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NONOSCILLATION CRITERIA FOR EMDEN-FOWLER SYSTEMS

LYNN H. ERBE AND XINZHI LIU

A number of nonoscillation criteria for the Emden-Fowler system

x'= o(t)|y|ri sgn y,(x'= o(

U' = -
where a(t), b(t) > 0, ri,r3 > 0 and b(t)/a(t) is locally of bounded variation,
are established employing energy function techniques. The results obtained here
include many known nonoscillation theorems for the classical Emden-Fowler equa-
tions as special cases. We illustrate the results obtained with several examples.

1. INTRODUCTION

In this paper we consider the Emden-Fowler system

sgny,

where o(t) > 0, 6(t) > 0 are continuous, ri,r2 > 0. A solution of (1.1) is said to
be continuable if it exists on the whole half-infinite interval [to, oo). For simplicity, we
assume that for any initial value (zo,3/o) the solution of (1.1) is continuable. Conditions
which guarantee this may be found, for example, in [5]. A continuable solution is said
to be oscillatory if x(t) (and therefore y(t)) has an infinite number of zeros with oo as
the only accumulation point. The system (1.1) is said to be oscillatory if every pair of
continuable solutions (x(t),y(t)) is oscillatory and to be nonoscillatory otherwise. In
the latter case x(t) and y(t) have constant sign for all large t.

When Tx = 1 and a(i) = 1, the system (1.1) reduces to the classical Emden-Fowler
equation

(1.2) x" + b(t)\x\r sgn x = 0

which has been the object of extensive investigations and we refer to the survey papers
[3, 12, 13] and the references therein for a discussion of oscillatory and nonoscillatory
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properties in this case. Mirzov [0,10,11] generalised many of the well-known oscillation

criteria for (1.2) to cover (1.1) and recently Kwong and Wong [7] have extended the

well-known oscillation criteria of Atkinson, Belohorec, and Waltman to a more general

nonlinear system. We are concerned, in this paper, with obtaining nonoscillation criteria

for the Emden-Fowler system (1.1). These include and extend some earlier results of

Gollwitzer [6] and the first author [2, 3, 4]. More precisely, it was shown by Atkinson [1]

that if r > 1 (the so-called superlinear case) then all solutions of (1.2) are nonoscillatory

if b(t) is nonincreasing and J. trb(t)dt < oo. To replace the nonincreasing assumption

on b(t), Gollwitzer [6] introduced the condition / / " db+(t)/b(t) < oo (where the

integral is an improper Riemann-Stieltjes integral). Later, it was proved by the first

author that / / " db+(t)/b(t) = +oo is compatible with nonoscillations and thus the

restriction f?° db+(t)/b(t) < oo was removed. This result has been extended recently

by the first author and Lu to the generalised Emden-Fowler differential equation

We shall suppose here that the quotient function b(t)/a{i) in system (1.1) is locally of
bounded variation on [to,oo) and we set q(t) = b(t)/a(t). We may then write

q(t) = q+{t) - q.{t)

as the Jordan decomposition of q(t) where q+{t) and q~(t) are nondecreasing. We

next introduce the notation

and clearly both Q+(t) and Q-(t) are nondecreasing and

(13) Q+W - q{t)

2. STATEMENT OF THE RESULTS

For convenience we first state our main results in this section.

THEOREM 2 . 1 . Let r^n > 1. Tien tie system (1.1) is nonoscillatory if the

following condition holds:

/ ( / a.{T)d.T) b(s)da < oo and

(2.1) Jt0 yJt0 J

^^~ / ( / a(r)jTj b{s)ds = 0.
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THEOREM 2 . 2 . Let rir2 < 1. TAen the system (1.1) is nonoscillatory if either

one of the following equivalent conditions hold:

f / a(r)dT) b(s)ds < oo and

{2.2) ° V *° }

Urn (Q-it))-^ J Q a(r)dTy b(s)ds = 0.

REMARK. If ri = 1 and a(t) = l/r(t), then Theorems 2.1 and 2.2 include and extend
results of [1, 2, 4, 6].

In the half linear case, that is, Tir2 = 1, we have the following neater condition.

COROLLARY 2 . 3 . Let rir2 = 1. Then t ie system (1.1) is nonoscillatory if

(2.3) / ( f a(T)dr\ * b(a)ds < oo.

