The Minimal Free Resolution of Fat Almost Complete Intersections in $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Giuseppe Favacchio and Elena Guardo

Abstract

A current research theme is to compare symbolic powers of an ideal I with the regular powers of I. In this paper, we focus on the case where $I=I_{X}$ is an ideal defining an almost complete intersection (ACI) set of points X in $\mathbb{P}^{1} \times \mathbb{P}^{1}$. In particular, we describe a minimal free bigraded resolution of a non-arithmetically Cohen-Macaulay (also non-homogeneous) set Z of fat points whose support is an ACI, generalizing an earlier result of Cooper et al. for homogeneous sets of triple points. We call Z a fat ACI. We also show that its symbolic and ordinary powers are equal, i.e, $I_{z}^{(m)}=I_{Z}^{m}$ for any $m \geq 1$.

1 Introduction

A research problem of interest regarding which symbolic powers of ideals are contained in a given ordinary power of the ideal has recently been studied in [1-3, 12], with a focus on ideals defining 0 -dimensional subschemes of projective space.

Inspired by recent papers of [5,7-9], we focus on the case where I is an ideal defining a set of points in $\mathbb{P}^{1} \times \mathbb{P}^{1}$, since, in particular, I can be considered as a set of particular lines in \mathbb{P}^{3}.

Throughout this paper, the polynomial ring $R:=k\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ with the bigrading given by $\operatorname{deg} x_{0}=\operatorname{deg} x_{1}=(1,0)$ and $\operatorname{deg} x_{2}=\operatorname{deg} x_{3}=(0,1)$ is the coordinate ring of $\mathbb{P}^{1} \times \mathbb{P}^{1}$. A point is denoted by $P=\left[a_{0}: a_{1}\right] \times\left[b_{0}: b_{1}\right]$ in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and it is defined by the bihomogeneous ideal $I_{P}=\left(a_{1} x_{0}-a_{0} x_{1}, b_{1} x_{2}-b_{0} x_{3}\right)$. A set of points $X=\left\{P_{1}, \ldots, P_{s}\right\} \subseteq \mathbb{P}^{1} \times \mathbb{P}^{1}$ is then associated with the bihomogeneous ideal $I_{X}=\bigcap_{P \in X} I_{P}$. If we only consider the standard grading of this ideal, then I_{X} defines a union X of lines in \mathbb{P}^{3}. Given a set of distinct points $X=\left\{P_{1}, \ldots, P_{s}\right\}$ and positive integers m_{1}, \ldots, m_{s}, we call $Z=m_{1} P_{1}+\cdots+m_{s} P_{s}$ a set of fat points supported at X.

Given a homogeneous ideal $I \subset R$, the m-th symbolic power of I is the ideal $I^{(m)}=R \cap\left(\bigcap_{P \in A s s(I)}\left(I^{m} R_{P}\right)\right)$. Following [3], an ideal of the form $I=\bigcap_{i}\left(I_{P_{i}}^{m_{i}}\right)$ where P_{1}, \ldots, P_{n} are distinct points of $\mathbb{P}^{1} \times \mathbb{P}^{1}, I_{P_{i}}$ is the ideal generated by all forms vanishing at P_{i}, and each m_{i} is a non-negative integer, $I^{(m)}$ turns out to be $\bigcap_{i}\left(I_{P_{i}}^{m m_{i}}\right)$. If I^{m} is the usual power, then there is clearly a containment $I^{m} \subseteq I^{(m)}$, and a much more difficult problem is to determine when there are containments of the form $I^{(m)} \subseteq I^{r}$. Furthermore, the m-th symbolic power of I_{X} has the form $I_{X}^{(m)}=\bigcap_{i=1}^{s} I_{P_{i}}^{m}$. The scheme defined by $I_{X}^{(m)}$ is sometimes referred to as a homogeneous set of fat points and denoted by $m P_{1}+\cdots+m P_{s}$.

[^0]We say that a set of points X in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ is arithmetically Cohen-Macaulay (ACM) if its coordinate ring R / I_{X} is Cohen-Macaulay. A set of points X is a complete intersection if I_{X} is a complete intersection. We write that $X=C I(a, b)$ if I_{X} is generated by a form of degree $(a, 0)$ and a form of degree $(0, b)$. The set X is an almost complete intersection (ACI) if the number of minimal generators is one more than the codimension of X; i.e., X has three minimal generators.

Let X be an almost complete intersection in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and let $Z=m_{1} P_{1}+\cdots+m_{s} P_{s}$ be a set of fat points supported at X. We call Z a fat almost complete intersection.

A classification of reduced and fat ACM sets of points of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ can be found in [10, Theorems 4.11 and 6.21].

In this paper, we focus on the study of special sets of fat points Z whose support is either ACM or non-ACM. In particular, we give a minimal free bigraded resolution of Z in both cases (see Theorems 3.4 and 3.5).

In [8, Theorem 1.1], the authors proved the following theorem.
Theorem 1.1 ([8, Theorem 1.1]) Let $X \subseteq \mathbb{P}^{1} \times \mathbb{P}^{1}$ be an ACM set of points. Then $I_{X}^{m}=I_{X}^{(m)}$ for all $m \geq 1$ if and only if $I_{X}^{3}=I_{X}^{(3)}$.

In [5], S. Cooper et al. proposed a classification of the sets of points $X \subseteq \mathbb{P}^{1} \times \mathbb{P}^{1}$ satisfying $I_{X}^{3}=I_{X}^{(3)}$. We require the following notation. Let $\pi_{1}: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ denote the natural projection $P=A \times B \mapsto A$. If $X \subseteq \mathbb{P}^{1} \times \mathbb{P}^{1}$ is a finite set of reduced points, let $\pi_{1}(X)=\left\{H_{1}, \ldots, H_{r}\right\}$ be the set of distinct first coordinates that appear in X. For $i=1, \ldots, h$, set $\overline{\alpha_{i}}=\left|X \cap \pi_{1}^{-1}\left(H_{i}\right)\right|$, i.e., the number of points in X whose first coordinate is H_{i}. After relabeling the H_{i} 's so that $\overline{\alpha_{i}} \geq \overline{\alpha_{i+1}}$ for $i=1, \ldots, r-1$, we set $\alpha_{X}=\left(\overline{\alpha_{1}}, \ldots, \overline{\alpha_{r}}\right)$. In particular, they proved the following two results.

Corollary 1.2 ([5, Corollary 4.4]) Let $X \subseteq \mathbb{P}^{1} \times \mathbb{P}^{1}$ be any ACM set of points. Then
(i) $I_{X}^{2}=I_{X}^{(2)}$.
(ii) The following are equivalent:
(a) I_{X}^{2} defines an ACM scheme;
(b) $I_{X}^{3}=I_{X}^{(3)}$ is the saturated ideal of an ACM scheme;
(c) X is a complete intersection;
(d) $\alpha_{X}=(a, a, \ldots, a)$ for some integer $a \geq 1$.
(iii) The following are equivalent:
(a) $I_{X}^{3}=I_{X}^{(3)}$ is the saturated ideal of a non-ACM scheme;
(b) I_{X} is an almost complete intersection;
(c) $\alpha_{X}=(a, \ldots, a, b, \ldots, b)$ for integers $a>b \geq 1$.

Corollary 1.3 ([5, Corollary 4.6]) Let $Z \subseteq \mathbb{P}^{1} \times \mathbb{P}^{1}$ be a homogeneous set of triple points (i.e., where every point has multiplicity three) and let X be the support of Z. If I_{X} is an almost complete intersection with

$$
\alpha_{X}=(\underbrace{a, \ldots, a}_{c}, \underbrace{b, \ldots, b}_{d}),
$$

then I_{Z} has a bigraded minimal free resolution of the form

$$
0 \longrightarrow F_{2} \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow I_{Z} \longrightarrow 0,
$$

where

$$
\begin{aligned}
F_{0}= & R(-3 c-3 d, 0) \oplus R(-3 c-2 d,-b) \oplus R(-2 c-2 d,-a) \\
& \oplus R(-3 c-d,-2 b) \oplus R(-2 c-d,-b-a) \oplus R(-c-d,-2 a) \\
& \oplus R(-3 c,-3 b) \oplus R(-2 c,-2 b-a) \oplus R(-c,-b-2 a) \\
& \oplus R(0,-3 a), \\
F_{1}= & R(-c,-3 a) \oplus R(-2 c,-2 a-b) \oplus R(-3 c,-a-2 b) \oplus R(-c-d,-2 a-b) \\
& \oplus R(-2 c-d,-a-2 b) \oplus R(-3 c-d,-3 b) \oplus R(-2 c-d,-2 a) \\
& \oplus R(-3 c-d,-a-b) \oplus R(-2 c-2 d,-a-b) \oplus R(-3 c-2 d,-2 b) \\
& \oplus R(-3 c-2 d,-a) \oplus R(-3 c-3 d,-b), \\
F_{2}= & R(-3 c-2 d,-b-a) \oplus R(-3 c-d,-a-2 b) \oplus R(-2 c-d,-2 a-b) .
\end{aligned}
$$

Here, we generalize Corollary 1.3 for a special set Z of fat points whose support is an almost complete intersection (ACI), i.e., for a special fat almost complete intersection. We note that we do not require that Z be homogeneous. To shorten the notation we will say Z is a fat ACI.

