
Canad. J. Math. Vol. 69 (6), 2017 pp. 1274–1291
http://dx.doi.org/10.4153/CJM-2016-040-4
©Canadian Mathematical Society 2016

The Minimal Free Resolution of Fat Almost
Complete Intersections in P1

× P1

Giuseppe Favacchio and Elena Guardo

Abstract. A current research theme is to compare symbolic powers of an ideal I with the regular
powers of I. In this paper, we focus on the case where I = IX is an ideal deûning an almost complete
intersection (ACI) set of points X in P1

× P1 . In particular, we describe a minimal free bigraded
resolution of a non-arithmetically Cohen-Macaulay (also non-homogeneous) set Z of fat points
whose support is an ACI, generalizing an earlier result of Cooper et al. for homogeneous sets of
triple points. We callZ a fat ACI. We also show that its symbolic and ordinary powers are equal, i.e,
I(m)
Z

= Im
Z
for any m ≥ 1.

1 Introduction

A research problem of interest regarding which symbolic powers of ideals are con-
tained in a given ordinary power of the ideal has recently been studied in [1–3, 12],
with a focus on ideals deûning 0-dimensional subschemes of projective space.

Inspired by recent papers of [5,7–9], we focus on the case where I is an ideal deûn-
ing a set of points in P1 × P1, since, in particular, I can be considered as a set of par-
ticular lines in P3.

_roughout this paper, the polynomial ring R ∶= k[x0 , x1 , x2 , x3] with the bigrad-
ing given by deg x0 = deg x1 = (1, 0) and deg x2 = deg x3 = (0, 1) is the coordi-
nate ring of P1 × P1. A point is denoted by P = [a0 ∶a1] × [b0 ∶b1] in P1 × P1 and
it is deûned by the bihomogeneous ideal IP = (a1x0 − a0x1 , b1x2 − b0x3). A set of
points X = {P1 , . . . , Ps} ⊆ P1 × P1 is then associated with the bihomogeneous ideal
IX = ⋂P∈X IP . If we only consider the standard grading of this ideal, then IX deûnes
a union X of lines in P3. Given a set of distinct points X = {P1 , . . . , Ps} and positive
integers m1 , . . . ,ms , we call Z = m1P1 + ⋅ ⋅ ⋅ +msPs a set of fat points supported at X.

Given a homogeneous ideal I ⊂ R, the m-th symbolic power of I is the ideal
I(m) = R∩(⋂P∈Ass(I)(ImRP)). Following [3], an ideal of the form I = ⋂i(Im i

Pi
) where

P1 , . . . , Pn are distinct points ofP1×P1, IPi is the ideal generated by all forms vanishing
at Pi , and eachm i is a non-negative integer, I(m) turns out to be⋂i(Imm i

Pi
). If Im is the

usual power, then there is clearly a containment Im ⊆ I(m), and a much more diõcult
problem is to determine when there are containments of the form I(m) ⊆ Ir . Fur-
thermore, the m-th symbolic power of IX has the form I(m)X = ⋂

s
i=1 ImPi

. _e scheme
deûned by I(m)X is sometimes referred to as a homogeneous set of fat points and de-
noted by mP1 + ⋅ ⋅ ⋅ +mPs .
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We say that a set of points X in P1 × P1 is arithmetically Cohen-Macaulay (ACM)
if its coordinate ring R/IX is Cohen-Macaulay. A set of points X is a complete inter-
section if IX is a complete intersection. We write that X = CI(a, b) if IX is generated
by a form of degree (a, 0) and a form of degree (0, b). _e set X is an almost com-
plete intersection (ACI) if the number of minimal generators is one more than the
codimension of X; i.e., X has three minimal generators.

Let X be an almost complete intersection in P1 × P1 and let Z = m1P1 + ⋅ ⋅ ⋅ +msPs
be a set of fat points supported at X. We call Z a fat almost complete intersection.
A classiûcation of reduced and fat ACM sets of points of P1 × P1 can be found in

[10, _eorems 4.11 and 6.21].
In this paper, we focus on the study of special sets of fat points Z whose support is

either ACM or non-ACM. In particular, we give a minimal free bigraded resolution
of Z in both cases (see _eorems 3.4 and 3.5).

In [8, _eorem 1.1], the authors proved the following theorem.

_eorem 1.1 ([8, _eorem 1.1]) Let X ⊆ P1 × P1 be an ACM set of points. _en
ImX = I(m)X for all m ≥ 1 if and only if I3X = I(3)X .

In [5], S. Cooper et al. proposed a classiûcation of the sets of points X ⊆ P1 × P1

satisfying I3X = I(3)X . We require the following notation. Let π1∶P1 × P1 → P1 denote
the natural projection P = A× B ↦ A. If X ⊆ P1 × P1 is a ûnite set of reduced points,
let π1(X) = {H1 , . . . ,Hr} be the set of distinct ûrst coordinates that appear in X.
For i = 1, . . . , h, set α i = ∣X ∩ π−1

1 (H i)∣, i.e., the number of points in X whose ûrst
coordinate is H i . A�er relabeling the H i ’s so that α i ≥ α i+1 for i = 1, . . . , r − 1, we set
αX = (α1 , . . . , αr). In particular, they proved the following two results.

Corollary 1.2 ([5, Corollary 4.4]) Let X ⊆ P1 × P1 be any ACM set of points. _en
(i) I2X = I(2)X .
(ii) _e following are equivalent:

(a) I2X deûnes an ACM scheme;
(b) I3X = I(3)X is the saturated ideal of an ACM scheme;
(c) X is a complete intersection;
(d) αX = (a, a, . . . , a) for some integer a ≥ 1.

(iii) _e following are equivalent:
(a) I3X = I(3)X is the saturated ideal of a non-ACM scheme;
(b) IX is an almost complete intersection;
(c) αX = (a, . . . , a, b, . . . , b) for integers a > b ≥ 1.

