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Abstract. We introduce in this paper the concepts of rings characterized by
minimal one-sided ideals and concern ourselves with rings containing an injective
maximal left ideal. Some known results for idempotent reflexive rings and left HI
rings can be extended to left MC2 rings. As applications, we are able to give some
new characterizations of regular left self-injective rings with non-zero socle and extend
some known results for strongly regular rings.
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1. Introduction. Throughout this paper, R denotes an associative ring with
identity, and all modules are unitary. For any non-empty subset X of a ring R,
r(X) = rR(X) and l(X) = lR(X) denote the set of right annihilators of X and the
set of left annihilators of X , respectively. We write J(R), P(R), Zl(R) (Zr(R)), N(R),
U(R), E(R), Sl(R) and Sr(R) for the Jacobson radical, the prime radical, the left (right)
singular ideal, the set of all nilpotent elements, the set of all invertible elements, the set
of all idempotent elements, the left socle and the right socle of R, respectively.

An element k of R is called left minimal if Rk is a minimal left ideal. An element
e of R is called left minimal idempotent if e2 = e is left minimal. Similarly, the notion
of right minimal (idempotent) element is defined. We denote Ml(R), MEl(R), Mr(R)
and MEr(R) for the set of left minimal elements, the set of left minimal idempotent
elements, the set of right minimal elements and the set of right minimal idempotent
elements of R, respectively. A ring R is called left MC2 if every minimal left ideal
which is isomorphic to a summand of RR is a summand. Left MC2 rings were initiated
by Nicholson and Yousif in [11], related to the left mininjective rings. In [16, 18], the
authors discuss their properties. In [11], a ring R is called left mininjective if rl(k) = kR
for every k ∈ Ml(R), where rl(k) denotes the set of right annihilators of l(k) in R, and
R is said to be left minsymmetric if k ∈ Ml(R) always implies k ∈ Mr(R). According to
[11], left mininjective =⇒ left minsymmetric =⇒ left MC2 and the converse are not
true.

A ring R is called left PS [9] if Rk is projective as left R-module for every k ∈ Ml(R)
and R is said to be left universally mininjective [11] if Rk is an idempotent left ideal of R
for every k ∈ Ml(R). [16] uses the term left DS for the left universally mininjective and
shows that R is left DS if and only if R is left PS and left MC2 (see [16, Theorem 3.1]).
According to [11, Lemma 5.1], left DS rings are left mininjective.

A ring R is called left min-abel if for each e ∈ MEl(R), e is left semi-central in
R, and R is said to be strongly left min-abel if every element of MEl(R) is central
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in R. In [17], strongly left min-abel rings are studied for characterizing the strongly
regular rings. In [17], we proved that R is strongly regular if and only if R is strongly
left min-abel, left weakly regular and MELT , where a ring R is MELT (MERT) if
every essential maximal left (right) ideal of R is an ideal. A ring R is called left (right)
quasi-duo if every maximal left (right) ideal of R is an ideal. Proposition 4.7 of [14]
shows that R is strongly regular if and only if R is left weakly regular left quasi-duo,
and [5, Theorem 6] shows that R is strongly regular if and only if R is abelian left
quasi-duo whose simple singular left R-modules are YJ-injective, where a ring R is
called abelian if every idempotent of R is central. In [15], a ring whose simple left
R-modules are YJ-injective is called left GP–V -ring. R is called left SGP − V -ring if
every simple singular left R-modules are YJ-injective. Clearly, left GP − V -rings are
left SGP − V -rings, but the converse is not true in general. For example, let R be a 2 × 2
lower triangular matrix ring over a field. Then R is a left quasi-duo left SGP − V -ring
but R is not left GP − V -ring.

Left ideal L of R is called GW -ideal if, for any a ∈ L, there exists a positive integer
n such that anR ⊆ L. Similarly, the notion of GW−ideal for a right ideal K of R is
defined. Clearly, ideal is GW−ideal, but the converse is not true by [15, Example 1.2 ].
A ring R is called left (right) WQD if every maximal left (right) ideal of R is a
GW−ideal, and R is called WMELT (WMERT) if every essential maximal left
(right) ideal of R is a GW−ideal. Clearly, left quasi-duo =⇒ MELT =⇒ WMELT
and left quasi-duo =⇒ left WQD =⇒ WMELT . [15, Theorem 2.2] shows that R is
strongly regular if and only if R is left GP − V−ring and left WQD if and only if R is
left GP − V−ring and right WQD.

A ring R is called reflexive [7] if aRb = 0 implies bRa = 0 for all a, b ∈ R, and
R is said to be left idempotent reflexive [3] if aRe = 0 implies eRa = 0 for all a ∈ R
and e ∈ E(R). Clearly, semi-prime =⇒ reflexive =⇒ left idempotent reflexive =⇒ left
MC2.

R is called reduced if it contains no non-zero nilpotent elements. Clearly, reduced
=⇒ semi-prime =⇒ left DS.