Let X be an ACI set of distinct points in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ such that

$$
\alpha_{X}=(\underbrace{a, \ldots, a}_{\alpha_{1}}, \underbrace{b, \ldots, b}_{\alpha_{2}})
$$

for two integers $a>b \geq 1$. Set $a:=\beta_{1}+\beta_{2}, b:=\beta_{1}$ and $r=\alpha_{1}+\alpha_{2}$ so that

$$
\alpha_{X}=(\underbrace{\beta_{1}+\beta_{2}, \ldots, \beta_{1}+\beta_{2}}_{\alpha_{1}}, \underbrace{\beta_{1}, \ldots, \beta_{1}}_{\alpha_{2}})
$$

Let H_{i} be horizontal lines of type $(1,0)$ and let V_{j} be vertical lines of type $(0,1)$. Then a point in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ can be denoted by $P_{i j}:=H_{i} \times V_{j}$. If $\pi_{1}(X)=\left\{H_{1}, \ldots, H_{r}\right\}$ and $\pi_{2}(X)=\left\{V_{1}, \ldots, V_{a}\right\}$, then $X \subset W=\left\{P_{i j} \mid i=1, \ldots, r\right.$ and $\left.j=1, \ldots, a\right\}$. Note that W is a complete intersection of reduced points.

Define $Z:=\sum w_{i j} P_{i j}$ to be a fat ACI of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ where

$$
w_{i j}= \begin{cases}m_{11} & \text { if }(i, j) \leq\left(\alpha_{1}, \beta_{1}\right) \tag{1.1}\\ m_{21} & \text { if }\left(\alpha_{1}+1,1\right) \leq(i, j) \leq\left(\alpha_{1}+\alpha_{2}, \beta_{1}\right) \\ m_{12} & \text { if }\left(1, \beta_{1}+1\right) \leq(i, j) \leq\left(\alpha_{1}, \beta_{1}+\beta_{2}\right) \\ 0 & \text { otherwise }\end{cases}
$$

for some non-negative integers m_{11}, m_{12}, m_{21}. Renumbering the lines H_{i} or V_{j}, we can always assume that $m_{21} \leq m_{12}$.

The following picture shows what Z looks like.

We denote by $z_{1}:=\sum \bar{w}_{i j} P_{i j}$ a set of fat points of $\mathbb{P}^{1} \times \mathbb{P}^{1}$, where

$$
\bar{w}_{i j}= \begin{cases}\left(m_{11}-1\right)_{+} & \text {if }(i, j) \leq\left(\alpha_{1}, \beta_{1}\right) \\ \left(m_{21}-1\right)_{+} & \text {if }\left(\alpha_{1}+1,1\right) \leq(i, j) \leq\left(\alpha_{1}+\alpha_{2}, \beta_{1}\right) \\ m_{12} & \text { if }\left(1, \beta_{1}+1\right) \leq(i, j) \leq\left(\alpha_{1}, \beta_{1}+\beta_{2}\right) \\ 0 & \text { otherwise }\end{cases}
$$

for m_{11}, m_{12}, m_{21} as in Z and $(n)_{+}:=\max \{n, 0\}$.
The following theorem is the main result of this paper.
Theorem 3.5 Let $0 \rightarrow \mathcal{L}_{2} \rightarrow \mathcal{L}_{1} \rightarrow \mathcal{L}_{0} \rightarrow R \rightarrow R / I_{\mathcal{Z}_{1}} \rightarrow 0$ be a minimal free resolution of $I_{\mathcal{Z}_{1}}$. Then a minimal free resolution of a fat ACI of type (1.1) I_{z} is

$$
\begin{aligned}
0 & \longrightarrow \underset{\left(a, b-\beta_{1}\right) \in \mathcal{A}_{1}(z)}{\oplus} R(-a,-b) \oplus \mathcal{L}_{2}\left(0,-\beta_{1}\right) \\
& \longrightarrow \underset{\left(a, b-\beta_{1}\right) \in \mathcal{A}_{0}(z)}{\oplus} R(-a,-b) \underset{(a, b) \in \mathcal{A}_{1}(z)}{\oplus} R(-a,-b) \oplus \mathcal{L}_{1}\left(0,-\beta_{1}\right) \\
& \longrightarrow \underset{(a, b) \in \mathcal{A}_{0}(z)}{\oplus} R(-a,-b) \oplus \mathcal{L}_{0}\left(0,-\beta_{1}\right) \longrightarrow I_{z} \longrightarrow 0
\end{aligned}
$$

where

$$
\begin{gathered}
\mathcal{A}_{0}(\mathcal{Z})=\left\{\left(\alpha_{1}\left(m_{11}+i\right)+\alpha_{2} m_{21},\left(\left(m_{12}-m_{11}\right)_{+}-i\right) \beta_{2}\right) \mid i=0, \ldots,\left(m_{12}-m_{11}\right)_{+}\right\}, \\
\mathcal{A}_{1}(Z)=\left\{\left(\alpha_{1}\left(m_{11}+i+1\right)+\alpha_{2} m_{21},\left(\left(m_{12}-m_{11}\right)_{+}-i\right) \beta_{2}\right) \mid\right. \\
\left.i=0, \ldots,\left(m_{12}-m_{11}\right)_{+}-1\right\} .
\end{gathered}
$$

That is, if we set $\mu=\min \left(m_{11}, m_{21}\right)$ recursively, we find a minimal bigraded free resolution of non-homogeneous sets of fat points $\mathcal{Z}_{i} \subset \mathcal{Z}$ whose support is an almost complete intersection for all $i=0, \ldots, \mu$ but z_{μ}. In particular, $z_{0}=z$ and the base case Z_{μ} can be of two types

(a) If $m_{11}>m_{21}$, then Z_{μ} is an ACM set fat points supported on a complete intersection $C I\left(\alpha_{1}, \beta\right)$. From [10, Theorem 6.21] we can recover its minimal bigraded free resolution.
(b) If $m_{11}<m_{21}$, then z_{μ} is not ACM. In this case, Lemma 3.4 gives a minimal free bigraded resolution of z_{μ}. In particular, in this second case, the support X of Z_{μ} is the disjoint union of two complete intersections $X_{1}=\operatorname{CI}\left(\alpha_{1}, \beta_{2}\right)$ and $X_{2}=$ $C I\left(\alpha_{2}, \beta_{1}\right)$.
(c) The case $m_{11}=m_{21}$ is shown in Corollary 3.7. In this case, the support of Z_{μ} is a $C I\left(\alpha_{1}, \beta_{2}\right)$.
We also note that Theorem 3.5 in the case where $m_{11}=m_{12}=m_{21}=3$ gives Corollary 1.3 proved in [5].

In Theorem 4.2, we prove that $I_{\mathcal{Z}}^{(m)}=I_{z}^{m}$ for any positive integer m where \mathcal{Z} is a fat ACI of type (1.1). This result gives a new class of non-ACM set of fat points in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ whose symbolic and regular powers are equals.

2 Background and Notation

In this section, we recall some well-known facts about $A C M$ sets of fat points in $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Then we begin the study of a set \mathcal{W} of three non-collinear fat points of $\mathbb{P}^{1} \times \mathbb{P}^{1}$. We observe that $\operatorname{Supp}(\mathcal{W})$ of \mathcal{W} is ACI but \mathcal{W} can be either ACM or not ACM. Proposition 2.5 extends a property of the ACM set of points to our case of interest.

Lemma 2.1 Let $P \in \mathbb{P}^{1} \times \mathbb{P}^{1}$ be a point. Then the bigraded minimal free resolution of $I(P)^{m}$ is

$$
0 \longrightarrow \bigoplus_{t=1}^{m} R(t-m-1,-t) \longrightarrow \bigoplus_{t=0}^{m} R(t-m,-t) \longrightarrow I(P)^{m} \longrightarrow 0
$$

Proof This follows, for instance, from [10, Theorem 6.27].

From [11, Theorems 5.4 and 4.11], the following two results hold.
Lemma 2.2 In $\mathbb{P}^{1} \times \mathbb{P}^{1}$, let Z be

$$
z:=\sum_{(1,1) \leq(i, j) \leq\left(\alpha, \beta_{1}\right)} m_{11} P_{i j}+\sum_{\left(1, \beta_{1}+1\right) \leq(i, j) \leq\left(\alpha, \beta_{1}+\beta_{2}\right)} m_{12} P_{i j}
$$

a set of fat points whose support is $X=C I(\alpha, \beta)$ where $\beta=\beta_{1}+\beta_{2}$.

Set $M:=\max \left\{m_{11}, m_{12}\right\}$; then a minimal free resolution of I_{Z} is

$$
\begin{aligned}
0 \longrightarrow \bigoplus_{t=1}^{M} R(-\alpha t,- & \left.\beta_{1}\left(m_{11}-t+1\right)_{+}-\beta_{2}\left(m_{12}-t+1\right)_{+}\right) \\
& \longrightarrow \bigoplus_{t=0}^{M} R\left(-\alpha t,-\beta_{1}\left(m_{11}-t\right)_{+}-\beta_{2}\left(m_{12}-t\right)_{+}\right) \longrightarrow I_{\mathcal{Z}} \longrightarrow 0
\end{aligned}
$$

Proof We have that Z is ACM, and the associated tuple is

$$
\alpha_{z}=(\underbrace{\gamma_{0}, \ldots, \gamma_{0}}_{\alpha}, \underbrace{\gamma_{1}, \ldots \gamma_{1}}_{\alpha}, \ldots, \underbrace{\gamma_{M}, \ldots \gamma_{M}}_{\alpha}) .
$$

where $\gamma_{i}:=\left(m_{11}-i\right)_{+} \beta_{11}+\left(m_{12}-i\right)_{+} \beta_{12}$.
Corollary 2.3 With the notation as above, if $m_{11}=m_{12}$, i.e., Z is a homogeneous set of fat points whose support is $X=C I(\alpha, \beta)$, then a minimal free resolution is

$$
0 \longrightarrow \oplus_{i=0}^{m-1} R(-(i+1) \alpha,-(m-i) \beta) \longrightarrow \bigoplus_{i=0}^{m} R(-i \alpha,-(m-i) \beta) \longrightarrow I_{\mathcal{Z}} \longrightarrow 0
$$

To describe a minimal free bigraded resolution of a fat ACI Z of type (1.1), we need to describe the minimal free bigraded resolution of a particular case of a fat ACI.