Corollary 1.3 ([5, Corollary 4.6]) Let Z ⊆ P1 × P1 be a homogeneous set of triple
points (i.e., where every point has multiplicity three) and let X be the support of Z. If IX
is an almost complete intersection with

αX = (a, . . . , a
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

c

, b, . . . , b
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

d

),
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then IZ has a bigraded minimal free resolution of the form

0Ð→ F2 Ð→ F1 Ð→ F0 Ð→ IZ Ð→ 0,

where

F0 =R(−3c − 3d , 0) ⊕ R(−3c − 2d ,−b) ⊕ R(−2c − 2d ,−a)
⊕ R(−3c − d ,−2b) ⊕ R(−2c − d ,−b − a) ⊕ R(−c − d ,−2a)
⊕ R(−3c,−3b) ⊕ R(−2c,−2b − a) ⊕ R(−c,−b − 2a)
⊕ R(0,−3a),

F1 =R(−c,−3a) ⊕ R(−2c,−2a − b) ⊕ R(−3c,−a − 2b) ⊕ R(−c − d ,−2a − b)
⊕ R(−2c − d ,−a − 2b) ⊕ R(−3c − d ,−3b) ⊕ R(−2c − d ,−2a)
⊕ R(−3c − d ,−a − b) ⊕ R(−2c − 2d ,−a − b) ⊕ R(−3c − 2d ,−2b)
⊕ R(−3c − 2d ,−a) ⊕ R(−3c − 3d ,−b),

F2 =R(−3c − 2d ,−b − a) ⊕ R(−3c − d ,−a − 2b) ⊕ R(−2c − d ,−2a − b).

Here, we generalize Corollary 1.3 for a special setZ of fat pointswhose support is an
almost complete intersection (ACI), i.e., for a special fat almost complete intersection.
We note that we do not require that Z be homogeneous. To shorten the notation we
will say Z is a fat ACI.

Let X be an ACI set of distinct points in P1 × P1 such that

αX = (a, . . . , a
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

α1

, b, . . . , b
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

α2

)

for two integers a > b ≥ 1. Set a ∶= β1 + β2 , b ∶= β1 and r = α1 + α2 so that

αX = (β1 + β2 , . . . , β1 + β2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

α1

, β1 , . . . , β1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

α2

).

Let H i be horizontal lines of type (1, 0) and let Vj be vertical lines of type (0, 1).
_en a point in P1 × P1 can be denoted by Pi j ∶= H i × Vj . If π1(X) = {H1 , . . . ,Hr}

and π2(X) = {V1 , . . . ,Va}, then X ⊂ W = {Pi j ∣ i = 1, . . . , r and j = 1, . . . , a}. Note
that W is a complete intersection of reduced points.
Deûne Z ∶= ∑w i jPi j to be a fat ACI of P1 × P1 where

(1.1) w i j =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m11 if (i , j) ≤ (α1 , β1),
m21 if (α1 + 1, 1) ≤ (i , j) ≤ (α1 + α2 , β1),
m12 if (1, β1 + 1) ≤ (i , j) ≤ (α1 , β1 + β2),
0 otherwise,

for some non-negative integers m11 ,m12 ,m21 . Renumbering the lines H i or Vj , we
can always assume that m21 ≤ m12 .

_e following picture shows what Z looks like.
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α1

α2

m11

m21

m12

β1 β2

Z =

We denote by Z1 ∶= ∑w i jPi j a set of fat points of P1 × P1, where

w i j =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(m11 − 1)+ if (i , j) ≤ (α1 , β1),
(m21 − 1)+ if (α1 + 1, 1) ≤ (i , j) ≤ (α1 + α2 , β1),
m12 if (1, β1 + 1) ≤ (i , j) ≤ (α1 , β1 + β2),
0 otherwise,

for m11 ,m12 ,m21 as in Z and (n)+ ∶= max{n, 0}.
_e following theorem is the main result of this paper.

_eorem 3.5 Let 0→ L2 → L1 → L0 → R → R/IZ1 → 0 be aminimal free resolution
of IZ1 . _en a minimal free resolution of a fat ACI of type (1.1) IZ is

0Ð→ ⊕
(a ,b−β1)∈A1(Z)

R(−a,−b) ⊕L2(0,−β1)

Ð→ ⊕
(a ,b−β1)∈A0(Z)

R(−a,−b) ⊕
(a ,b)∈A1(Z)

R(−a,−b) ⊕L1(0,−β1)

Ð→ ⊕
(a ,b)∈A0(Z)

R(−a,−b) ⊕L0(0,−β1) Ð→ IZ Ð→ 0,

where

A0(Z) = {(α1(m11 + i) + α2m21 , ((m12 −m11)+ − i)β2) ∣ i = 0, . . . , (m12 −m11)+} ,

A1(Z) = {(α1(m11 + i + 1) + α2m21 , ((m12 −m11)+ − i)β2) ∣

i = 0, . . . , (m12 −m11)+ − 1} .

_at is, if we set µ = min(m11 ,m21) recursively, we ûnd a minimal bigraded free
resolution of non-homogeneous sets of fat points Zi ⊂ Z whose support is an almost
complete intersection for all i = 0, . . . , µ but Zµ . In particular, Z0 = Z and the base
case Zµ can be of two types
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(1)

m11 −m21

0

m12

or (2)

m21 −m11

0 m12

(a) If m11 > m21, then Zµ is an ACM set fat points supported on a complete inter-
section CI(α1 , β). From [10, _eorem 6.21] we can recover its minimal bigraded
free resolution.

(b) If m11 < m21, then Zµ is not ACM. In this case, Lemma 3.4 gives a minimal free
bigraded resolution of Zµ . In particular, in this second case, the support X of
Zµ is the disjoint union of two complete intersections X1 = CI(α1 , β2) and X2 =

CI(α2 , β1).
(c) _e case m11 = m21 is shown in Corollary 3.7. In this case, the support of Zµ is a

CI(α1 , β2).
We also note that _eorem 3.5 in the case where m11 = m12 = m21 = 3 gives Corol-

lary 1.3 proved in [5].
In _eorem 4.2, we prove that I(m)

Z
= ImZ for any positive integer m where Z is a fat

ACI of type (1.1). _is result gives a new class of non-ACM set of fat points in P1 ×P1

whose symbolic and regular powers are equals.

2 Background and Notation

In this section, we recall somewell-known facts aboutACMsets of fat points inP1×P1 .
_en we begin the study of a set W of three non-collinear fat points of P1 × P1 . We
observe that Supp(W) ofW is ACI but W can be either ACM or not ACM. Proposi-
tion 2.5 extends a property of the ACM set of points to our case of interest.