A left R-module M is called YJ-injective (see [2], [8]) if, for any 0 �= a ∈ R, there
exists a positive integer n such that an �= 0 and any left R-homomorphism from Ran to
M extends to one from R to M.

In Section 2, we discuss some classes of rings characterized by minimal one-sided
ideals, give some interesting and valuable characterizations of these rings.

In Section 3, we introduce the notions of left SGP − V -rings and left WQD rings.
And then, we give some characterizations of strongly regular rings, which generalize
some known results that appeared in [5, 14, 15].

In Section 4, we prove that a left MC2 ring containing an injective maximal left
ideal is left self-injective. This result generalizes [4, Proposition 5], and as byproducts
of the result, we obtain new characterizations of regular left self-injective rings with
non-zero left socle. These characterizations are then used to prove that a left MC2 left
HI ring is semi-simple Artinian.

2. Rings characterized by minimal one-sided ideals. We start with the following
theorem.

THEOREM 2.1. The following conditions are equivalent for a ring R.
(1) R is left MC2.
(2) Every left minimal idempotent element of R is right minimal.
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(3) aRe = 0 implies eRa = 0 for all a ∈ R and e ∈ MEl(R).
(4) For any k ∈ Ml(R) and g ∈ MEl(R) with k2 = 0, Rk ∼= Rg as left R-modules

always implies Rk = Re, e2 = e ∈ R.

Proof. (1) =⇒ (4) is trivial.
(4) =⇒ (3) Assume that aRe = 0, where a ∈ R and e ∈ MEl(R). If eRa �= 0, then

there exists a b ∈ R such that eba �= 0. Clearly, eba ∈ Ml(R), (eba)2 = 0 and Reba ∼= Re
as left R-modules, so, by (4), we have Reba = Rg for some g ∈ MEl(R). Hence Rg =
RgRg = RebaReba = 0, which is a contradiction. This shows that eRa = 0.

(3) =⇒ (2) Let e ∈ MEl(R) and a ∈ R with ea �= 0. By (3), eaRe �= 0. So, we have
Re = ReaRe, consequently, Re = ReRe = ReaReReaRe ⊆ ReaReaRe. This implies
(Rea)2 �= 0. Since Rea is a minimal left ideal of R, Rea = Rg, g ∈ MEl(R). Let
g = cea, c ∈ R and h = eac. Then h ∈ MEl(R) and eaR = hR. Since l(h) = l(ea) = l(e),
eaR = hR = rl(h) = rl(e) = eR. This shows that eR is a minimal right ideal of R.

(2) =⇒ (1) Suppose that k ∈ Ml(R) and e ∈ MEl(R) such that
RRe ∼=RRk. It is easy to compute that there exists a g ∈ MEl(R) such that gk = k

and l(g) = l(k). By (2), gR is a minimal right ideal of R. Hence kR = gkR = gR. Let
g = kc, c ∈ R and h = ck, then, Clearly, Rk = Rh, h ∈ MEl(R). This shows that R is
left MC2 ring. �

It is easy to see that R is left minsymmetric if and only if Ml(R) ⊆ Mr(R). So,
by Theorem 2.1, left minsymmetric rings are left MC2. In fact, we have the following
corollary.

COROLLARY 2.2. The following conditions are equivalent for a ring R.
(1) R is left minsymmetric.
(2) R is left MC2 and Zl(R) ∩ Ml(R) ⊆ Mr(R).
(3) Sl(R) ⊆ Sr(R) and for any a, b ∈ Ml(R), if aR ⊆ bR, then aR = bR.

Proof. (1) =⇒ (2) and (1) =⇒ (3) are trivial.
(2) =⇒ (1) Let k ∈ Ml(R). If RRk is projective, then Rk = Re, e ∈ MEl(R) because

R is left MC2. Let e = ck, c ∈ R and g = kc, then g ∈ MEl(R) and kR = gR. By
Theorem 2.1, g ∈ MEr(R), so k ∈ Mr(R). If RRk is not projective, then k ∈ Zl(R), so, we
have k ∈ Zl(R) ∩ Ml(R). By hypothesis, k ∈ Mr(R). This implies R is left minsymmetric.

(3) =⇒ (1) Let k ∈ Ml(R). Then by (3), k ∈ Sl(R) ⊆ Sr(R). Hence there exists a
b ∈ Mr(R) such that bR ⊆ kR. Since l(k) ⊆ l(b) �= R and l(k) is a maximal left ideal of
R, l(b) = l(k). So, we have b ∈ Ml(R). By hypothesis, bR = kR, so, we have k ∈ Mr(R).
Hence R is left minsymmetric. �

THEOREM 2.3. The following conditions are equivalent for a ring R.
(1) R is strongly left min-abel.
(2) R is left min-abel and left MC2.
(3) R is left min-abel and MEl(R) ⊆ MEr(R).
(4) Every left minimal idempotent element of R is right semi-central.
(5) R is left min-abel ring and every simple projective left R-module is injective.