We set our notation.
Notation 2.4 Let \mathcal{W} be a fat ACI consisting only of three non-collinear fat points $P_{i j}:=H_{i} \times V_{j}$ with H_{i} horizontal lines of type $(1,0)$ and V_{j} vertical lines of type $(0,1)$ for $i, j=1,2$.

We will assume that $m_{21} \leq m_{12}$ and $(a)_{+}:=\max \{a, 0\}$. Then $\mathcal{W}:=m_{11} P_{11}+$ $m_{21} P_{21}+m_{12} P_{12}$, and $\mathcal{W}_{1}:=\left(m_{11}-1\right)_{+} P_{11}+\left(m_{21}-1\right)_{+} P_{21}+m_{12} P_{12}$ is the set of points obtained from \mathcal{W} by decreasing by 1 the multiplicity of each point on V_{1}.

If $m_{21}=0$, then \mathcal{W} is an ACM set of collinear points and everything is known ([11, Corollary 4.9 and Theorem 4.11]).

In order to describe the homological invariants of \mathcal{W}, we start by proving a proposition that holds for ACM finite sets of points in $\mathbb{P}^{1} \times \mathbb{P}^{1}$; see for instance [10, Theorem 7.12].

Proposition 2.5 With the notation as above, let $\mathcal{W}=m_{11} P_{11}+m_{21} P_{21}+m_{12} P_{12}$ be a set of three non-collinear fat points in $\mathbb{P}^{1} \times \mathbb{P}^{1}$; then $I_{\mathcal{W}}$ is minimally generated by a set of forms such that each of them is a product of powers of lines.

Proof We claim that $I_{\mathcal{W}}$ is generated by the set of bihomogeneous forms

$$
\mathcal{G}(\mathcal{W})=\left\{H_{1}^{a_{1}} H_{2}^{a_{2}} V_{1}^{b_{1}} V_{2}^{b_{2}} \mid a_{1}+b_{2} \geq m_{12}, a_{2}+b_{1} \geq m_{21}, a_{1}+b_{1} \geq m_{11}\right\} .
$$

It is easy to check that $H_{1}^{a_{1}} H_{2}^{a_{2}} V_{1}^{b_{1}} V_{2}^{b_{2}} \in \mathcal{G}(\mathcal{W})$ if and only if $H_{1}^{a_{1}} H_{2}^{a_{2}} V_{1}^{b_{1}} V_{2}^{b_{2}} \in I_{\mathcal{W}}$. On the other hand, we distinguish the following cases:
(a) If either $m_{12}=0$ or $m_{21}=0$, then \mathcal{W} is ACM, and so the statement is true.
(b) Suppose $m_{12}>0$ and $m_{21}>0$ and let $F \in I_{\mathcal{W}}$ be a bihomogeneous form of bidegree (a, b). Since $F \in\left(H_{1}, V_{2}\right)^{m_{12}}$ we get $F=\sum_{i} Q_{i} H_{1}^{i} V_{2}^{m_{12}-i}$, where either $Q_{i}=0$ or $\operatorname{deg}\left(Q_{i}\right)=\left(a-i, b-m_{12}+i\right)$. Moreover, $F \in\left(H_{2}, V_{1}\right)^{m_{21}}$, but $H_{1}^{i} V_{2}^{m_{12}-i} \notin$ $\left(H_{2}, V_{1}\right)^{m_{21}}$, and, since $I_{\mathcal{W}}$ is bihomogeneous, Q_{i} have to belong to $\left(H_{2}, V_{1}\right)^{m_{21}}$ for each i, which means $Q_{i}=\sum_{j} T_{i j} H_{2}^{m_{21}-j} V_{1}^{j}$. Therefore,

$$
\begin{aligned}
F & =\sum_{i} \sum_{j} T_{i j} H_{2}^{m_{21}-j} V_{1}^{j} H_{1}^{i} V_{2}^{m_{12}-i} \\
& =\underbrace{\sum_{i+j<m_{11}} T_{i j} H_{1}^{i} V_{1}^{j} H_{2}^{m_{21}-j} V_{2}^{m_{12}-i}}_{F^{\prime}}+\underbrace{\sum_{i+j \geq m_{11}} T_{i j} H_{1}^{i} V_{1}^{j} H_{2}^{m_{21}-j} V_{2}^{m_{12}-i}}_{F^{*}} .
\end{aligned}
$$

Note that $F^{*} \in(\mathcal{G}(\mathcal{W}))$, so the claim follows if we also prove that $F^{\prime} \in(\mathcal{G}(\mathcal{W}))$. Then
(i) if $m_{11}=0$ we get $F^{\prime}=0$, and we are done;
(ii) if $m_{11}>0$, we proceed by induction on $s:=m_{12}+m_{21}$. If $s \leq m_{11}+1$ then \mathcal{W} is ACM, by [11, Theorem 4.8], and the statement is true. Suppose $s>m_{11}+1$. Denoted by $w_{1}=\min \left\{m_{12}, m_{11}-1\right\}$, and by $w_{2}=\min \left\{m_{21}, m_{11}-1\right\}$ then

$$
F^{\prime}=H_{2}^{m_{21}-w_{2}} V_{2}^{m_{12}-w_{1}} \cdot \underbrace{\sum_{i+j<m_{11}} T_{i j} H_{1}^{i} V_{1}^{j} H_{2}^{w_{2}-j} V_{2}^{w_{1}-i}}_{F^{\prime \prime}}
$$

From $F^{\prime} \in\left(H_{1}, V_{1}\right)^{m_{11}}$ we have $F^{\prime \prime} \in\left(H_{1}, V_{1}\right)^{m_{11}}$. If $m_{12}>m_{11}-1$, then $w_{1}+w_{2}<s$ and $F^{\prime \prime} \in I\left(\mathcal{W}^{\prime \prime}\right)$, where $\mathcal{W}^{\prime \prime}=m_{11} P_{11}+w_{1} P_{12}+w_{2} P_{21}$. By inductive hypothesis, the forms in $\mathcal{G}\left(\mathcal{W}^{\prime \prime}\right)$ generate $I_{\mathcal{W}^{\prime \prime}}$, and, for some bihomogeneus polynomial C_{l}, $F^{\prime \prime}=\sum C_{l} H_{1}^{a_{1}} H_{2}^{a_{2}} V_{1}^{b_{1}} V_{2}^{b_{2}}$. Then

$$
F^{\prime}=\sum C_{l} H_{1}^{a_{1}} H_{2}^{a_{2}+m_{21}-w_{2}} V_{1}^{b_{1}} V_{2}^{b_{2}+m_{12}-w_{1}}
$$

with the exponents satisfying the systems

$$
\left\{\begin{array} { l }
{ a _ { 1 } + b _ { 1 } \geq m _ { 1 1 } , } \\
{ a _ { 1 } + b _ { 2 } \geq w _ { 1 } , } \\
{ a _ { 2 } + b _ { 1 } \geq w _ { 2 } , }
\end{array} \text { and then } \left\{\begin{array}{l}
a_{1}+b_{1} \geq m_{11} \\
a_{1}+b_{2}+m_{12}-w_{1} \geq m_{12} \\
a_{2}+b_{1}+m_{21}-w_{2} \geq m_{21}
\end{array}\right.\right.
$$

as we need.
In order to conclude the proof, we have to consider $m_{12}<m_{11}<s-1$. In this case, note that $F^{\prime} \in I(\widehat{\mathcal{W}})$, where $\widehat{\mathcal{W}}=m_{11} P_{11}+m_{12} P_{12}+m_{21} P_{21}+\left(s-m_{11}-1\right) P_{22}$ that is an ACM set of points, by [11, Theorem 4.8]. So $F^{\prime} \in\left(\mathcal{G}\left(I_{\mathcal{W}}\right)\right)$.

Notation 2.6 From now on we will denote by $\mathcal{G}\left(I_{\mathcal{W}}\right)$ a minimal set of generators of $I_{\mathcal{W}}$ as in Proposition 2.5.

The next results are immediate consequences of Proposition 2.5. Since $I_{\mathcal{W}_{1}}$ is still in the hypothesis of Proposition 2.5, it suffices to prove them only for the product of powers of H_{1}, H_{2}, V_{1} and V_{2}.