Lemma 2.1 Let P ∈ P1 × P1 be a point. _en the bigraded minimal free resolution of
I(P)m is

0Ð→
m
⊕
t=1

R(t −m − 1,−t) Ð→
m
⊕
t=0

R(t −m,−t) Ð→ I(P)m
Ð→ 0

Proof _is follows, for instance, from [10, _eorem 6.27].

From [11, _eorems 5.4 and 4.11], the following two results hold.

Lemma 2.2 In P1 × P1, let Z be

Z ∶= ∑
(1,1)≤(i , j)≤(α ,β1)

m11Pi j + ∑
(1,β1+1)≤(i , j)≤(α ,β1+β2)

m12Pi j

a set of fat points whose support is X = CI(α, β) where β = β1 + β2.
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Set M ∶= max{m11 ,m12}; then a minimal free resolution of IZ is

0Ð→
M
⊕
t=1

R(−αt,−β1(m11 − t + 1)+ − β2(m12 − t + 1)+)

Ð→
M
⊕
t=0

R(−αt,−β1(m11 − t)+ − β2(m12 − t)+) Ð→ IZ Ð→ 0

Proof We have that Z is ACM, and the associated tuple is

αZ = (γ0 , . . . , γ0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

α

, γ1 , . . . γ1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

α

, . . . , γM , . . . γM
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

α

).

where γ i ∶= (m11 − i)+β11 + (m12 − i)+β12.

Corollary 2.3 With the notation as above, if m11 = m12, i.e., Z is a homogeneous set
of fat points whose support is X = CI(α, β), then a minimal free resolution is

0Ð→
m−1
⊕
i=0

R(−(i + 1)α,−(m − i)β) Ð→
m
⊕
i=0

R(−iα,−(m − i)β) Ð→ IZ Ð→ 0

To describe a minimal free bigraded resolution of a fat ACIZ of type (1.1), we need
to describe the minimal free bigraded resolution of a particular case of a fat ACI.

We set our notation.

Notation 2.4 Let W be a fat ACI consisting only of three non-collinear fat points
Pi j ∶= H i ×Vj with H i horizontal lines of type (1, 0) and Vj vertical lines of type (0, 1)
for i , j = 1, 2.

We will assume that m21 ≤ m12 and (a)+ ∶= max{a, 0}. _en W ∶= m11P11 +

m21P21 +m12P12, andW1 ∶= (m11 − 1)+P11 + (m21 − 1)+P21 +m12P12 is the set of points
obtained from W by decreasing by 1 the multiplicity of each point on V1 .

W =

V1 V2

H2

H1
m21
●

m11
●

m12
●

W1 =

V1 V2

H2

H1
(m21−1)+
●

(m11−1)+
●

m12
●

If m21 = 0, then W is an ACM set of collinear points and everything is known
([11, Corollary 4.9 and_eorem 4.11]).

In order to describe the homological invariants ofW, we start by proving a propo-
sition that holds for ACM ûnite sets of points in P1 × P1; see for instance [10, _eo-
rem 7.12].

Proposition 2.5 With the notation as above, let W = m11P11 +m21P21 +m12P12 be a
set of three non-collinear fat points in P1 × P1; then IW is minimally generated by a set
of forms such that each of them is a product of powers of lines.
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Proof We claim that IW is generated by the set of bihomogeneous forms

G(W) = {Ha1
1 Ha2

2 V b1
1 V b2

2 ∣ a1 + b2 ≥ m12 , a2 + b1 ≥ m21 , a1 + b1 ≥ m11}.

It is easy to check that Ha1
1 Ha2

2 V b1
1 V b2

2 ∈ G(W) if and only if Ha1
1 Ha2

2 V b1
1 V b2

2 ∈ IW .
On the other hand, we distinguish the following cases:

(a) If either m12 = 0 or m21 = 0, then W is ACM, and so the statement is true.
(b) Suppose m12 > 0 and m21 > 0 and let F ∈ IW be a bihomogeneous form

of bidegree (a, b). Since F ∈ (H1 ,V2)
m12 we get F = ∑i Q iH i

1V
m12−i
2 , where either

Q i = 0 or deg(Q i) = (a − i , b −m12 + i). Moreover, F ∈ (H2 ,V1)
m21 , but H i

1V
m12−i
2 ∉

(H2 ,V1)
m21 , and, since IW is bihomogeneous, Q i have to belong to (H2 ,V1)

m21 for
each i , which means Q i = ∑ j Ti jHm21− j

2 V j
1 . _erefore,

F = ∑
i
∑
j
Ti jHm21− j

2 V j
1 H

i
1V

m12−i
2

= ∑
i+ j<m11

Ti jH i
1V

j
1 H

m21− j
2 Vm12−i

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F′

+ ∑
i+ j≥m11

Ti jH i
1V

j
1 H

m21− j
2 Vm12−i

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F∗

.

Note that F∗ ∈ (G(W)), so the claim follows if we also prove that F′ ∈ (G(W)). _en
(i) if m11 = 0 we get F′ = 0, and we are done;
(ii) if m11 > 0, we proceed by induction on s ∶= m12 + m21 . If s ≤ m11 + 1 then W

is ACM, by [11, _eorem 4.8], and the statement is true. Suppose s > m11 + 1.
Denoted by w1 = min{m12 ,m11 − 1}, and by w2 = min{m21 ,m11 − 1} then

F′ = Hm21−w2
2 Vm12−w1

2 ⋅ ∑
i+ j<m11

Ti jH i
1V

j
1 H

w2− j
2 Vw1−i

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F′′

.

From F′ ∈ (H1 ,V1)
m11 we have F′′ ∈ (H1 ,V1)

m11 . Ifm12 > m11−1, thenw1+w2 < s
and F′′ ∈ I(W′′), whereW′′ = m11P11 +w1P12 +w2P21 . By inductive hypothesis,
the forms inG(W′′) generate IW′′ , and, for some bihomogeneus polynomialC l ,
F′′ = ∑C lHa1

1 Ha2
2 V b1

1 V b2
2 . _en

F′ = ∑C lHa1
1 Ha2+m21−w2

2 V b1
1 V b2+m12−w1

2

with the exponents satisfying the systems
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

a1 + b1 ≥ m11 ,
a1 + b2 ≥ w1 ,
a2 + b1 ≥ w2 ,

and then

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

a1 + b1 ≥ m11 ,
a1 + b2 +m12 −w1 ≥ m12 ,
a2 + b1 +m21 −w2 ≥ m21 ,

as we need.
In order to conclude the proof, we have to consider m12 < m11 < s − 1. In this case,
note that F′ ∈ I(Ŵ), where Ŵ = m11P11 + m12P12 + m21P21 + (s − m11 − 1)P22 that is
an ACM set of points, by [11, _eorem 4.8]. So F′ ∈ (G(IW)).