Proof. (1) =⇒ (2) =⇒ (3) is an immediate corollary of Theorem 2.1.
(3) =⇒ (4) Let e ∈ MEl(R). Then, by (3), e is left semi-central and right minimal in

R. For any a ∈ R, set h = ea − eae, then eh = h, he = 0. If h �= 0, then hR = ehR = eR.
Therefore eR = eReR = hReR = heReR = 0, which is a contradiction. So, h = 0 and
then ea = eae for any a ∈ R. This shows that e is right semi-central.
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(4) =⇒ (5) First, we claim R is left min-abel. Let e ∈ MEl(R). Then by (4), e is
right semi-central. For any a ∈ R, write h = ae − eae. If h �= 0, then he = h, eh = 0 and
Rh = Re. Consequently, Re = ReRe = ReRh = ReReh = 0, which is a contradiction.
Hence we have shown that e is central, and so R is strongly left min-abel. Next, we
show that simple projective left R−module W is injective. Since W ∼= R/K , where K is
a maximal left ideal of R and since R/K is projective, R = K ⊕ U , where U = Re, e2 =
e ∈ R, is a minimal left ideal of R. We claim that RU is injective. Let L be any proper
essential left ideal of R, and f : L −→ U any non-zero left R-homomorphism. Then
L/N ∼= U , where N = kerf is a maximal sub-module of L. Now L = N ⊕ V , where
V (∼= U) is a minimal left ideal of R. Since R is strongly left min-abel ring, V = Rg,
where g2 = g is central in R. For any y ∈ L, let y = d + ag, where d ∈ N, a ∈ R. Then
dg = gd ∈ N ∩ V = 0, so f (y) = f (d + ag) = f (ag) = f (dg) + f (ag) = f ((d + ag)g) =
(d + ag)f (g) = yf (g). Hence RU is injective, and so is RW .

(5) =⇒ (1) Assume that e ∈ MEl(R). By hypothesis, e is left semi-central. For any
a ∈ R, set h = ea − eae, then eh = h, he = 0. If h �= 0, then Rh is simple projective
left R−module, so, Rh is injective. Hence Rh = Rt, t ∈ MEl(R), so, we have h = ht.
Since t is left semi-central by hypothesis, h = ht = tht ∈ Rhht = Rheht = 0, which is a
contradiction. Hence h = 0 and so e is right semi-central. Therefore R is strongly left
min-abel. �

Let F be a division ring and R =
(

F F
0 F

)
. Clearly, R is left quasi-duo. Then, by

the following Corollary 2.5, we know that R is left min-abel. But R is not left MC2

because the left minimal idempotent element
(

1 0
0 0

)
is not right semi-central. Hence

R is not strongly left min-abel by Theorem 2.3.

THEOREM 2.4. The following conditions are equivalent for a ring R.
(1) R is left min-abel.
(2) Every non-essential maximal left ideal of R is an ideal.
(3) For every left minimal regular element k ∈ R (that is k ∈ Ml(R) and k = kck for

some c ∈ R), Rk + R(kc − 1) = R.
(4) For every minimal projective left ideal Rk of R, l(k) is an ideal of R.

Proof. (1) =⇒ (2) Suppose that M is a maximal left ideal of R and M is not
essential in RR. Hence there exists a non-zero left ideal L of R such that L ∩ M = 0.
Since M is maximal, L ⊕ M = R. Consequently, M = Rf, f 2 = f ∈ R. Clearly, 1 − f is
left minimal idempotent. Since R is left min-abel ring, 1 − f is left semi-central. Hence,
clearly, Rf is an ideal of R.

(2) =⇒ (4) Since Rk is projective left R-module, l(k) is a summand maximal left
ideal of R. By (2), l(k) is an ideal.

(4) =⇒ (1) Let e is any left minimal idempotent of R. By (4), l(e) = R(1 − e) is an
ideal of R. Hence e is left semi-central in R and so R is left min-abel.

(1) =⇒ (3) Let k ∈ Ml(R) and k = kck for some c ∈ R. Set e = kc, g = ck. Then
k = ek = kg and e, g ∈ MEl(R). By (1), e, g are all left semi-central. If Rk + R(kc −
1) �= R, then Rk ⊆ R(kc − 1), because R(kc − 1) = R(e − 1) = R(1 − e) is maximal
left ideal of R. Hence k = k(1 − e), so, we have ke = 0. Consequently, k = kg = gkg =
ckkck = ckek = 0, which is a contradiction. Hence Rk + R(kc − 1) = R

(3) =⇒ (1) Let e ∈ MEl(R). For any a ∈ R, write h = ae − eae. If h �= 0, then h =
he, eh = 0 and Rh = Re, consequently, h2 = 0 and h ∈ Ml(R). Write e = ch for some
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c ∈ R. Hence h = he = hch and by (3), Rh + R(hc − 1) = R. Let 1 = dh + b(hc −
1), where d, b ∈ R. Thus h = 1h = dh2 + b(hc − 1)h = b(hch − h) = 0, which is a
contradiction. This shows that e is left semi-central in R, and so R is left min-abel. �

According to [6, Theorem 3.2], R is a left quasi-duo ring if and only if R(xy − 1) +
Rx = R for any x, y ∈ R. Hence, by Theorem 2.4, we have the following corollary.