Proposition 2.7 With the notation as above,

$$
I_{\mathcal{W}}=V_{1} I_{\mathcal{W}_{1}}+H_{1}^{m_{11}} H_{2}^{m_{21}} \cdot\left(H_{1}, V_{2}\right)^{\left(m_{21}-m_{11}\right)_{+}} .
$$

Proposition 2.8 With the notation as above,

$$
V_{1} I_{\mathcal{W}_{1}} \cap H_{1}^{m_{11}} H_{2}^{m_{21}} \cdot\left(H_{1}, V_{2}\right)^{\left(m_{12}-m_{11}\right)_{+}}=V_{1} H_{1}^{m_{11}} H_{2}^{m_{21}} \cdot\left(H_{1}, V_{2}\right)^{\left(m_{12}-m_{11}\right)_{+}}
$$

The following proposition will give us a way to construct a free resolution of $I_{\mathcal{W}}$.
Proposition 2.9 The following sequence is exact:

$$
\begin{aligned}
& 0 \longrightarrow V_{1} H_{1}^{m_{11}} H_{2}^{m_{21}} \cdot\left(H_{1}, V_{2}\right)^{\left(m_{12}-m_{11}\right)_{+}} \longrightarrow \\
& V_{1} I_{\mathcal{W}_{1}} \oplus H_{1}^{m_{11}} H_{2}^{m_{21}} \cdot\left(H_{1}, V_{2}\right)^{\left(m_{12}-m_{11}\right)_{+}} \longrightarrow I_{\mathcal{W}} \longrightarrow 0 .
\end{aligned}
$$

Proof This follows from the exact sequence

$$
0 \longrightarrow I \cap J \longrightarrow I \oplus J \longrightarrow I+J \longrightarrow 0
$$

(where I, J are R-modules), Proposition 2.7, and Proposition 2.8.
Remark 2.10 As a consequence of Proposition 2.9 and the mapping cone construction, if $0 \rightarrow L_{2} \rightarrow L_{1} \rightarrow L_{0}$ is a minimal free resolution of $I \mathcal{W}_{1}$, then it is easy to compute that a free resolution for $I_{\mathcal{W}}$ is

$$
\begin{aligned}
0 & \longrightarrow \underset{(a, b) \in A_{2}(\mathcal{W})}{\oplus} R(-a,-b) \oplus L_{2}(0,-1) \\
& \longrightarrow \underset{(a, b) \in A_{1}(\mathcal{W})}{\oplus} R(-a,-b)^{2} \oplus R\left(-m_{11}-m_{21},-\left(m_{12}-m_{11}\right)_{+}-1\right) \oplus L_{1}(0,-1) \\
& \longrightarrow \underset{(a, b) \in A_{0}(\mathcal{W})}{\oplus} R(-a,-b) \oplus L_{0}(0,-1) \longrightarrow I_{\mathcal{W}} \longrightarrow 0,
\end{aligned}
$$

where

$$
\begin{gathered}
A_{0}(\mathcal{W}):=\left\{(a, b) \mid a+b=m_{11}+m_{21}+\left(m_{12}-m_{11}\right)_{+} \text {and } 0 \leq b \leq\left(m_{12}-m_{11}\right)_{+}\right\} \\
A_{1}(\mathcal{W}):=\left\{(a, b) \mid a+b=1+m_{11}+m_{21}+\left(m_{12}-m_{11}\right)_{+} \text {and } 1 \leq b \leq\left(m_{12}-m_{11}\right)_{+}\right\} \\
A_{2}(\mathcal{W}):=\left\{(a, b) \mid a+b=2+m_{11}+m_{21}+\left(m_{12}-m_{11}\right)_{+}\right. \\
\text {and } \left.2 \leq b \leq\left(m_{12}-m_{11}\right)_{+}+1\right\}
\end{gathered}
$$

We will show in Theorem 2.12 that the resolution will be minimal.
From Remark 2.10 we can describe the bigraded Betti numbers of $I_{\mathcal{W}}$ when $m_{11}=0$; i.e., \mathcal{W} is a non-ACM set of two non-collinear fat points. We note that in this case the support of \mathcal{W} is not an ACI .

Lemma 2.11 Let $\mathcal{W}=m_{12} P_{12}+m_{21} P_{21}$ be a set of two non-collinear fat points; then the minimal free resolution of $I_{\mathcal{W}}$ is

$$
\begin{aligned}
0 & \bigoplus_{\substack{a+b=m_{12}+m_{21}+2 \\
a, b \geq 2}} R(-a,-b)^{\beta_{2}(a, b)} \longrightarrow \bigoplus_{\substack{a+b=m_{12}+m_{21}+1 \\
a, b \geq 1}} R(-a,-b)^{\beta_{1}(a, b)} \\
& \longrightarrow \bigoplus_{\substack{a+b=m_{12}+m_{21} \\
a, b \geq 0}} R(-a,-b)^{\beta_{0}(a, b)} \longrightarrow I_{\mathcal{W}} \longrightarrow 0
\end{aligned}
$$

where

$$
\begin{aligned}
& \beta_{0}(a, b):=\min \left\{a, b, m_{21}\right\}+1, \\
& \beta_{1}(a, b):=\min \left\{a, b-1, m_{21}\right\}+\min \left\{a-1, b, m_{21}\right\}+1, \\
& \beta_{2}(a, b):=\min \left\{a, b, m_{21}\right\} .
\end{aligned}
$$

Proof If $m_{21}=0$ then \mathcal{W} consists of only one fat point and the statement is true by Lemma 2.1. Let us suppose $m_{21}>0$ and the statement true for \mathcal{W}_{1}. From Remark 2.10 we get that no cancellation is numerically allowed in the resolution arising from the mapping cone construction, then by inductive hypothesis

$$
\begin{aligned}
& \beta_{0}(a, b)=\left\{\begin{array}{l}
\min \left\{m_{21}-1+m_{12}-(b-1), b-1, m_{21}-1\right\}+2 \\
\text { if } a+b-1=m_{21}-1+m_{12}, b \leq m_{12}, \\
\min \left\{m_{21}-1+m_{12}-(b-1), b-1, m_{21}-1\right\}+1 \\
0 \\
\text { if } a+b-1=m_{21}-1+m_{12}, b>m_{12}, \\
0 \\
\text { otherwise },
\end{array}\right. \\
& = \begin{cases}\min \left\{b, m_{21}\right\}+1 & \text { if } a+b=m_{21}+m_{12}, b \leq m_{12}, \\
a+1 & \text { if } a+b=m_{21}+m_{12}, b>m_{12}, \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}\min \left\{a, b, m_{21}\right\}+1 & \text { if } a+b=m_{21}+m_{12}, \\
0 & \text { otherwise },\end{cases}
\end{aligned}
$$

as required.
Analogously, we can compute $\beta_{1}(a, b)$ and $\beta_{2}(a, b)$.
Theorem 2.12 Let $0 \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{0}$ be the free resolution of $I_{\mathcal{W}}$ as in Remark 2.10; then no cancellation is allowed.

Proof Let $0 \rightarrow \bar{F}_{2} \rightarrow \bar{F}_{1} \rightarrow \bar{F}_{0}$ be a minimal free resolution of $I_{\mathcal{W}}$. Then we observe that $\operatorname{dim}_{k}\left(\bar{F}_{0}\right)_{(a, b)}=\operatorname{dim}_{k}\left(F_{0}\right)_{(a, b)}$, i.e., $\mathcal{G}\left(I_{\mathcal{W}}\right)=V_{1} \cdot \mathcal{G}\left(I_{\mathcal{W}_{1}}\right) \cup H_{1}^{m_{11}} H_{2}^{m_{21}}$. $\mathcal{G}\left(\left(H_{1}, V_{2}\right)^{\left(m_{12}-m_{11}\right)_{+}}\right)$, and it is a minimal set of generators for $I_{\mathcal{W}}$. From Proposition 2.5, it is easy to check that $\mathcal{G}\left(I_{\mathcal{W}}\right) \subseteq V_{1} \cdot \mathcal{G}\left(I_{\mathcal{W}_{1}}\right) \cup H_{1}^{m_{11}} H_{2}^{m_{21}} \cdot \mathcal{G}\left(\left(H_{1}, V_{2}\right)^{\left(m_{12}-m_{11}\right)_{+}}\right)$. On the other hand, take $W \in I_{\mathcal{W}_{1}}$ and $G \in\left(\left(H_{1}, V_{2}\right)^{\left(m_{12}-m_{11}\right)_{+}}\right)$such that $V_{1} W+$ $H_{1}^{m_{11}} H_{2}^{m_{21}} G=0$, then $G \in\left(V_{1}\right)$. Hence let $G=\sum_{i, j} T_{i j} H_{1}^{i} V_{2}^{j}$, for some $T_{i j} \neq 0$, and let $P:=\left(H_{u} \times V_{1}\right) \notin \mathcal{W}$ be such that $T_{i j} \notin\left(H_{u}\right)$. We set $H_{1}^{i} V_{2}^{j}(P)=\alpha_{i j} \neq 0$ so we get $\sum T_{i j} \alpha_{i j} \in\left(V_{1}\right)$ and, because the bihomogenity of $I_{\mathcal{W}}$, this implies that all
$T_{i j} \in\left(V_{1}\right)$. Then $G=V_{1} G^{\prime}$ and $W=-H_{1}^{m_{11}} H_{2}^{m_{21}} G^{\prime}$. Thus, if a cancellation is allowed it has to involve F_{2} and F_{1}. If $m_{21}-m_{12}+1 \geq m_{21}$, then \mathcal{W} is ACM, and we are done. We will show that no cancellation is numerically allowed also in the not ACM case. We proceed by induction on m_{11}. If $m_{11}=0$, then the statement is true from Lemma 2.11. Now we suppose $m_{11}>0$. If for some $\left(a^{\prime}, b^{\prime}\right)$ we have $\operatorname{dim}_{k}\left(F_{1}\right)_{\left(a^{\prime}, b^{\prime}\right)} \neq 0$ and $\operatorname{dim}_{k}\left(F_{2}\right)_{\left(a^{\prime}, b^{\prime}\right)} \neq 0$ then two cases can be distinguished
(a) $\operatorname{dim}_{k}\left(L_{1}\right)_{\left(a^{\prime}, b^{\prime}-1\right)} \neq 0$ and $\operatorname{dim}_{k}\left(L_{2}\right)_{\left(a^{\prime}, b^{\prime}-1\right)}=0$
(b) $\operatorname{dim}_{k}\left(L_{1}\right)_{\left(a^{\prime}, b^{\prime}-1\right)}=0$ and $\operatorname{dim}_{k}\left(L_{2}\right)_{\left(a^{\prime}, b^{\prime}-1\right)} \neq 0$
where $0 \rightarrow L_{2} \rightarrow L_{1} \rightarrow L_{0}$ is a minimal free resolution of $I_{\mathcal{W}_{1}}$. By Remark 2.10 and using the same notation, the first case happens if $\left(a^{\prime}, b^{\prime}\right) \in A_{2}(\mathcal{W}) \neq \varnothing$ so it must be $m_{12}>m_{11}$ and $a^{\prime}+b^{\prime}=2+m_{21}+m_{12}$. If $m_{11}=1$, then we get a contradiction, since in this case, by Lemma 2.11, we get $\operatorname{dim}_{k}\left(L_{1}\right)_{\left(a^{\prime}, b^{\prime}-1\right)} \neq 0$ if and only if $a^{\prime}+b^{\prime}-1=$ $m_{12}+\left(m_{21}-1\right)+1$. We can assume $m_{11}>1$, and we set $\mathcal{W}_{2}:=\left(m_{11}-2\right)_{+} P_{11}+\left(m_{21}-\right.$ 2) ${ }_{+} P_{21}+m_{12} P_{12}$. From $\operatorname{dim}_{k}\left(L_{2}\right)_{\left(a^{\prime}, b^{\prime}-1\right)}=0$, we have $\left(a^{\prime}, b^{\prime}-1\right) \notin A_{2}\left(\mathcal{W}_{1}\right)$, but $\left(a^{\prime}, b^{\prime}\right) \in A_{2}(\mathcal{W})$, and then the only case we need to consider is $\left(a^{\prime}, b^{\prime}\right)=\left(m_{12}+\right.$ $\left.m_{21}, 2\right)$. Since $\left(a^{\prime}, b^{\prime}-1\right) \notin A_{1}\left(\mathcal{W}_{1}\right)$, we have $\operatorname{dim}_{k}\left(L_{1}\right)_{\left(a^{\prime}, 1\right)} \neq 0$, and again, since $\left(a^{\prime}, 0\right) \notin A_{1}\left(\mathcal{W}_{2}\right)$. In the second case, we can proceed in a similar way. First note that $\left(a^{\prime}, b^{\prime}\right) \in A_{1} \cup\left\{\left(m_{11}+m_{21},\left(m_{12}-m_{11}\right)_{+}\right)\right\}$i.e.,