Notation 2.6 From now on we will denote by G(IW) a minimal set of generators
of IW as in Proposition 2.5.
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_e next results are immediate consequences of Proposition 2.5. Since IW1 is still
in the hypothesis of Proposition 2.5, it suõces to prove them only for the product of
powers of H1 ,H2 ,V1 and V2 .

Proposition 2.7 With the notation as above,

IW = V1IW1 +Hm11
1 Hm21

2 ⋅ (H1 ,V2)
(m21−m11)+ .

Proposition 2.8 With the notation as above,

V1IW1 ∩Hm11
1 Hm21

2 ⋅ (H1 ,V2)
(m12−m11)+ = V1Hm11

1 Hm21
2 ⋅ (H1 ,V2)

(m12−m11)+ .

_e following proposition will give us a way to construct a free resolution of IW .

Proposition 2.9 _e following sequence is exact:

0Ð→ V1Hm11
1 Hm21

2 ⋅ (H1 ,V2)
(m12−m11)+ Ð→

V1IW1 ⊕Hm11
1 Hm21

2 ⋅ (H1 ,V2)
(m12−m11)+ Ð→ IW Ð→ 0.

Proof _is follows from the exact sequence

0Ð→ I ∩ J Ð→ I ⊕ J Ð→ I + J Ð→ 0

(where I, J are R-modules), Proposition 2.7, and Proposition 2.8.

Remark 2.10 As a consequence of Proposition 2.9 and the mapping cone construc-
tion, if 0 → L2 → L1 → L0 is a minimal free resolution of IW1 , then it is easy to
compute that a free resolution for IW is

0Ð→ ⊕
(a ,b)∈A2(W)

R(−a,−b) ⊕ L2(0,−1)

Ð→ ⊕
(a ,b)∈A1(W)

R(−a,−b)2
⊕ R(−m11 −m21 ,−(m12 −m11)+ − 1) ⊕ L1(0,−1)

Ð→ ⊕
(a ,b)∈A0(W)

R(−a,−b) ⊕ L0(0,−1) Ð→ IW Ð→ 0,

where

A0(W) ∶= {(a, b) ∣ a + b = m11 +m21 + (m12 −m11)+ and 0 ≤ b ≤ (m12 −m11)+}

A1(W) ∶= {(a, b) ∣ a + b = 1 +m11 +m21 + (m12 −m11)+ and 1 ≤ b ≤ (m12 −m11)+}

A2(W) ∶= {(a, b) ∣ a + b = 2 +m11 +m21 + (m12 −m11)+

and 2 ≤ b ≤ (m12 −m11)+ + 1}

We will show in _eorem 2.12 that the resolution will be minimal.

FromRemark 2.10we candescribe the bigradedBetti numbers of IWwhenm11 = 0;
i.e.,W is a non-ACM set of two non-collinear fat points. We note that in this case the
support ofW is not an ACI.
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Lemma 2.11 Let W = m12P12 +m21P21 be a set of two non-collinear fat points; then
the minimal free resolution of IW is

0Ð→ ⊕
a+b=m12+m21+2

a ,b≥2

R(−a,−b)β2(a ,b) Ð→ ⊕
a+b=m12+m21+1

a ,b≥1

R(−a,−b)β1(a ,b)

Ð→ ⊕
a+b=m12+m21

a ,b≥0

R(−a,−b)β0(a ,b) Ð→ IW Ð→ 0,

where

β0(a, b) ∶= min{a, b,m21} + 1,
β1(a, b) ∶= min{a, b − 1,m21} +min{a − 1, b,m21} + 1,
β2(a, b) ∶= min{a, b,m21}.

Proof If m21 = 0 then W consists of only one fat point and the statement is true by
Lemma 2.1. Let us supposem21 > 0 and the statement true forW1 . From Remark 2.10
we get that no cancellation is numerically allowed in the resolution arising from the
mapping cone construction, then by inductive hypothesis

β0(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{m21 − 1 +m12 − (b − 1), b − 1,m21 − 1} + 2
if a + b − 1 = m21 − 1 +m12 , b ≤ m12,

min{m21 − 1 +m12 − (b − 1), b − 1,m21 − 1} + 1
if a + b − 1 = m21 − 1 +m12 , b > m12,

0 otherwise,

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

min{b,m21} + 1 if a + b = m21 +m12 , b ≤ m12,
a + 1 if a + b = m21 +m12 , b > m12,
0 otherwise

=

⎧⎪⎪
⎨
⎪⎪⎩

min{a, b,m21} + 1 if a + b = m21 +m12,
0 otherwise,

as required.
Analogously, we can compute β1(a, b) and β2(a, b).

_eorem 2.12 Let 0→ F2 → F1 → F0 be the free resolution of IW as in Remark 2.10;
then no cancellation is allowed.

Proof Let 0 → F̄2 → F̄1 → F̄0 be a minimal free resolution of IW. _en we ob-
serve that dimk(F̄0)(a ,b) = dimk(F0)(a ,b) , i.e., G(IW) = V1 ⋅ G(IW1) ∪ Hm11

1 Hm21
2 ⋅

G((H1 ,V2)
(m12−m11)+), and it is a minimal set of generators for IW . From Proposi-

tion 2.5, it is easy to check thatG(IW) ⊆ V1 ⋅G(IW1)∪H
m11
1 Hm21

2 ⋅G((H1 ,V2)
(m12−m11)+).