COROLLARY 2.5. R is left quasi-duo if and only if R is MELT and left min-abel.

Recall that a ring R is semi-abelian [1] if every idempotent of R is either right
semi-central or left semi-central. By the proof of (4) =⇒ (5) of Theorem 2.3, we have
the following corollary.

COROLLARY 2.6. Every semi-abelian ring R is left min-abel.

It is easy to show that R =
(

F F
0 F

)
is semi-abelian but not left MC2 for any

division ring F . Hence semi-abelian rings are not left idempotent reflexive in general.
But, in contrast with Theorem 2.3, we can easy obtain the following result: R is abelian
if and only if R is semi-abelian and left idempotent reflexive.

By simply computing, we know that the ring S =
⎛
⎝F F F

0 F F
0 0 F

⎞
⎠ is not semi-abelian,

so, by [1, Corollary 2.4], S[x] is not semi-abelian but S[x] is strongly left min-abel. On
the other hand, by [20, Proposition 2.1], S[x] is left quasi-duo. Hence left quasi-duo
rings are not semi-abelian in general.

THEOREM 2.7. The following conditions are equivalent for a ring R.
(1) R is left WQD.
(2) R is left min-abel and WMELT.
(3) R/J(R) is left WQD.
In this case, R is directly finite (that is, ab = 1 implies ba = 1 for any a, b ∈ R) and

R/J(R) is reduced.

Proof. By Theorem 2.4, (2) =⇒ (1) is trivial. (1) ⇐⇒ (3) is evident.
(1) =⇒ (2) It is only to show that R is left min-abel. Assume that e ∈ MEl(R).

Then R(1 − e) = l(e) is a maximal left ideal of R, by (1), R(1 − e) is a GW−ideal, so
there exists a positive integer n such that (1 − e)nR ⊆ R(1 − e), this implies (1 − e)R ⊆
R(1 − e). It follows that e is left semi-central. Therefore R is left min-abel.

Now let a ∈ R with a2 ∈ J(R). If a /∈ J(R), then there exists a maximal left ideal
M such that a /∈ M. Hence R = M + Ra. Let 1 = m + ba for some m ∈ M and b ∈ R.
Therefore a = ma + ba2. Since M is GW−ideal and m ∈ M, there exists a positive
integer n such that mna ∈ M. Hence mn−1a = mna + mn−1ba2 ∈ M because a2 ∈ M.
Further, we have mn−2a = mn−1a + mn−2ba2 ∈ M. Continuing in this process, we have
ma ∈ M and so a = ma + ba2 ∈ M, which is a contradiction. This shows that a ∈ J(R)
and therefore R/J(R) is reduced. Since reduced rings are always directly finite, R/J(R)
is directly finite. Consequently, R is directly finite. �

THEOREM 2.8. The following conditions are equivalent for a ring R.
(1) R is left DS.
(2) R is left mininjective and for every minimal right ideal A and minimal left ideal

B, we have A ∩ B = AB.
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(3) R is left minsymmetric and for every minimal right ideal A and minimal left ideal
B, we have A ∩ B = AB.

(4) Sl ⊆ Sr and for every minimal right ideal A and minimal left ideal B, we have
A ∩ B = AB.

(5) R is left PS and Sl(R) ⊆ Sr(R).

Proof. (2) ⇒ (3) ⇒ (4) and (1) =⇒ (5) always hold.
(1) ⇒ (2) Let A be a minimal right ideal and B a minimal left ideal of R. If

A ∩ B = 0, then A ∩ B = AB always holds. If A ∩ B �= 0, then for every 0 �= k ∈ A ∩ B,
we have B = Rk. Since R is a left DS ring, Rk = RkRk. Let k = kbk for some b ∈ R.
Then k ∈ AB, because kb ∈ A and k ∈ B. Hence A ∩ B ⊆ AB.

(4) ⇒ (1) Let Rk be a minimal left ideal of R. Then, by (4), k ∈ Sl ⊆ Sr, hence
there exists a minimal right ideal cR of R such that cR ⊆ kR. Let c = kb for some
b ∈ R. Since Rk ∼= Rkb as left R-module, Rc is a minimal left ideal of R. Hence c ∈
cR ∩ Rc = cRc by hypothesis, so we have Rc = RcRc. Therefore, we have cR = cRcR.
Since 0 �= cR = cRcR ⊆ kRkR, RkRk �= 0, so Rk = RkRk.