$$
\left\{\begin{array}{l}
a^{\prime}+b^{\prime}=1+m_{11}+m_{21}+\left(m_{12}-m_{11}\right)_{+} \\
1 \leq b^{\prime} \leq\left(m_{12}-m_{11}\right)_{+}+1
\end{array}\right.
$$

Moreover, since $\operatorname{dim}_{k}\left(L_{1}\right)_{\left(a^{\prime}, b^{\prime}-1\right)}=0$ then $\left(a^{\prime}, b^{\prime}-1\right) \notin A_{1}\left(\mathcal{W}_{1}\right)$ i.e., either $a^{\prime}+b^{\prime} \neq$ $m_{11}+m_{21}+\left(m_{12}-m_{11}+1\right)_{+}$or $b^{\prime} \notin\left\{2, \ldots,\left(m_{12}-m_{11}-1\right)_{+}+2\right\}$. Since the second condition always holds, we get $m_{12}<m_{11}$, and then $\left(a^{\prime}, b^{\prime}\right)=\left(m_{11}+m_{12}, 1\right)$. Then $\operatorname{dim}_{k}\left(L_{2}\right)_{\left(a^{\prime}, 0\right)} \neq 0$, which is not allowed for a finite set of points.

The next example shows how to compute inductively a minimal bigraded resolution of $I_{\mathcal{W}}$.

Example 2.13 Let be $\mathcal{W}=2 P_{11}+4 P_{12}+3 P_{21}$, we set $\mathcal{W}_{k}:=(2-k) P_{11}+4 P_{12}+$ $(3-k) P_{21}$, for $k=1,2$. We use Lemma 2.11 to compute the resolution of $I_{\mathcal{W}_{2}}$ where $\mathcal{W}_{2}=4 P_{12}+P_{21}$ is a set of two non-collinear fat points.

$$
\text { (2.1) } \begin{aligned}
0 & \longrightarrow R(-5,-2) \oplus R(-4,-3) \oplus R(-3,-4) \oplus R(-2,-5) \\
& \longrightarrow R(-5,-1)^{2} \oplus R(-4,-2)^{3} \oplus R(-3,-3)^{3} \oplus R(-2,-4)^{3} \oplus \longrightarrow R(-1,-5)^{2} \\
& \longrightarrow R(-5,0) \oplus R(-4,-1)^{2} \oplus R(-3,-2)^{2} \oplus \\
& R(-2,-3)^{2} \oplus R(-1,-4)^{2} \oplus R(0,-5) \\
& I_{\mathcal{W}_{2}} \longrightarrow 0
\end{aligned}
$$

The next step is to compute a minimal free resolution for $I_{\mathcal{W}_{1}}$ where $\mathcal{W}_{1}=P_{11}+4 P_{12}+$ $2 P_{21}$. First, we shift all the degrees of the modules in resolution (2.1) by $(0,-1)$; then we compute all the pairs (i, j) in $\mathcal{A}_{0}\left(\mathcal{W}_{1}\right)$ and add $R(-i,-j)$ among the generators' module; we compute all the pairs (i, j) in $\mathcal{A}_{1}\left(\mathcal{W}_{1}\right)$ and add $R(-i,-j)$ among the first syzygies' module and, as last step, we compute all the pairs (i, j) in $\mathcal{A}_{2}\left(\mathcal{W}_{1}\right)$ and add $R(-i,-j)$ among the second syzygies's module of \mathcal{W}_{2}. Thus, a minimal free resolution
for $I_{\mathcal{W}_{1}}$ is

$$
\begin{align*}
0 \longrightarrow & R(-6,-2) \oplus R(-5,-3)^{2} \oplus R(-4,-4)^{2} \oplus R(-3,-5) \oplus R(-2,-6) \tag{2.2}\\
\longrightarrow & R(-6,-1)^{2} \oplus R(-5,-2)^{4} \oplus R(-4,-3)^{5} \oplus R(-3,-4)^{4} \oplus R(-2,-5)^{3} \\
\longrightarrow & R(-1,-6)^{2} \longrightarrow R(-6,0) \oplus R(-5,-1)^{2} \oplus R(-4,-2)^{3} \oplus \\
& R(-3,-3)^{3} \oplus R(-2,-4)^{2} \oplus R(-1,-5)^{2} \oplus R(0,-6) \\
\longrightarrow & I_{\mathcal{W}_{1}} \longrightarrow 0 .
\end{align*}
$$

Finally, repeating the same procedure as above, i.e., shifting all the modules' degrees in the resolution (2.2) by $(0,-1)$ and adding $R(-i,-j)$ with (i, j) all the pairs in $\mathcal{A}_{0}(\mathcal{W})$, $\mathcal{A}_{1}(\mathcal{W}), \mathcal{A}_{2}(\mathcal{W})$ among the generators' module, first syzygies' module, and second syzygies's module of \mathcal{W}_{1}, respectively, we get a minimal free resolution of $I_{\mathcal{W}}$:

$$
\begin{gathered}
0 \longrightarrow R(-7,-2) \oplus R(-6,-3)^{2} \oplus R(-5,-4)^{2} \oplus R(-4,-5)^{2} \oplus R(-3,-6) \oplus \\
R(-2,-7) \\
\longrightarrow R(-7,-1)^{2} \oplus R(-6,-2)^{4} \oplus R(-5,-3)^{5} \oplus R(-4,-4)^{5} \oplus R(-3,-5)^{4} \oplus \\
R(-2,-6)^{3} \oplus R(-1,-7)^{2} \\
\longrightarrow R(-7,0) \oplus R(-6,-1)^{2} \oplus R(-5,-2)^{3} \oplus R(-4,-3)^{3} \oplus R(-3,-4)^{3} \oplus \\
R(-2,-5)^{2} \oplus R(-1,-6)^{2} \oplus R(0,-7) \\
\longrightarrow I_{\mathcal{W}} \longrightarrow 0
\end{gathered}
$$

3 The Minimal Free Resolution of a Fat Almost Complete Intersection in $\mathbb{P}^{1} \times \mathbb{P}^{1}$

As stated in the introduction, in this section we prove the main result of the paper that generalizes Theorem 2.12 for any fat almost complete intersection Z. Recall our notation.

Notation 3.1 Let $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ be positive integers. We denote by $z:=\sum w_{i j} P_{i j}$ a fat ACI of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ where

$$
w_{i j}= \begin{cases}m_{11} & \text { if }(i, j) \leq\left(\alpha_{1}, \beta_{1}\right) \\ m_{21} & \text { if }\left(\alpha_{1}+1,1\right) \leq(i, j) \leq\left(\alpha_{1}+\alpha_{2}, \beta_{1}\right) \\ m_{12} & \text { if }\left(1, \beta_{1}+1\right) \leq(i, j) \leq\left(\alpha_{1}, \beta_{1}+\beta_{2}\right) \\ 0 & \text { otherwise }\end{cases}
$$

for some non-negative integers m_{11}, m_{12}, m_{21}, and we denote by $z_{1}:=\sum \bar{w}_{i j} P_{i j}$ a set of fat points of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ where

$$
\bar{w}_{i j}= \begin{cases}\left(m_{11}-1\right)_{+} & \text {if }(i, j) \leq\left(\alpha_{1}, \beta_{1}\right) \\ \left(m_{21}-1\right)_{+} & \text {if }\left(\alpha_{1}+1,1\right) \leq(i, j) \leq\left(\alpha_{1}+\alpha_{2}, \beta_{1}\right) \\ m_{12} & \text { if }\left(1, \beta_{1}+1\right) \leq(i, j) \leq\left(\alpha_{1}, \beta_{1}+\beta_{2}\right) \\ 0 & \text { otherwise }\end{cases}
$$

for m_{11}, m_{12}, m_{21} as in 2 . We set $Q_{1}:=H_{1} \cdots H_{\alpha_{1}}, Q_{2}:=H_{\alpha_{1}+1} \cdots H_{\alpha_{1}+\alpha_{2}}$ and $U_{1}:=$ $V_{1} \cdots V_{\beta_{1}}, U_{2}:=V_{\beta_{1}+1} \cdots V_{\beta_{1}+\beta_{2}}$.