On the other hand , take W ∈ IW1 and G ∈ ((H1 ,V2)
(m12−m11)+) such that V1W +

Hm11
1 Hm21

2 G = 0, then G ∈ (V1). Hence let G = ∑i , j Ti jH i
1V

j
2 , for some Ti j /= 0,

and let P ∶= (Hu × V1) ∉ W be such that Ti j ∉ (Hu). We set H i
1V

j
2 (P) = α i j /= 0

so we get ∑Ti jα i j ∈ (V1) and, because the bihomogenity of IW, this implies that all
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Ti j ∈ (V1). _en G = V1G′ andW = −Hm11
1 Hm21

2 G′ . _us, if a cancellation is allowed
it has to involve F2 and F1 . If m21 −m12 + 1 ≥ m21, then W is ACM, and we are done.
We will show that no cancellation is numerically allowed also in the not ACM case.
We proceed by induction on m11 . If m11 = 0, then the statement is true from Lemma
2.11. Now we suppose m11 > 0. If for some (a′ , b′) we have dimk(F1)(a′ ,b′) /= 0 and
dimk(F2)(a′ ,b′) /= 0 then two cases can be distinguished
(a) dimk(L1)(a′ ,b′−1) /= 0 and dimk(L2)(a′ ,b′−1) = 0
(b) dimk(L1)(a′ ,b′−1) = 0 and dimk(L2)(a′ ,b′−1) /= 0
where 0 → L2 → L1 → L0 is a minimal free resolution of IW1 . By Remark 2.10 and
using the same notation, the ûrst case happens if (a′ , b′) ∈ A2(W) /= ∅ so it must be
m12 > m11 and a′ + b′ = 2 +m21 +m12 . If m11 = 1, then we get a contradiction, since
in this case, by Lemma 2.11, we get dimk(L1)(a′ ,b′−1) /= 0 if and only if a′ + b′ − 1 =
m12 + (m21 − 1) + 1. We can assume m11 > 1, and we set W2 ∶= (m11 − 2)+P11 + (m21 −

2)+P21 + m12P12 . From dimk(L2)(a′ ,b′−1) = 0, we have (a′ , b′ − 1) ∉ A2(W1), but
(a′ , b′) ∈ A2(W), and then the only case we need to consider is (a′ , b′) = (m12 +

m21 , 2). Since (a′ , b′ − 1) ∉ A1(W1), we have dimk(L1)(a′ ,1) /= 0, and again, since
(a′ , 0) ∉ A1(W2). In the second case, we can proceed in a similar way. First note that
(a′ , b′) ∈ A1 ∪ {(m11 +m21 , (m12 −m11)+)} i.e.,

⎧⎪⎪
⎨
⎪⎪⎩

a′ + b′ = 1 +m11 +m21 + (m12 −m11)+ ,
1 ≤ b′ ≤ (m12 −m11)+ + 1.

Moreover, since dimk(L1)(a′ ,b′−1) = 0 then (a′ , b′−1) ∉ A1(W1) i.e., either a′+b′ /=
m11 +m21 + (m12 −m11 + 1)+ or b′ ∉ {2, . . . , (m12 −m11 − 1)+ + 2}. Since the second
condition always holds, we get m12 < m11 , and then (a′ , b′) = (m11 + m12 , 1). _en
dimk(L2)(a′ ,0) /= 0, which is not allowed for a ûnite set of points.

_e next example shows how to compute inductively a minimal bigraded resolu-
tion of IW .

Example 2.13 Let be W = 2P11 + 4P12 + 3P21 , we set Wk ∶= (2 − k)P11 + 4P12 +

(3 − k)P21 , for k = 1, 2. We use Lemma 2.11 to compute the resolution of IW2 where
W2 = 4P12 + P21 is a set of two non-collinear fat points.

(2.1) 0Ð→ R(−5,−2) ⊕ R(−4,−3) ⊕ R(−3,−4) ⊕ R(−2,−5)
Ð→ R(−5,−1)2

⊕ R(−4,−2)3
⊕ R(−3,−3)3

⊕ R(−2,−4)3
⊕ Ð→ R(−1,−5)2

Ð→ R(−5, 0) ⊕ R(−4,−1)2
⊕ R(−3,−2)2

⊕

R(−2,−3)2
⊕ R(−1,−4)2

⊕ R(0,−5)
Ð→ IW2 Ð→ 0

_e next step is to compute a minimal free resolution for IW1 whereW1 = P11 +4P12 +

2P21. First, we shi� all the degrees of the modules in resolution (2.1) by (0,−1); then
we compute all the pairs (i , j) in A0(W1) and add R(−i ,− j) among the generators’
module; we compute all the pairs (i , j) inA1(W1) and add R(−i ,− j) among the ûrst
syzygies’ module and, as last step, we compute all the pairs (i , j) in A2(W1) and add
R(−i ,− j) among the second syzygies’smodule ofW2 ._us, aminimal free resolution
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for IW1 is

(2.2) 0Ð→ R(−6,−2) ⊕ R(−5,−3)2
⊕ R(−4,−4)2

⊕ R(−3,−5) ⊕ R(−2,−6)
Ð→ R(−6,−1)2

⊕ R(−5,−2)4
⊕ R(−4,−3)5 ⊕ R(−3,−4)4

⊕ R(−2,−5)3

Ð→ R(−1,−6)2
Ð→ R(−6, 0) ⊕ R(−5,−1)2

⊕ R(−4,−2)3
⊕

R(−3,−3)3
⊕ R(−2,−4)2

⊕ R(−1,−5)2
⊕ R(0,−6)

Ð→ IW1 Ð→ 0.

Finally, repeating the same procedure as above, i.e., shi�ing all themodules’ degrees in
the resolution (2.2) by (0,−1) and adding R(−i ,− j)with (i , j) all the pairs inA0(W),
A1(W), A2(W) among the generators’ module, ûrst syzygies’ module, and second
syzygies’s module ofW1, respectively, we get a minimal free resolution of IW:

0Ð→ R(−7,−2) ⊕ R(−6,−3)2
⊕ R(−5,−4)2

⊕ R(−4,−5)2
⊕ R(−3,−6)⊕

R(−2,−7)
Ð→ R(−7,−1)2

⊕ R(−6,−2)4
⊕ R(−5,−3)5 ⊕ R(−4,−4)5 ⊕ R(−3,−5)4

⊕

R(−2,−6)3
⊕ R(−1,−7)2

Ð→ R(−7, 0) ⊕ R(−6,−1)2
⊕ R(−5,−2)3

⊕ R(−4,−3)3
⊕ R(−3,−4)3

⊕

R(−2,−5)2
⊕ R(−1,−6)2

⊕ R(0,−7)
Ð→ IW Ð→ 0.

3 The Minimal Free Resolution of a Fat Almost Complete
Intersection in P1

× P1

As stated in the introduction, in this section we prove the main result of the paper
that generalizes _eorem 2.12 for any fat almost complete intersection Z. Recall our
notation.