(5) =⇒ (1) Assume that k ∈ Ml(R). If (Rk)2 = 0, then RkR ⊆ l(k). Let L be
the complement right ideal of RkR in R. Then Sr(R) ⊆ RkR ⊕ L. Clearly L ⊆ l(k),
so, we have Sl(R) ⊆ Sr(R) ⊆ RkR ⊕ L ⊆ l(k). Since R is left PS, l(k) = Re, e2 =
e ∈ R. Evidently, 1 − e ∈ MEl(R), so, we have 1 − e ∈ Sl(R) ⊆ l(k) = Re, which is a
contradiction. Therefore, we have (Rk)2 �= 0, and so R is left DS. �

THEOREM 2.9. The following conditions are equivalent for a ring R.
(1) k ∈ Ml(R) implies k2 �= 0.
(2) R is left DS and left min-abel.
(3) For every k ∈ Ml(R), there exists a central left minimal idempotent e ∈ R such

that k = ke.
(4) For every k ∈ Ml(R), there exists a e ∈ MEl(R) such that k = ke = ek.
(5) R is left DS and for any k, l ∈ Ml(R), RkRl = RlRk.
(6) R is left DS and for any k, l ∈ Ml(R), kl = 0 always implies lk = 0.
(7) N(R) ∩ Sl(R) = 0.
(8) For any k, l ∈ Ml(R), Rk ∩ Rl = Rkl.

Proof. (1) =⇒ (2) Assume that k ∈ Ml(R). By (1), k2 �= 0, so, we have (Rk)2 �= 0,
which implies that R is a left DS. Now let e ∈ MEl(R). We claim that e is left semi-
central. Otherwise there exists a b ∈ R such that be �= ebe. Let h = be − ebe, then
h ∈ Ml(R), he = h and eh = 0. Hence h2 = hh = heh = 0, which is a contradiction by
(1). This shows that R is left min-abel.

(2) =⇒ (3) Let k ∈ Ml(R). By (2), Rk = Re where e2 = e ∈ R is left semi-central.
Hence k = ke. We claim that e is right semi-central. Otherwise t = ec − ece �= 0 for
some c ∈ R. Clearly, et = t ∈ Ml(R), te = 0, t2 = 0, so we have Rt = Rg, g2 = g ∈ R
by (2). Since g is left semi-central, t = tg = gtg ∈ Rt2g = 0, which is a contradiction.
Therefore, e is right semi-central and so e is central.

(3) =⇒ (4) is trivial.
(4) =⇒ (5) Evidently, R is left DS. Now let k, l ∈ Ml(R). If RkRl = 0, then RlRk =

0. Otherwise RlRk = Rk. Since R is left DS, Rk = RkRk = RkRlRk = 0, which is a
contradiction. Hence RlRk = 0 = RkRl. If RkRl �= 0, then the proof above implies
that RlRk �= 0. By hypothesis, k = ek = ke for some e ∈ MEl(R). We claim that e
is right semi-central. In fact, if there exists a c ∈ R such that h = ec − ece �= 0, then
eh = h ∈ Ml(R), he = 0, h2 = 0, so, there exists g ∈ MEl(R) such that h = hg = gh
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by hypothesis. Therefore, Rh = Rhg = Rg, Write g = dh, d ∈ R, then h = gh = dhh =
dh2 = 0, which is a contradiction. Hence e is right semi-central. Consequently, RkRl =
ReRl = ReRle = Re = Rk = RlRk, we are done.

(5) =⇒ (6) Assume that k, l ∈ Ml(R) with kl = 0, but lk �= 0. Then Rlk =
Rk = Re, e2 = e ∈ R. Let c ∈ R and h = ec − ece, then eh = h, he = 0. If h �= 0,
then Rh = Reh = ReRh = RhRe = Re by hypothesis. Thus h = he = 0, which is a
contradiction. This implies that e is right semi-central. Clearly, Re = Rk = Rlk =
RlRk = RkRl = Rl. Write e = ck, c ∈ R and e = dl, d ∈ R. Then el = ckl = 0 and
e = ee = edl = edel = 0, which is a contradiction. Hence lk = 0.

(6) =⇒ (7) If there exists a left minimal element k ∈ N(R), then k2 = 0. By (6),
Rk = Re, e2 = e ∈ R and so k = ke �= 0. By (6), ek �= 0. Write e = ck, c ∈ R, then
ek = ckk = ck2 = 0, which is a contradiction. Hence N(R) ∩ Sl(R) = 0.

(7) =⇒ (8) First, we note that every left minimal idempotent e of R is central
(in fact, for any c, d ∈ R, h = ec − ece, t = de − ede are contained in N(R). If h �= 0
and t �= 0, then h, t ∈ Sl(R). This is impossible because N(R) ∩ Sl(R) = 0). Next, We
observe that R is left DS (in fact, if k ∈ Ml(R) , then k2 �= 0 by (7), hence (Rk)2 �= 0).
Hence every minimal left ideal of R is an ideal. Finally, we assume that k, l ∈ Ml(R).
If Rk ∩ Rl = 0, then Rkl ⊆ Rl ∩ Rk = 0 and so Rk ∩ Rl = 0 = Rkl. If Rk ∩ Rl �= 0,
then Rk = Rk ∩ Rl = Rl = Re, where e ∈ R is a central idempotent element. Hence
Rkl = Rel = Rle = Re = Rl = Rk ∩ Rl.