We have the following lemma.
Lemma 3.2 $I_{\mathcal{Z}}=\left(Q_{1}, U_{1}\right)^{m_{11}} \cap\left(Q_{1}, U_{2}\right)^{m_{12}} \cap\left(Q_{2}, U_{1}\right)^{m_{21}}$.

Proof I_{Z} is the intersection of three powers of homogeneous complete intersection ideals and $I^{m}=I^{(m)}$ where I is the ideal defining a complete intersection from [13, Appendix 6, Lemma 5]. We have

$$
\begin{aligned}
I_{\mathcal{Z}}= & \bigcap_{(i, j) \leq\left(\alpha_{1}, \beta_{1}\right)}\left(H_{i}, V_{j}\right)^{m_{11}} \cap \bigcap_{\left(\alpha_{1}+1,1\right) \leq(i, j) \leq\left(\alpha_{1}+\alpha_{2}, \beta_{1}\right)}\left(H_{i}, V_{j}\right)^{m_{21}} \\
& \cap \bigcap_{\left(1, \beta_{1}+1\right) \leq(i, j) \leq\left(\alpha_{1}, \beta_{1}+\beta_{2}\right)}\left(H_{i}, V_{j}\right)^{m_{12}} \\
= & \left(\bigcap_{(i, j) \leq\left(\alpha_{1}, \beta_{1}\right)}\left(H_{i}, V_{j}\right)\right)^{m_{11}} \cap\left(\bigcap_{\left(\alpha_{1}+1,1\right) \leq(i, j) \leq\left(\alpha_{1}+\alpha_{2}, \beta_{1}\right)}\left(H_{i}, V_{j}\right)\right)^{m_{21}} \\
& \cap\left(\bigcap_{\left(1, \beta_{1}+1\right) \leq(i, j) \leq\left(\alpha_{1}, \beta_{1}+\beta_{2}\right)}\left(H_{i}, V_{j}\right)\right)^{m_{12}} .
\end{aligned}
$$

Remark 3.3 All the results given in Section 2 can be generalized by replacing H_{i} by Q_{i} and V_{j} by U_{j}.

The following lemma generalizes Lemma 2.11. That is, we compute a minimal free resolution of \mathcal{Z} whose support is the disjoint union of two fat complete intersections, and it is never ACM. As pointed out in the introduction, this is one of the starting base cases to describe a minimal free resolution of $I_{\mathcal{Z}}$ by induction when $m_{11}<m_{21}$.

Lemma 3.4 In $\mathbb{P}^{1} \times \mathbb{P}^{1}$, let

$$
z:=\sum_{\left(1, \beta_{1}+1\right) \leq(i, j) \leq\left(\alpha_{1}, \beta_{1}+\beta_{2}\right)} m_{12} P_{i j}+\sum_{\left(\alpha_{1}+1,1\right) \leq(i, j) \leq\left(\alpha_{1}+\alpha_{2}, \beta_{1}\right)} m_{21} P_{i j}
$$

be a set offat points whose support is the disjoint union of two fat complete intersections. Then a minimal free resolution of I_{z} is

$$
\begin{aligned}
0 & \longrightarrow \bigoplus_{(a, b, c, d) \in \mathcal{D}_{2}} R\left(-a \alpha_{1}-b \alpha_{2},-c \beta_{1}-d \beta_{2}\right) \\
& \longrightarrow \bigoplus_{(a, b, c, d) \in \mathcal{D}_{1}} R\left(-a \alpha_{1}-b \alpha_{2},-c \beta_{1}-d \beta_{2}\right) \\
& \longrightarrow \bigoplus_{(a, b, c, d) \in \mathcal{D}_{0}} R\left(-a \alpha_{1}-b \alpha_{2},-c \beta_{1}-d \beta_{2}\right) \longrightarrow I_{z} \longrightarrow 0
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathcal{D}_{0}:=\left\{(a, b, c, d) \mid 0 \leq a, d \leq m_{12}, 0 \leq b, c \leq m_{21}, a+d=m_{12}, b+c=m_{21}\right\}, \\
& \mathcal{D}_{1}:=\left\{(a, b, c, d) \mid 0 \leq a, d \leq m_{12}, 0 \leq b, c \leq m_{21},\right. \\
& \left.\qquad\left(a+d=m_{12}+1, b+c=m_{21}\right) \vee\left(a+d=m_{12}, b+c=m_{21}+1\right)\right\}, \\
& \mathcal{D}_{2}:=\left\{(a, b, c, d) \mid 0 \leq a, d \leq m_{12}, 0 \leq b, c \leq m_{21},\right. \\
& \left.\quad a+d=m_{12}+1, b+c=m_{21}+1\right\} .
\end{aligned}
$$

Proof This follows by induction on m_{21}, using Lemma 2.3 and the mapping cone construction.

Theorem 3.5 With Notation 3.1, let $0 \rightarrow \mathcal{L}_{2} \rightarrow \mathcal{L}_{1} \rightarrow \mathcal{L}_{0}$ be a minimal free resolution of $I_{z_{1}}$. Then a minimal free resolution of a fat ACI I_{z} is

$$
\begin{aligned}
0 & \longrightarrow \bigoplus_{\left(a, b-\beta_{1}\right) \in \mathcal{A}_{1}(z)} R(-a,-b) \oplus \mathcal{L}_{2}\left(0,-\beta_{1}\right) \\
& \longrightarrow \bigoplus_{\left(a, b-\beta_{1}\right) \in \mathcal{A}_{0}(z)} R(-a,-b) \bigoplus_{(a, b) \in \mathcal{A}_{1}(z)} R(-a,-b) \oplus \mathcal{L}_{1}\left(0,-\beta_{1}\right) \\
& \longrightarrow \bigoplus_{(a, b) \in \mathcal{A}_{0}(z)} R(-a,-b) \oplus \mathcal{L}_{0}\left(0,-\beta_{1}\right) \longrightarrow I_{z} \longrightarrow 0
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathcal{A}_{0}(\mathcal{Z})=\left\{\left(\alpha_{1}\left(m_{11}+i\right)+\alpha_{2} m_{21},\left(\left(m_{12}-m_{11}\right)_{+}-i\right) \beta_{2}\right) \mid i=0, \ldots,\left(m_{12}-m_{11}\right)_{+}\right\}, \\
& \mathcal{A}_{1}(\mathcal{Z})=\left\{\left(\alpha_{1}\left(m_{11}+i+1\right)+\alpha_{2} m_{21}\right),\right. \\
& \left.\left.\quad\left(\left(m_{12}-m_{11}\right)_{+}-i\right) \beta_{2}\right) \mid i=0, \ldots,\left(m_{12}-m_{11}\right)_{+}-1\right\}
\end{aligned}
$$

Proof The proof uses Lemma 2.3, Remark 3.3, and Remark 2.10. Note that, by induction, Lemma 3.4, and Lemma 2.2, the number of elements in a minimal set of generators for the modules in the resolution does not depend on $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$. Moreover, using Remark 2.10, if $\alpha_{1}=\alpha_{2}=\beta_{1}=\beta_{2}=1$, we get $\left|\mathcal{A}_{0}(\mathcal{Z})\right|=\left|A_{0}(\mathcal{W})\right|$, $\left|\mathcal{A}_{0}(\mathcal{Z})\right|+\left|\mathcal{A}_{1}(\mathcal{Z})\right|=\left|A_{1}(\mathcal{W})\right|$, and $\left|\mathcal{A}_{1}(\mathcal{Z})\right|=\left|A_{2}(\mathcal{W})\right|$. Therefore, by induction and Theorem 2.12, no cancellation is allowed in the resolution arising from mapping cone. This follows, since the maps of the mapping cone cannot have invertible entries; otherwise, by Remark 3.3, the maps of the mapping cone used in Theorem 2.12 would also have invertible entries.

Example 3.6 Consider the following set of fat points with $\alpha_{1}=\beta_{1}=\beta_{2}=2$ and $\alpha_{2}=1$:

$$
\begin{aligned}
Z:= & 2 P_{11}+2 P_{12}+4 P_{13}+4 P_{14}+ \\
& +2 P_{21}+2 P_{22}+4 P_{23}+4 P_{24}+ \\
& +3 P_{31}+3 P_{32}
\end{aligned}
$$

Note that $\mathcal{A}_{0}(\mathcal{Z})=\{(7,4),(9,2),(11,0)\}$ and $\mathcal{A}_{1}(Z)=\{(9,4),(11,2)\}$.