Furthermore, if Q+(i),Q_(t) are bounded above (that is, if b(t)/a(t) is bounded
above and below) then (2.3) implies that (1.1) is nonoscillatory for all ri,r2 > 0.

THEOREM 2 . 4 . Let rir2 ^ 1. TAen the system (1.1) is nonoscillatory if

(2.4) l {b{a))^{a{s)Q+{a))^ds < oo.

THEOREM 2 . 5 . Let r1r2 < 1. Then the system (1.1) is nonoscillatory if the
following condition holds:

^ ^ < oo and(2.5) / (bia))7

J t
lim (Q+(t))(n+i)(r1+i)(q(t))(rl+i)(rJ+i) \ (b(s))T^(a(s)Q+(3))7^da = 0.

REMARK. Theorems 2.4 and 2.5 extend results of [2, 4, 6] in the cases ri = 1 and
o(<) = 1. The next several results provide further extensions to some of the earlier
nonoscillation criteria for equation (1.2).

THEOREM 2 . 6 . Let riT2 > 1. Then the system (1.1) is nonoscillatory if the

following condition holds:

[0°b(3)(Q-(a))73r[ds<oo and

(2.6) Jt°

Urn
7^ I b(

it
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COROLLARY 2 . 7 . Let r > 1. Then the equation (1.2) is nonoscillatory if the
following condition holds:

f 6(J and

Hm

COROLLARY 2 . 8 . The equation

is nonoscillatory if

/ ( ) 1 / 2 < oo and

{s))ll2ds = 0.

THEOREM 2 . 9 . Let riT2 < 1. Then the system (1.1) is nonoscillatory if the

following condition holds:

/•oo , ,

fa))1"2^"1 ds < oo and
,00

/ V
»to

COROLLARY 2 . 1 0 . Let r < 1. TJien tAe equation ("1.2̂  is nonoscillatory if the

following condition holds:

and

(2.10)

(

To conclude this section, we discuss a few examples below.

EXAMPLE 1. Consider equation

(2.11) x" + 5t-s/2(z')4/V/s =0, t^U> 0.
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Letting y = (x1)1^5, (2.11) becomes the following equivalent Emden-Fowler system

( 2 ' 1 2 ) 1 y' = -<-•/».»/», t>to>0.

Comparing (2.12) with (1.1), it is easy to see that a(t) = 1, b(t) = t'3'2,
Q+{t) = 1, rj = 5, r2 = 1/3 and rir2 = 5/3 > 1. Since

it follows from Theorem 2.1 that (2.12) is nonoscillatory.

EXAMPLE 2. Consider equation

(2.13) x" + | *- 1 2 / 7 (* ' ) 2 / V / 7 = 0, t>to>0.

Setting y = (x')i/s, (2.13) becomes

/ *' = y5/s

Comparing (2.14) with (1.1), we see that a(t) = 1, b(t) = t~12/7, Q_(t) = t12f /i\2l\
n = 5/3, r2 = 3/7 and nr2 = 5/7 < 1. Since

Urn M j / (— t?11*-1211** < lim 1 t-9/*Y/« • t"2/7 ^ 0,
,00 7

/ (— t?11*-1211** < li 1 t-
* /

it follows from Theorem 2.2 that (2.14) is nonoscillatory.

EXAMPLE 3. Consider equation

(2.15) Ux')2/3x" + t-n^x5/3=0, t>U>Q.
o

Letting y = (x1) , we then obtain from (2.15) the following equivalent Emden-Fowler
system

(2-16) W I - « - » / « . - / • , t>u>o.
Comparing (2.16) with (1.1), we see that a(t) = 1, b(t) = H 1 1 / 4 ) , n = 3/5, r2 = 5/3
and rir2 = 1. Since

it follows from Corollary 2.3 that (2.16) is nonoscillatory.
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3. PROOF OF THE RESULTS

We shall need the following lemma in the proof.