(8) =⇒ (1) Assume that k ∈ Ml(R), then Rk = Rk ∩ Rk = Rkk = Rk2 by
hypothesis. Hence k2 �= 0. �

A ring with the properties of the Theorem 2.9 is denoted in the literature as a
strongly left DS ring. Clearly, strongly left DS ring is left DS left min-abel and every
left minimal idempotent is central. So, reduced rings and strongly regular rings are all
strongly left DS.

It is well known that R is strongly regular if and only if R is von Neumann
regular left quasi-duo and there exists a MELT von Neumann regular ring which
is not strongly regular, so there exists a MELT von Neumann regular ring which is
not left min-abel by Corollary 2.5. Therefore there exists a MELT left DS ring which
is not left min-abel. Consequently, there exists a MELT left DS ring which is not
strongly left DS by Theorem 2.9. Hence there exists a left DS ring which is not strongly
left DS.

3. Left SGP − V -rings and strongly regular rings.

THEOREM 3.1. If R be a left SGP − V-ring, then the following conditions are
equivalent.

(1) J(R) = 0.
(2) R is semi-prime.
(3) R is left DS.
(4) R is left mininjective.
(5) R is left minsymmetric.
(6) R is left MC2.
(7) Sl(R) ⊆ Sr(R).
(8) R is left idempotent reflexive.
(9) R is reflexive.
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Proof. (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5) =⇒ (6), (2) =⇒ (9) =⇒ (8) =⇒ (6)
and (5) =⇒ (7) are trivial.

(7) =⇒ (6) Let e ∈ MEl(R) and a ∈ R such that aRe = 0. If eRa �= 0, then
there exists a b ∈ R such that eba �= 0. Clearly, RebaR ⊆ l(eba) = l(e). Let L be the
complement right ideal of RebaR in R. Then, evidently, L ⊆ l(eba) = l(e). Since Reba ⊕
L is an essential right ideal of R, e ∈ Sl(R) ⊆ Sr(R) ⊆ RebaR ⊕ L ⊆ l(eba) = l(e) =
R(1 − e), which is a contradiction. Hence eRa = 0. By Theorem 2.1, R is left MC2.

(6) =⇒ (1) If J(R) �= 0, then there exists 0 �= a ∈ J(R). We claim that RaR +
∪∞

i=1l(ai) = R. Otherwise, there exists a maximal left ideal M of R containing
RaR + ∪∞

i=1l(ai). If M is not essential in RR, then M = l(e) for some e ∈ MEl(R). So,
we have aRe = 0. Since R is left MC2, eRa = 0, and then e ∈ l(a) ⊆ M = l(e), which
is a contradiction. This shows that M is essential in RR and so R/M is simple singular
left R-module. Since R is a left SGP − V -ring, R/M is YJ−injective, hence there exists
a positive integer n such that an �= 0, and any left R-homomorphism from Ran to
R/M can be extended to an R-homomorphism from R to R/M. Now we define a map
f : Ran −→ R/M by f (ran) = r + M for any r ∈ R. Clearly, f is well defined. Thus, there
exists b ∈ R such that 1 − anb ∈ M and so 1 ∈ M because anb ∈ RaR ⊆ M, which is a
contradiction. Therefore we have RaR + ∪∞

i=1l(ai) = R. Since a ∈ J(R), RaR ⊆ J(R),
so, we have ∪∞

i=1l(ai) = R. This implies a is nilpotent. We can assume that a2 = 0. By the
proof above, we have l(a) = R, which also is a contradiction because a �= 0. Therefore
J(R) = 0. �

COROLLARY 3.2. Let R be a left GP − V-ring. Then the following conditions are
equivalent.

(1) R is strongly left min-abel.
(2) R is left min-abel.
(3) R is strongly left DS.

Proof. (3) =⇒ (1) =⇒ (2) are trivial.
(2) =⇒ (3) Since R is a left GP − V−ring, J(R) = 0, hence R is left DS. By

Theorem 2.9, R is strongly left DS because R is left min-abel. �
COROLLARY 3.3. Let R be a left SGP − V-ring. Then the following conditions are

equivalent.
(1) R is strongly left DS.
(2) R is left min-abel and J(R) = 0.
(3) R is left min-abel and semi-prime.

A ring R is called NI if N(R) forms an ideal of R, and R is said to be 2-primal if
N(R) = P(R). Clearly, 2-primal rings are NI .

COROLLARY 3.4. Let R be a left SGP − V-ring. Then the following conditions are
equivalent.

(1) R is reduced.
(2) R is left MC2 and N(R) forms left ideal of R.
(3) R is left MC2 and N(R) forms right ideal of R.
(4) R is NI and left MC2.