Set, for $i=0,1,2$

$$
\begin{aligned}
z_{i}:= & (2-i) P_{11}+(2-i) P_{12}+4 P_{13}+4 P_{14}+ \\
& +(2-i) P_{21}+(2-i) P_{22}+4 P_{23}+4 P_{24}+ \\
& +(3-i) P_{31}+(3-i) P_{32}
\end{aligned}
$$

We start by computing the resolution of z_{2}. By Lemma 3.4 we get the following degrees for a minimal set of generators, first and second syzygies where $(a, b)^{n}$ indicates

Generators:	$\{(9,0),(8,2),(7,2),(6,4),(5,4),(4,6),(3,6),(2,8)$
	$(1,8),(0,10)\}$
First Syzygies:	$\begin{aligned} & \left\{(9,2)^{2},(8,4),(7,4)^{2},(6,6),(5,6)^{2},(4,8),(3,8)^{2}\right. \\ & (2,10),(1,10)\} \end{aligned}$
Second Syzygi	$\{(9,4),(7,6),(5,8),(3,10)\}$

that the set contains n elements of degree (a, b). Now, by Theorem 3.5, and mimicking the procedure used in Example 2.13, we can compute the resolution of $I_{\mathcal{Z}_{1}}$ where the degrees of a minimal set of generators, first and second syzygies are respectively:

$$
\begin{gathered}
\text { Generators : } \quad\{(9,2),(8,4),(7,4),(6,6),(5,6),(4,8),(3,8),(2,10),(1,10) \text {, } \\
\quad(0,12),(10,0),(8,2),(6,4),(4,6)\}
\end{gathered}
$$

First Syzygies : $\quad\left\{(9,4)^{2},(8,6),(7,6)^{2},(6,8),(5,8)^{2},(4,10),(3,10)^{2},(2,12)\right.$, $\left.(1,12)(10,2)^{2},(8,4)^{2},(6,6)^{2},(4,8)\right\}$
Second Syzygies : $\{(9,6),(7,8),(5,10),(3,12)\} \cup\{(10,4),(8,6),(6,8)\}$
Finally, applying Theorem 3.5 again, we get a minimal resolution of $I_{z}=I_{z_{0}}$:

$$
\begin{gathered}
0 \longrightarrow[R(-10,-6) \oplus R(-9,-8) \oplus R(-8,-8) \oplus R(-7,-10) \oplus \\
R(-6,-10) \oplus R(-5,-12) \oplus R(-3,-14)] \oplus[R(-9,-6) \oplus R(-11,-4)] \\
\longrightarrow\left[R(-10,-4)^{2} \oplus R(-9,-6)^{2} \oplus R(-8,-8) \oplus R(-8,-6)^{2} \oplus R(-7,-8)^{2} \oplus\right. \\
R(-6,-10) \oplus R(-6,-8)^{2} \oplus R(-5,-10)^{2} \oplus R(-4,-10) \oplus \\
\left.R(-4,-12) \oplus R(-3,-12)^{2} \oplus R(-2,-14) \oplus R(-1,-14)\right] \oplus \\
{[R(-7,-6) \oplus R(-9,-4) \oplus R(-11,-2)] \oplus[R(-9,-4) \oplus R(-11,-2)]} \\
\longrightarrow[R(-10,-2) \oplus R(-9,-4) \oplus R(-8,-6) \oplus R(-8,-4) \oplus R(-7,-6) \oplus \\
R(-6,-8) \oplus R(-6,-6) \oplus R(-5,-8) \oplus R(-4,-10) \oplus R(-4,-8) \oplus \\
R(-3,-10) \oplus R(-2,-12) \oplus R(-1,-12) \oplus R(0,-14)] \oplus \\
{[R(-7,-4) \oplus R(-9,-2) \oplus R(-11,0)] \longrightarrow I_{z} \longrightarrow 0}
\end{gathered}
$$

The next corollary better describes the resolution of I_{Z} when $m_{11}=m_{21}$.

Corollary 3.7 With Notation 3.1, suppose $m_{11}=m_{21}=n$ and $m_{12}=m$. Then a minimal free resolution of I_{z} is

$$
\begin{aligned}
0 & \longrightarrow \bigoplus_{(a, b, c, d) \in \mathcal{B}_{2}(z)} R\left(-a \alpha_{1}-b \alpha_{2},-c \beta_{1}-d \beta_{2}\right) \\
& \longrightarrow \bigoplus_{(a, b, c, d) \in \mathcal{B}_{1}(z)} R\left(-a \alpha_{1}-b \alpha_{2},-c \beta_{1}-d \beta_{2}\right) \\
& \longrightarrow \bigoplus_{(a, b, c, d) \in \mathcal{B}_{0}(z)} R\left(-a \alpha_{1}-b \alpha_{2},-c \beta_{1}-d \beta_{2}\right) \longrightarrow I_{z} \longrightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{B}_{0}(\mathcal{Z}):=\{(a, b, c, d) \mid a+d=m, b+c=n, 0 \leq b \leq \min \{a, n\} \leq a \leq m\} \\
& \mathcal{B}_{1}(\mathcal{Z}):=\{(a, b, c, d) \mid(a+d=m+1, b+c=n) \\
&\vee(a+d=m, b+c=n+1), 0 \leq b \leq \min \{a, n\} \leq a \leq m\}, \\
& \mathcal{B}_{2}(\mathcal{Z}):=\{(a, b, c, d) \mid a+d=m+1, b+c=n+1,0 \leq b \leq \min \{a, n\} \leq a \leq m\} .
\end{aligned}
$$

Proof We proceed by induction on n. If $n=0$ then Z is homogeneous and its support is a complete intersection so, by Lemma 2.3, we are done. Assume now that $n>0$ and take z_{1} as in Notation 3.1. Then we get

$$
\begin{aligned}
& \cdots \longrightarrow \underset{(a, b, c+1, d) \in \mathcal{B}_{0}\left(\mathcal{Z}_{1}\right)}{\bigoplus_{(u, v) \in \mathcal{A}_{0}(z)} R\left(-a \alpha_{1}-b \alpha_{2},-c \beta_{1}-d \beta_{2}\right) \oplus} \\
& \mathcal{B}_{0}\left(\mathcal{Z}_{1}\right):=\{(a, b, c, d) \mid a+d=m, b+c=n-1,0 \leq b \leq \min \{a, n-1\} \leq a \leq m\}, \\
& \mathcal{A}_{0}(\mathcal{Z})=\left\{\left(\left(\alpha_{1}(n+i)+\alpha_{2} n\right), \beta_{2}(m-n-i)\right) \mid i=0, \ldots, m-n\right\},
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
& \cdots \longrightarrow \underset{(a, b, c+1, d) \in \mathcal{B}_{0}\left(z_{1}\right)}{\oplus} R\left(-a \alpha_{1}-b \alpha_{2},-c \beta_{1}-d \beta_{2}\right) \oplus \\
& \underset{(a, b, c, d) \in \mathcal{A}_{0}^{\prime}(z)}{ } R\left(-\alpha_{1} a-\alpha_{2} b,-\beta_{1} c-\beta_{2} d\right) \longrightarrow I_{z} \longrightarrow 0,
\end{aligned}
$$

where $\mathcal{A}_{0}^{\prime}(\mathcal{Z}):=\{(a, b, c, d) \mid b=n, c=0, a+d=m, n \leq a \leq m\}$.
Then $\mathcal{B}_{0}(Z)=\mathcal{B}_{0}\left(Z_{1}\right) \cup \mathcal{A}_{0}^{\prime}(Z)$. Analogously, we get $\mathcal{B}_{1}(\mathcal{Z})$ and $\mathcal{B}_{2}(\mathcal{Z})$.
Consequently, if Z is a homogeneous set of fat points, then a minimal free resolution is easy to describe.

Corollary 3.8 With Notation 3.1, suppose $m_{11}=m_{12}=m_{21}=m$, i.e., the support of Z is an almost complete intersection with associated tuple

$$
\alpha_{z}:=(\underbrace{\beta_{1}+\beta_{2}, \ldots, \beta_{1}+\beta_{2}}_{\alpha_{1}+\alpha_{2}}, \underbrace{\beta_{1}, \ldots, \beta_{1}}_{\alpha_{1}})
$$

for some $m \in \mathbb{N}$.

Then a minimal free resolution of I_{z} is

$$
\begin{aligned}
0 & \longrightarrow \bigoplus_{(a, b, c, d) \in \mathcal{B}_{2}(z)} R\left(-a \alpha_{1}-b \alpha_{2},-c \beta_{1}-d \beta_{2}\right) \\
& \longrightarrow \bigoplus_{(a, b, c, d) \in \mathcal{B}_{1}(\mathcal{Z})} R\left(-a \alpha_{1}-b \alpha_{2},-c \beta_{1}-d \beta_{2}\right) \\
\longrightarrow & \bigoplus_{(a, b, c, d) \in \mathcal{B}_{0}(\mathcal{Z})} R\left(-a \alpha_{1}-b \alpha_{2},-c \beta_{1}-d \beta_{2}\right) \longrightarrow I_{\mathcal{Z}} \longrightarrow 0, \\
\mathcal{B}_{0}(\mathcal{Z}): & :\{(a, b, c, d) \mid a+d=m, b+c=m, 0 \leq b \leq a \leq m\} \\
\mathcal{B}_{1}(\mathcal{Z}): & :=\{(a, b, c, d) \mid(a+d=m+1, b+c=m) \\
& \vee(a+d=m, b+c=m+1), 0 \leq b \leq a \leq m\} \\
\mathcal{B}_{2}(\mathcal{Z}): & :=\{(a, b, c, d) \mid a+d=m+1, b+c=m+1,0 \leq b \leq a \leq m\} .
\end{aligned}
$$

Proof Just use Corollary 3.7.
Remark 3.9 Recently, using Theorem 1.1 and Corollary 1.2, it was proved in [5], that if Z is a homogeneous set of fat points whose support is an almost complete intersection, then

$$
I_{z}=\left(Q_{1}, U_{1}\right)^{m} \cap\left(Q_{1}, U_{2}\right)^{m} \cap\left(Q_{2}, U_{1}\right)^{m}=J^{m}
$$

where we set $J:=\left(Q_{1}, U_{1}\right) \cap\left(Q_{1}, U_{2}\right) \cap\left(Q_{2}, U_{1}\right)$. That is, the symbolic powers of J and the regular powers are the same. Therefore a proof of Corollary 3.8 could be given by induction on m, since $J^{m}=J \cdot J^{m-1}$.

