2*} while leaving the sets for Gw unchanged. In this 
case the induction is complete. 

In all other cases the graph will contain an edge (xn+i, xn+2) that is connected 
with at least one other point of the graph. By equation (2), we have n + 1 new 
elements at our disposal. Call them #i*, e2*, £3*,. . . , £*+i- We form the set Sn+i 
by putting in ea* (a = 1, 2, . . . , n) if and only if xa is connected to xn+i by an 
edge. Similarly, Sn+2 is the set of all ea* for which (xa, xw+2) is an edge in G(n+2). 

It may happen that one of the two sets Sn+i and Sn+2 is empty. In this case we 
form the sets 5*+i and 5^+2 by adding the element e^+i to both Sn+i and 5n+2. 
Then S*+i ^ 5Ï+2- If 5 n + iP\5w + 2 is empty, we also adjoin the element e*+i to 
both sets. In any other case we can set 5J+i = 5w+i and 5*+2 = 5w+2 W {e*+i}. 

Let Si, S2, . . . , Sn be the sets that satisfy Theorem 5 for G(w). For 
a = 1, 2, . . . , « , we form the new sets S«* by adding ea* to Sa if xa is connected 
to either xn+i or xn+2 by an edge. Then the sets Si*, S2*, . . . , S*+2 satisfy the 
requirements of Theorem 5. 

If n = 4, it is a simple matter to draw pictures of the 11 different graphs on 
four points, and to construct the necessary sets with at most [42/4] = 4 
elements. The same technique can be used if n = 5, but in this case the number 
of different graphs is sufficiently large to make a short cut desirable. Since 
[52/4] — [42/4] = 6 — 4 = 2, we have available two new elements for S in 
passing from n = 4 to n = 5. If G(5) has one vertex with valence 2 or less, it is a 
simple matter to proceed from G(5) to G(4) by deleting this vertex and its edges 
and then to go back to G(b) using the two new elements. Hence one needs to 
consider only those graphs on five points for which each vertex has valence 
greater than or equal to 3. But there are only three such graphs and these are 
easy to discuss. 

This proves that d(n) < [w2/4]. But the same special graph T(n) used in 
Theorem 1 also proves thatd(w) > [w2/4]. 
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