Proof. (1) =⇒ (4) =⇒ (i), i = 2, 3 are trivial.
(2) =⇒ (1) Since R is a left SGP − V -ring and a left MC2 ring, by Theorem 3.1,

J(R) = 0. Since N(R) forms a left ideal of R, N(R) ⊆ J(R). So, we have N(R) = 0.
Similarly, we have (3) =⇒ (1). �
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THEOREM 3.5. The following conditions are equivalent for a ring R.
(1) R is strongly regular.
(2) R is strongly left min-abel, WMELT and a left SGP − V-ring.
(3) R is left min-abel, WMELT and a left GP − V-ring.
(4) R is left MC2, left WQD and a left SGP − V-ring.

Proof. (1) =⇒ (i), i = 3, 4 are trivial.
(4) =⇒ (2) is an immediate consequence of Theorem 2.3 and 2.7.
(3) =⇒ (2) follows from Corollary 3.2.
(2) =⇒ (1) First, we show that R is reduced. If it is not the case, then there exists

0 �= a ∈ R such that a2 = 0. Hence l(a) is contained in a maximal left ideal M of R.
If M is not an essential left ideal of R, then M = l(e) for some e ∈ MEl(R). Since
R is strongly left min-abel, e is central. So, we have ea = ae = 0 because a ∈ l(a) ⊆
M = l(e). Therefore e ∈ l(a) ⊆ l(e), which is a contradiction. Hence M is essential
and then R/M is a simple singular left R-module. Since R is a left SGP − V -ring,
R/M is YJ-injective, hence the left R-homomorphism f : Ra −→ R/M defined by
f (ra) = r + M can be extended to one from R to R/M. In other words, there exists a
b ∈ R such that 1 − ab ∈ M, so, we have b − bab = b(1 − ab) ∈ M. Since R is WMELT
and ba ∈ M, there exists a positive integer n such that (ba)nb ∈ M. Hence (ba)n−1b =
(ba)n−1(b − bab) + (ba)nb ∈ M. Continuing this process, we have bab ∈ M. Thus b =
b − bab + bab ∈ M and ab ∈ M. Therefore, 1 ∈ M, which is a contradiction. This
proves that R is reduced.

Now we prove that R is strongly regular. If not, there exists 0 �= a ∈ R such that
Ra + l(a) ⊆ M for some maximal left ideal M of R. Clearly, M is an essential left
ideal of R. Thus R/M is YJ−injective, hence there exists a positive integer n such
that an �= 0, and any left R-homomorphism from Ran to R/M can be extended to
an R-homomorphism from R to R/M. Now we define a map f : Ran −→ R/M by
f (ran) = r + M for any r ∈ R. Since R is reduced, f is well defined. Thus, there exists
b ∈ R such that 1 − anb ∈ M. Since R is WMELT , M is GW -ideal. As the proof in
the first part, we obtain banb ∈ M. Furthermore, b = b(1 − anb) + banb ∈ M, and then
anb ∈ M, whence 1 ∈ M. This contradiction shows that R is strongly regular. �

In [14], Rege proved that R is strongly regular if and only if R is left weakly regular
left quasi-duo. We can generalize the result as follows.

THEOREM 3.6. The following conditions are equivalent for a ring R.
(1) R is strongly regular.
(2) R is left weakly regular and left WQD.
(3) R is left weakly regular and right WQD.
(4) R is left weakly regular and right quasi-duo.

Proof. (1) =⇒ (4) =⇒ (3) and (1) =⇒ (2) are trivial.
(2) =⇒ (1) If there exists a ∈ R such that Ra + l(a) �= R, then there exists a

maximal left ideal M containing Ra + l(a). Since R is left WQD and a ∈ R, there
exists a positive integer n such that anR ⊆ M. Since R is left weakly regular, an = xan

for some x ∈ RanR. Therefore x ∈ M. Since R is left WQD, R/J(R) is reduced by
Theorem 2.7. But R is left weakly regular, J(R) = 0, so, we have that R is reduced.
Hence 1 − x ∈ l(an) = l(a) ⊆ M and 1 ∈ M, which is a contradiction. This shows that
R is strongly regular.

(3) =⇒ (1) Similar to the proof of (2) =⇒ (1), we have that R is reduced. For
any a ∈ R, we claim that aR + r(a) = R. Otherwise there exists 0 �= b ∈ R satisfying
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bR + r(b) ⊆ K for some maximal right ideal K of R. So, by hypothesis, there exists
a positive integer m such that Rbm ∈ K . Since bm = ybm for some y ∈ RbmR ⊆ K ,
1 − y ∈ l(bm) = l(b) = r(b) ⊆ K , we have 1 ∈ K , which is a contradiction. Therefore, R
is strongly regular. �

THEOREM 3.7. The following conditions are equivalent for a ring R.
(1) R is strongly regular.
(2) R is strongly left min-abel, WMERT and left SGP − V-ring.
(3) R is left SGP − V-ring, left MC2 and right WQD.
(4) R is left weakly regular, left min-abel and WMERT.

Proof. (1) =⇒ (2) evidently.
(2) =⇒ (3) By Theorem 2.3, R is left min-abel left MC2. Now let e ∈ MEr(R).