In the next section we look at the symbolic powers of I_{Z} in the non-homogeneous case.

4 Symbolic vs Regular Powers of a Particular Almost Complete Intersection

As said in the introduction, given a homogeneous ideal I, the m-th symbolic power of I is the ideal $I^{(m)}=R \cap\left(\bigcap_{P \in A s s(I)}\left(I^{m} R_{P}\right)\right)$. Following [3], for an ideal of the form $I_{X}=\bigcap_{P_{i j} \in X}\left(I_{P_{i j}}^{m_{i j}}\right)$ where $X \subseteq \mathbb{P}^{1} \times \mathbb{P}^{1}$ is a finite set of points, $I_{P_{i j}}$ is the ideal generated by all forms vanishing at $P_{i j}$ and each $m_{i j}$ is a non-negative integer; $I_{X}^{(m)}$ turns out to be $\cap_{P_{i j} \in X}\left(I_{P_{i j}}^{m m_{i j}}\right)$. If I_{X}^{m} is the usual power, then we have the containment $I_{X}^{m} \subseteq I_{X}^{(m)}$ and it is a difficult problem to determine when there are containments of the form $I_{X}^{(m)} \subseteq I_{X}^{r}$. Furthermore, the m-th symbolic power of I_{X} has the form $I_{X}^{(m)}=\cap_{i j} I_{P_{i j}}^{m}$.

In this section we prove that if Z is a fat ACI of type (1.1), then $I_{z}^{(m)}=I_{Z}^{m}$. We start with the three non-collinear points case by comparing the ideal $I_{\mathcal{W}}^{m}$ with $I_{\mathcal{W}}^{(\dot{m})}$, where we denote by $I_{\mathcal{W}}^{(m)}:=I\left(m \cdot m_{11} P_{11}+m \cdot m_{12} P_{12}+m \cdot m_{21} P_{21}\right)$.

Theorem 4.1 Let $\mathcal{W}=m_{11} P_{11}+m_{12} P_{12}+m_{21} P_{21}$ be a fat ACI of three non-collinear points in $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Then $I_{\mathcal{W}}^{m}=I_{\mathcal{W}}^{(m)}$.

Proof First note that $I_{\mathcal{W}}^{(m)}$, by Proposition 2.5 is generated by a set, $\mathcal{G}\left(I_{\mathcal{W}}^{(m)}\right)$, of forms which are product of lines. Thus, take such a form $F:=H_{1}^{a_{1}} H_{2}^{a_{2}} V_{1}^{b_{1}} V_{2}^{b_{2}}$ in $\mathcal{G}\left(I_{\mathcal{W}}^{(m)}\right)$; we have to show that $F \in I_{\mathcal{W}}^{m}$. We will show that we can decompose the form F as $F_{1} \cdot F_{2}$ with $F_{1} \in I_{\mathcal{W}}$ and $F_{2} \in I_{\mathcal{W}}^{(m-1)}$; therefore, the theorem will follows by induction. Let us consider the Euclidean division in \mathbb{N} of a_{i}, b_{j} with m, say $a_{i}=c_{i} m+r_{i}, b_{j}=d_{j} m+s_{j}$, for $i, j \in\{1,2\}$. We get, for $(i, j) \in\{(1,1),(1,2),(2,1)\}, c_{i} m+r_{i}+d_{j} m+s_{j}=a_{i}+b_{j} \geq$ $m \cdot m_{i j}$, i.e., $c_{i}+d_{j}+\left(r_{i}+s_{j}\right) / m \geq m_{i j}$; then $c_{i}+d_{j}+\left\lfloor\left(r_{i}+s_{j}\right) / m\right\rfloor \geq m_{i j}$. Let

$$
\delta_{i}= \begin{cases}1 & \text { if } s_{i} \neq 0 \\ 0 & \text { if } s_{i}=0\end{cases}
$$

and set

$$
F_{1}:=H_{1}^{c_{1}} H_{2}^{c_{2}} V_{1}^{d_{1}+\delta_{1}} V_{2}^{d_{2}+\delta_{2}} \quad \text { and } \quad F_{2}:=H_{1}^{a_{1}-c_{1}} H_{2}^{a_{2}-c_{2}} V_{1}^{b_{1}-d_{1}-\delta_{1}} V_{2}^{b_{2}-d_{2}-\delta_{2}}
$$

For $(i, j) \in\{(1,1),(1,2),(2,1)\}$, we have $c_{i}+d_{j}+\delta_{j} \geq c_{i}+d_{j}+\left\lfloor\left(r_{i}+s_{j}\right) / m\right\rfloor \geq m_{i j}$. This guarantees that $F_{1} \in I_{\mathcal{W}}$. Analogously,

$$
\begin{aligned}
a_{i}-c_{i}+b_{j}-d_{j}-\delta_{j} & =c_{i}(m-1)+r_{i}+d_{j}(m-1)+\left(s_{j}-1\right)_{+} \\
& =(m-1)\left(c_{1}+d_{1}+\left(r_{i}+\left(s_{j}-1\right)_{+}\right) /(m-1)\right)
\end{aligned}
$$

Since $\left(r_{i}+\left(s_{j}-1\right)_{+}\right) /(m-1) \geq\left\lfloor\left(r_{i}+s_{j}\right) / m\right\rfloor$, we are done.
We are ready to prove the main result of this section. Set $I_{\mathcal{Z}}^{(m)}:=\left(Q_{1}, U_{1}\right)^{m_{11} m} \cap$ $\left(Q_{1}, U_{2}\right)^{m_{12} m} \cap\left(Q_{2}, U_{1}\right)^{m_{21} m}$; i.e., $Z^{(m)}$ is

Theorem 4.2 Let Z be a fat ACI of type (1.1). Then $I_{z}^{m}=I_{z}^{(m)}$.
Proof By Lemma 3.2 and Remark 3.3, we can repeat the same argument as in Theorem 4.1.

Acknowledgments We gratefully acknowledge the computer algebra systems CoCoA [4] and Macaulay [6] that inspired many of the results of this paper. We also thank the referee for his/her useful comments.

References

[1] C. Bocci, S. Cooper, and B. Harbourne, Containment results for ideals of various configurations of points in \mathbb{P}^{N}. J. Pure Appl. Algebra 218(2014), 65-75. http://dx.doi.org/10.1016/j.jpaa.2013.04.012
[2] C. Bocci and B. Harbourne, Comparing powers and symbolic power of ideals. J. Algebraic Geometry 19(2010), 399-417. http://dx.doi.org/10.1090/S1056-3911-09-00530-X
[3] _, The resurgence of ideals of points and the containment problem. Proc. Amer. Math. Soc. 138(2010), 1175-1190. http://dx.doi.org/10.1090/S0002-9939-09-10108-9
[4] CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra. http://cocoa.dima.unige.it
[5] S. Cooper, G. Fatabbi, E. Guardo, B. Harbourne, A. Lorenzini, J. Migliore, U. Nagel, A. Seceleanu, J. Szpond, and A. Van Tuyl, Symbolic powers of codimension two Cohen-Macaulay ideals. arxiv:1606.00935
[6] D. R. Grayson and M. E. Stillman, Macaulay 2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/.
[7] E. Guardo, B. Harbourne, and A. Van Tuyl, Asymptotic resurgences for ideals of positive dimensional subschemes of projective space. Adv. Math. 246(2013), 114-127. http://dx.doi.org/10.1016/j.aim.2013.05.027
[8] , Fat lines in \mathbb{P}^{3} : regular versus symbolic powers. J. Algebra 390(2013), 221-230. http://dx.doi.org/10.1016/j.jalgebra.2013.05.028
[9] , Symbolic powers versus regular powers of ideals of general points in $P^{1} \times P^{1}$. Canad. J. Math. 65(2013), 823-842. http://dx.doi.org/10.4153/CJM-2012-045-3
[10] E. Guardo and A. Van Tuyl, Arithmetically Cohen-Macaulay sets of points in $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Springer Briefs in Mathematics, Springer, Cham, 2015.
[11] , Fat points in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and their Hilbert functions. Canad. J. Math. 56(2004), 716-741. http://dx.doi.org/10.4153/CJM-2004-033-0
[12] M. Hochster and C. Huneke, Comparison of symbolic and ordinary powers of ideals. Invent. Math. 147(2002), 349-369. http://dx.doi.org/10.1007/s002220100176
[13] O. Zariski and P. Samuel, Commutative algebra. Vol. II. The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960.
Dipartimento di Matematica e Informatica, Viale A. Doria, 6-95100-Catania, Italy
e-mail: favacchio@dmi.unict.it guardo@dmi.unict.it

[^0]: Received by the editors June 1, 2016; revised September 21, 2016.
 Published electronically December 23, 2016.
 AMS subject classification: 13C40, 13F20, 13A15, 14C20, 14M05.
 Keywords: points in $\mathbb{P}^{1} \times \mathbb{P}^{1}$, symbolic powers, resolution, arithmetically Cohen-Macaulay.