Notation 3.1 Let α1 , α2 , β1 , β2 be positive integers. We denote by Z ∶= ∑w i jPi j a
fat ACI of P1 × P1 where

w i j =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m11 if (i , j) ≤ (α1 , β1),
m21 if (α1 + 1, 1) ≤ (i , j) ≤ (α1 + α2 , β1),
m12 if (1, β1 + 1) ≤ (i , j) ≤ (α1 , β1 + β2),
0 otherwise,

for some non-negative integers m11 ,m12 ,m21, and we denote by Z1 ∶= ∑w i jPi j a set
of fat points of P1 × P1 where

w i j =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(m11 − 1)+ if (i , j) ≤ (α1 , β1),
(m21 − 1)+ if (α1 + 1, 1) ≤ (i , j) ≤ (α1 + α2 , β1),
m12 if (1, β1 + 1) ≤ (i , j) ≤ (α1 , β1 + β2),
0 otherwise,

https://doi.org/10.4153/CJM-2016-040-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-040-4


_eMinimal Free Resolution of Fat Almost Complete Intersections in P1 × P1 1285

for m11 ,m12 ,m21 as in Z. We set Q1 ∶= H1 ⋅ ⋅ ⋅Hα1 , Q2 ∶= Hα1+1 ⋅ ⋅ ⋅Hα1+α2 and U1 ∶=

V1 ⋅ ⋅ ⋅Vβ1 , U2 ∶= Vβ1+1 ⋅ ⋅ ⋅Vβ1+β2 .

We have the following lemma.

Lemma 3.2 IZ = (Q1 ,U1)
m11 ∩ (Q1 ,U2)

m12 ∩ (Q2 ,U1)
m21 .

Proof IZ is the intersection of three powers of homogeneous complete intersection
ideals and Im = I(m) where I is the ideal deûning a complete intersection from [13,
Appendix 6, Lemma 5]. We have

IZ = ⋂
(i , j)≤(α1 ,β1)

(H i ,Vj)
m11 ∩ ⋂

(α1+1,1)≤(i , j)≤(α1+α2 ,β1)

(H i ,Vj)
m21

∩ ⋂
(1,β1+1)≤(i , j)≤(α1 ,β1+β2)

(H i ,Vj)
m12

= ( ⋂
(i , j)≤(α1 ,β1)

(H i ,Vj))
m11

∩ ( ⋂
(α1+1,1)≤(i , j)≤(α1+α2 ,β1)

(H i ,Vj))
m21

∩ ( ⋂
(1,β1+1)≤(i , j)≤(α1 ,β1+β2)

(H i ,Vj))
m12 .

Remark 3.3 All the results given in Section 2 can be generalized by replacing H i
by Q i and Vj by U j .

_e following lemma generalizes Lemma 2.11. _at is, we compute a minimal free
resolution of Z whose support is the disjoint union of two fat complete intersections,
and it is never ACM. As pointed out in the introduction, this is one of the starting
base cases to describe a minimal free resolution of IZ by induction when m11 < m21.

Lemma 3.4 In P1 × P1 , let

Z ∶= ∑
(1,β1+1)≤(i , j)≤(α1 ,β1+β2)

m12Pi j + ∑
(α1+1,1)≤(i , j)≤(α1+α2 ,β1)

m21Pi j

be a set of fat points whose support is the disjoint union of two fat complete intersections.
_en a minimal free resolution of IZ is

0Ð→ ⊕
(a ,b ,c ,d)∈D2

R(−aα1 − bα2 ,−cβ1 − dβ2)

Ð→ ⊕
(a ,b ,c ,d)∈D1

R(−aα1 − bα2 ,−cβ1 − dβ2)

Ð→ ⊕
(a ,b ,c ,d)∈D0

R(−aα1 − bα2 ,−cβ1 − dβ2) Ð→ IZ Ð→ 0,
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where

D0 ∶= {(a, b, c, d) ∣ 0 ≤ a, d ≤ m12 , 0 ≤ b, c ≤ m21 , a + d = m12 , b + c = m21} ,

D1 ∶= {(a, b, c, d) ∣ 0 ≤ a, d ≤ m12 , 0 ≤ b, c ≤ m21 ,

(a + d = m12 + 1, b + c = m21) ∨ (a + d = m12 , b + c = m21 + 1)} ,

D2 ∶= {(a, b, c, d) ∣ 0 ≤ a, d ≤ m12 , 0 ≤ b, c ≤ m21 ,

a + d = m12 + 1, b + c = m21 + 1} .

Proof _is follows by induction on m21 , using Lemma 2.3 and the mapping cone
construction.

_eorem 3.5 With Notation 3.1, let 0→ L2 → L1 → L0 be a minimal free resolution
of IZ1 . _en a minimal free resolution of a fat ACI IZ is

0Ð→ ⊕
(a ,b−β1)∈A1(Z)

R(−a,−b) ⊕L2(0,−β1)

Ð→ ⊕
(a ,b−β1)∈A0(Z)

R(−a,−b) ⊕
(a ,b)∈A1(Z)

R(−a,−b) ⊕L1(0,−β1)

Ð→ ⊕
(a ,b)∈A0(Z)

R(−a,−b) ⊕L0(0,−β1) Ð→ IZ Ð→ 0,

where

A0(Z) = {(α1(m11 + i) + α2m21 , ((m12 −m11)+ − i)β2) ∣ i = 0, . . . , (m12 −m11)+} ,

A1(Z) = {(α1(m11 + i + 1) + α2m21),

((m12 −m11)+ − i)β2) ∣ i = 0, . . . , (m12 −m11)+ − 1}

Proof _e proof uses Lemma 2.3, Remark 3.3, and Remark 2.10. Note that, by in-
duction, Lemma 3.4, and Lemma 2.2, the number of elements in a minimal set of
generators for the modules in the resolution does not depend on α1 , α2 , β1 , β2 . More-
over, using Remark 2.10, if α1 = α2 = β1 = β2 = 1, we get ∣A0(Z)∣ = ∣A0(W)∣,
∣A0(Z)∣ + ∣A1(Z)∣ = ∣A1(W)∣, and ∣A1(Z)∣ = ∣A2(W)∣. _erefore, by induction and
_eorem 2.12, no cancellation is allowed in the resolution arising frommapping cone.
_is follows, since the maps of the mapping cone cannot have invertible entries; oth-
erwise, by Remark 3.3, the maps of the mapping cone used in _eorem 2.12 would
also have invertible entries.