LEMMA 3 . 1 . Let (x(t),y(t)) be a solution of (1.1). Then for t ̂  C > h we have

9J1 < M
Q-{t) * B[C)

and

Q-(C) < B(C) Q+(t)

- * -

We omit the proof of the lemma since it is similar to the proof of Lemma 3.1 in

[2]-

PROOF OF THEOREM 2.1: We suppose, for the sake of contradiction, that
(a;(t),j/(t)) is an oscillatory solution of (1.1) and let <2n —• oo be a sequence with
a;(*2n) = 0 and y(<2n) > 0. Let *2n+i > *2n be the first zero of y(t) exceeding t2n.
Then for *2n ̂  t ^ ^2T»+I>

 we have y(t) > 0 and y'(t) ^ 0. Integrating the second
equation of (1.1), we obtain

r<2n+l

r*3n+l

(3.3)

)r>d3= b(s)( x'(r)dr) ds

= / 6(*)(/ a(r)y^(r)dr) da

Jtin \Jttn /

/ Ks) ( / o(T)dr) ds

+l / f \ri

/ a(r)dr) b(s)ds.
\Jt3r, /

Suppose that condition (i) holds.
Let £ = <o ̂ d f = <2n in (3.1); we have, for some C > 0,

(3.4)

It then follows from (3.3) and (3.4) that

(3.5) 1 < C(g+(<2n))I^ i / " f / ' a(r)dr) b(s)ds.
•>hn \Jt2n /
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Since the right-hand side of (3.5) tends to zero as t2n —+ oo, we have a contradiction.
This completes the proof. D

PROOF OF THEOREM 2.2: We assume that (x(t),y(t)) is an oscillatory solution
of (1) and choose a sequence t2n —» oo such that x(t2n) = 0 and y(t2n) > 0. We
let t2n+i > tin he the first zero of y(t) exceeding t2n and obtain, as in the proof of
Theorem 2.1,

(3.6) y(t2n) ^ fat**))*1* f**" ( [' a(r)dr)rib(s)ds.

If condition (i) holds, then we let £ = to and f = t2n in (3.1) and get, for C > 0,

This, together with (3.6), implies

(3.7) 1 ̂  C'1 {Q-(t2nj) ^ f°° ( f a(T)dr) " b(s)ds,

which is a contradiction since the right-hand side of (3.7) tends to zero as tin —* oo.
Thus the proof of the theorem is completed. U

PROOF OF THEOREM 2.4: Suppose again that (i(<), j/(<)) is an oscillatory solution
with x(t2n) = 0 and y(i2n) > 0 as i2n -» oo, and let y(t2n+i) = 0. hn+i > hn, the
first zero of y(t) exceeding t2n. Prom (3.1) with C = 2̂n we have, for t ^ t2n and
C1>0,

(3.8) \x(t)P < C

and so from the second equation of (1.1) we get

(3.9)

If rir2 = 1, then we have
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which is a contradiction because the right-hand side of the above inequality tends to
zero as t2n —* oo. If r\r2 > 1, then from (3.1) with £ = to, t = t2n, w e have, for
C2 > 0 ,

(3.10)

It then follows from (3.9) and (3.10) that

(3.U)

since the right-hand side tends to zero as t2n —* oo, we have a contradiction. This
proves the theorem. D

PROOF OF THEOREM 2.5: Let (x{i),y(t)) be an oscillatory solution of (1.1) and
t2n —* oo be a sequence such that z(*2n) = 0 and j/(<2n) > 0, and let j/(<2n+i) =
0, t2n+i > *2n> be the first zero of y(t) exceeding t2n. As in the proof of Theorem 2.4,
we derive, for Ci > 0,

which implies

(3.12)

Letting £ = t0, t = t2n in (3.2), we have for C2 > 0,

(3.13) (y[t2n))~7*Tr > C2(Q+(Un))

It then follows from (3.12) and (3.13) that
(3.14)

which is a contradiction since the right-hand side of (3.14) tends to zero as t2n —> oo.
Thus the proof is completed. U
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PROOF OF THEOREM 2.6: Assume that (x(t),y(t)) is an oscillatory solution of

(1.1) and let <jn - t o o b e a sequence with x(<2n) = 0 and y( i j n ) > 0- Let t2n+i > *2n

be the first zero of y(t) exceeding tjn- From (3.2) with £ = t j n we have for t > t j n

and Ci > 0

(3.15) |*(<)r<

Integrating the second equation of (1.1), we derive

(3.16) y(t2n) < CtbfaJ)1^1 (g-itin))-^ r ^ b(s)(Q.(s))^ds.
J

The rest of the proof is similar to that in the proof of Theorem 2.4 and we omit the
details here. Thus the proof is complete.

We also omit the proof of Theorem 2.9 since it is similar to that of Theorem 2.5. U
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