Example 3.6 Consider the following set of fat points with α1 = β1 = β2 = 2 and
α2 = 1:

Z ∶= 2P11+2P12 + 4P13 + 4P14+

+2P21+2P22 + 4P23 + 4P24+

+3P31+3P32

Note that A0(Z) = {(7, 4), (9, 2), (11, 0)} andA1(Z) = {(9, 4), (11, 2)}.
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Set, for i = 0, 1, 2

Zi ∶= (2 − i)P11+(2 − i)P12 + 4P13 + 4P14+

+(2 − i)P21+(2 − i)P22 + 4P23 + 4P24+

+(3 − i)P31+(3 − i)P32

We start by computing the resolution ofZ2. By Lemma 3.4 we get the following de-
grees for aminimal set of generators, ûrst and second syzygies where (a, b)n indicates

Generators: {(9, 0), (8, 2), (7, 2), (6, 4), (5, 4), (4, 6), (3, 6), (2, 8),
(1, 8), (0, 10)}

First Syzygies: {(9, 2)2 , (8, 4), (7, 4)2 , (6, 6), (5, 6)2 , (4, 8), (3, 8)2 ,
(2, 10), (1, 10)}

Second Syzygies: {(9, 4), (7, 6), (5, 8), (3, 10)}

that the set contains n elements of degree (a, b). Now, by _eorem 3.5, and mimick-
ing the procedure used in Example 2.13, we can compute the resolution of IZ1 where
the degrees of a minimal set of generators, ûrst and second syzygies are respectively:

Generators ∶ {(9, 2), (8, 4), (7, 4), (6, 6), (5, 6), (4, 8), (3, 8), (2, 10), (1, 10),
(0, 12), (10, 0), (8, 2), (6, 4), (4, 6)}

First Syzygies ∶ {(9, 4)2 , (8, 6), (7, 6)2 , (6, 8), (5, 8)2 , (4, 10), (3, 10)2 , (2, 12),
(1, 12)(10, 2)2 , (8, 4)2 , (6, 6)2 , (4, 8)}

Second Syzygies ∶ {(9, 6), (7, 8), (5, 10), (3, 12)} ∪ {(10, 4), (8, 6), (6, 8)}

Finally, applying _eorem 3.5 again, we get a minimal resolution of IZ = IZ0 ∶

0Ð→[R(−10,−6) ⊕ R(−9,−8) ⊕ R(−8,−8) ⊕ R(−7,−10)⊕
R(−6,−10) ⊕ R(−5,−12) ⊕ R(−3,−14)] ⊕ [R(−9,−6) ⊕ R(−11,−4)]

Ð→[R(−10,−4)2
⊕ R(−9,−6)2

⊕ R(−8,−8) ⊕ R(−8,−6)2
⊕ R(−7,−8)2

⊕

R(−6,−10) ⊕ R(−6,−8)2
⊕ R(−5,−10)2

⊕ R(−4,−10)⊕
R(−4,−12) ⊕ R(−3,−12)2

⊕ R(−2,−14) ⊕ R(−1,−14)]⊕
[R(−7,−6) ⊕ R(−9,−4) ⊕ R(−11,−2)] ⊕ [R(−9,−4) ⊕ R(−11,−2)]

Ð→[R(−10,−2) ⊕ R(−9,−4) ⊕ R(−8,−6) ⊕ R(−8,−4) ⊕ R(−7,−6)⊕
R(−6,−8) ⊕ R(−6,−6) ⊕ R(−5,−8) ⊕ R(−4,−10) ⊕ R(−4,−8)⊕
R(−3,−10) ⊕ R(−2,−12) ⊕ R(−1,−12) ⊕ R(0,−14)]⊕

[R(−7,−4) ⊕ R(−9,−2) ⊕ R(−11, 0)] Ð→ IZ Ð→ 0

_e next corollary better describes the resolution of IZ when m11 = m21 .
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Corollary 3.7 With Notation 3.1, suppose m11 = m21 = n and m12 = m. _en a
minimal free resolution of IZ is

0Ð→ ⊕
(a ,b ,c ,d)∈B2(Z)

R(−aα1 − bα2 ,−cβ1 − dβ2)

Ð→ ⊕
(a ,b ,c ,d)∈B1(Z)

R(−aα1 − bα2 ,−cβ1 − dβ2)

Ð→ ⊕
(a ,b ,c ,d)∈B0(Z)

R(−aα1 − bα2 ,−cβ1 − dβ2) Ð→ IZ Ð→ 0,

B0(Z) ∶= {(a, b, c, d) ∣ a + d = m, b + c = n, 0 ≤ b ≤ min{a, n} ≤ a ≤ m} ,
B1(Z) ∶= {(a, b, c, d) ∣ (a + d = m + 1, b + c = n)

∨ (a + d = m, b + c = n + 1), 0 ≤ b ≤ min{a, n} ≤ a ≤ m} ,

B2(Z) ∶= {(a, b, c, d) ∣ a + d = m + 1, b + c = n + 1, 0 ≤ b ≤ min{a, n} ≤ a ≤ m} .

Proof We proceed by induction on n. If n = 0 then Z is homogeneous and its sup-
port is a complete intersection so, by Lemma 2.3, we are done. Assume now that n > 0
and take Z1 as in Notation 3.1. _en we get

⋅ ⋅ ⋅ Ð→ ⊕
(a ,b ,c+1,d)∈B0(Z1)

R(−aα1 − bα2 ,−cβ1 − dβ2) ⊕

⊕
(u ,v)∈A0(Z)

R(−u,−v) Ð→ IZ Ð→ 0,

B0(Z1) ∶= {(a, b, c, d) ∣ a + d = m, b + c = n − 1, 0 ≤ b ≤ min{a, n − 1} ≤ a ≤ m} ,

A0(Z) = {((α1(n + i) + α2n), β2(m − n − i)) ∣ i = 0, . . . ,m − n} ,

i.e.,

⋅ ⋅ ⋅ Ð→ ⊕
(a ,b ,c+1,d)∈B0(Z1)

R(−aα1 − bα2 ,−cβ1 − dβ2) ⊕

⊕
(a ,b ,c ,d)∈A′

0(Z)

R(−α1a − α2b,−β1c − β2d) Ð→ IZ Ð→ 0,

whereA′

0(Z) ∶= {(a, b, c, d) ∣ b = n, c = 0, a + d = m, n ≤ a ≤ m}.
_en B0(Z) = B0(Z1) ∪A′

0(Z). Analogously, we get B1(Z) andB2(Z).

Consequently, if Z is a homogeneous set of fat points, then a minimal free resolu-
tion is easy to describe.

Corollary 3.8 With Notation 3.1, suppose m11 = m12 = m21 = m, i.e., the support of
Z is an almost complete intersection with associated tuple

αZ ∶= (β1 + β2 , . . . , β1 + β2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

α1+α2

, β1 , . . . , β1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

α1

)

for some m ∈ N.
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_en a minimal free resolution of IZ is

0Ð→ ⊕
(a ,b ,c ,d)∈B2(Z)

R(−aα1 − bα2 ,−cβ1 − dβ2)

Ð→ ⊕
(a ,b ,c ,d)∈B1(Z)

R(−aα1 − bα2 ,−cβ1 − dβ2)

Ð→ ⊕
(a ,b ,c ,d)∈B0(Z)

R(−aα1 − bα2 ,−cβ1 − dβ2) Ð→ IZ Ð→ 0,

B0(Z) ∶= {(a, b, c, d) ∣ a + d = m, b + c = m, 0 ≤ b ≤ a ≤ m}

B1(Z) ∶= {(a, b, c, d) ∣ (a + d = m + 1, b + c = m)

∨ (a + d = m, b + c = m + 1), 0 ≤ b ≤ a ≤ m}

B2(Z) ∶= {(a, b, c, d) ∣ a + d = m + 1, b + c = m + 1, 0 ≤ b ≤ a ≤ m} .

Proof Just use Corollary 3.7.

Remark 3.9 Recently, using _eorem 1.1 and Corollary 1.2, it was proved in [5],
that if Z is a homogeneous set of fat points whose support is an almost complete
intersection, then

IZ = (Q1 ,U1)
m
∩ (Q1 ,U2)

m
∩ (Q2 ,U1)

m
= Jm

where we set J ∶= (Q1 ,U1) ∩ (Q1 ,U2) ∩ (Q2 ,U1). _at is, the symbolic powers of J
and the regular powers are the same. _erefore a proof of Corollary 3.8 could be given
by induction on m, since Jm = J ⋅ Jm−1 .

In the next section we look at the symbolic powers of IZ in the non-homogeneous
case.

4 Symbolic vs Regular Powers of a Particular Almost Complete In-
tersection

As said in the introduction, given a homogeneous ideal I, the m-th symbolic power
of I is the ideal I(m) = R ∩ (⋂P∈Ass(I)(ImRP)). Following [3], for an ideal of the form
IX = ⋂Pi j∈X(I

m i j
Pi j

) where X ⊆ P1 ×P1 is a ûnite set of points, IPi j is the ideal generated
by all forms vanishing at Pi j and each m i j is a non-negative integer; I(m)X turns out to
be ∩Pi j∈X(I

mm i j
Pi j

). If ImX is the usual power, then we have the containment ImX ⊆ I(m)X
and it is a diõcult problem to determine when there are containments of the form
I(m)X ⊆ IrX . Furthermore, the m-th symbolic power of IX has the form I(m)X = ∩i jImPi j

.
In this section we prove that if Z is a fat ACI of type (1.1), then I(m)

Z
= ImZ . We start

with the three non-collinear points case by comparing the ideal ImW with I(m)
W

, where
we denote by I(m)

W
∶= I(m ⋅m11P11 +m ⋅m12P12 +m ⋅m21P21).

_eorem 4.1 Let W = m11P11 +m12P12 +m21P21 be a fat ACI of three non-collinear
points in P1 × P1 . _en ImW = I(m)

W
.

https://doi.org/10.4153/CJM-2016-040-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-040-4


1290 G. Favacchio and E. Guardo

Proof First note that I(m)
W

, by Proposition 2.5 is generated by a set, G(I(m)
W

), of forms
which are product of lines. _us, take such a form F ∶= Ha1

1 Ha2
2 V b1

1 V b2
2 inG(I(m)

W
); we

have to show that F ∈ ImW . We will show that we can decompose the form F as F1 ⋅ F2
with F1 ∈ IW and F2 ∈ I(m−1)

W
; therefore, the theorem will follows by induction. Let us

consider the Euclidean division inN of a i , b j with m, say a i = c im+ r i , b j = d jm+ s j ,
for i , j ∈ {1, 2}. We get, for (i , j) ∈ {(1, 1), (1, 2), (2, 1)}, c im+r i +d jm+ s j = a i +b j ≥

m ⋅m i j , i.e., c i + d j + (r i + s j)/m ≥ m i j ; then c i + d j + ⌊(r i + s j)/m⌋ ≥ m i j . Let

δ i =

⎧⎪⎪
⎨
⎪⎪⎩

1 if s i /= 0,
0 if s i = 0,

and set

F1 ∶= Hc1
1 Hc2

2 V d1+δ1
1 V d2+δ2

2 and F2 ∶= Ha1−c1
1 Ha2−c2

2 V b1−d1−δ1
1 V b2−d2−δ2

2 .

For (i , j) ∈ {(1, 1), (1, 2), (2, 1)}, we have c i+d j+δ j ≥ c i+d j+⌊(r i+s j)/m⌋ ≥ m i j .
_is guarantees that F1 ∈ IW . Analogously,

a i − c i + b j − d j − δ j = c i(m − 1) + r i + d j(m − 1) + (s j − 1)+
= (m − 1)(c1 + d1 + (r i + (s j − 1)+)/(m − 1)).

Since (r i + (s j − 1)+)/(m − 1) ≥ ⌊(r i + s j)/m⌋, we are done.

We are ready to prove the main result of this section. Set I(m)
Z

∶= (Q1 ,U1)
m11m ∩

(Q1 ,U2)
m12m ∩ (Q2 ,U1)

m21m ; i.e., Z(m) is

Z(m) =

m21m

m11m m12m

_eorem 4.2 Let Z be a fat ACI of type (1.1). _en ImZ = I(m)
Z

.

Proof By Lemma 3.2 and Remark 3.3, we can repeat the same argument as in _e-
orem 4.1.
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