Since R is a left MC2 left SGP − V -ring, R is semi-prime by Theorem 3.1, hence R is
right MC2. Consequently, e ∈ MEl(R), and so e is central in R because R is strongly
left min-abel. This proves R is right min-abel. By Theorem 2.7, R is right WQD because
R is WMERT .

(3) =⇒ (4) First, we show that R is reduced. Since R is left MC2 left SGP − V -ring,
J(R) = 0 by Theorem 3.1. Since R is right WQD, R is WMERT and R/J(R) is reduced
by Theorem 2.7. Therefore R is reduced and so R is left min-abel. Next, we claim that
R is left weakly regular. Otherwise, there exists 0 �= a ∈ R such that RaR + l(a) ⊆ M.
Clearly, M is essential in RR, hence R/M is YJ-injective by hypothesis. It is easy to
show that there exists a positive integer n and b ∈ R such that 1 − anb ∈ M. This implies
1 ∈ M because anb ∈ M. This contradiction shows that R is left weakly regular.

(4) =⇒ (1) Since R is left weakly regular, R is semi-prime, hence R is right MC2.
Now let e ∈ MEr(R). By Theorem 2.1, e ∈ MEl(R). Since R is left min-abel, e is left
semi-central. By Theorem 2.3, R is strongly right min-abel. By Theorem 2.7, R is right
WQD. By Theorem 3.6, R is strongly regular. �

4. Injective maximal left ideals. In general, the existence of an injective maximal
left ideal in a ring R can not guarantee the left self-injectivity of R. [4, Proposition 5]
proves that if R is idempotent reflexive and R contains an injective maximal left ideal,
then R is left self-injective. We can generalize the result as follows.

THEOREM 4.1. Let R be left MC2. If R contains an injective maximal left ideal, then
R is left self-injective.

Proof. Let M be an injective maximal left ideal of R. Then R = M ⊕ N for
some minimal left ideal N of R. Hence we have M = Re and N = R(1 − e) for some
e2 = e ∈ R. If MN = 0, then we have eR(1 − e) = 0. Since R is left MC2 and 1 − e ∈
MEl(R), (1 − e)Re = 0. So e is central. Now let L be any proper essential left ideal
of R and f : L −→ N any non-zero left R−homomorphism. Then L/U ∼= N, where
U = kerf is a maximal sub-module of L. Now L = U ⊕ V , where V ∼= N = R(1 − e) is
a minimal left ideal of R. Since e is central, V = R(1 − e). For any z ∈ L, let z = x + y,
where x ∈ U, y ∈ V . Then f (z) = f (x) + f (y) = f (y). Since y = y(1 − e) = (1 − e)y,
f (z) = f (y) = f (y(1 − e)) = yf (1 − e). Since x(1 − e) = (1 − e)x ∈ V ∩ U = 0, xf (1 −
e) = f (x(1 − e) = f (0) = 0. Thus f (z) = yf (1 − e) = y(f (1 − e) + xf (1 − e) = (y +
x)f (1 − e) = zf (1 − e). Hence RN is injective. If MN �= 0, by the proof of [4, Proposition
5], we have RN is injective. Hence R = M ⊕ N is left self-injective. �
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Since strongly left DS =⇒ left DS =⇒ left mininjective =⇒left minsymmetric =⇒
left MC2 and strongly left min-abel =⇒left MC2, we have the following corollary.

COROLLARY 4.2. Let R contain an injective maximal left ideal. If R satisfies one of
the following conditions, then R is left self-injective.

(1) R is strongly left DS.
(2) R is left DS.
(3) R is left mininjective.
(4) R is left minsymmetric.
(5) R is strongly min-abel.

It is well known that if R is left self-injective, then J(R) = Zl(R). Therefore by [16,
Theorem 5.1] and Theorem 4.1, we have the following corollary.

COROLLARY 4.3. Let R contain an injective maximal left ideal. Then R is left self-
injective if and only if J(R) = Zl(R).

A ring R is right Kasch if every simple right R-module can be embedded in RR and
R is said to be left C2 [12] if every left ideal that is isomorphic to a direct summand of RR
is itself a direct summand. Clearly, left C2 rings are left MC2 and by [19, Lemma 1.15],
right Kasch ring are left C2. Hence, we have the following corollary.

COROLLARY 4.4. Let R contain an injective maximal left ideal. If R satisfies one of
the following conditions, then R is left self-injective.

(1) R is right Kasch.
(2) R is left C2.

Recall that a ring R is left pp if every principal left ideal of R is projective. As an
application of Theorem 4.1, we have the following result.

THEOREM 4.5. The following conditions are equivalent for a ring R.
(1) R is a von Neumann regular left self-injective ring with Sl(R) �= 0.
(2) R is a left MC2 left pp ring containing an injective maximal left ideal.
(3) R is a left minsymmetric left pp ring containing an injective maximal left ideal.
(4) R is a left mininjective left pp ring containing an injective maximal left ideal.
(5) R is a left DS left pp ring containing an injective maximal left ideal.

Proof. (1) =⇒ (5) =⇒ (4) =⇒ (3) =⇒ (2) are trivial.
(2) =⇒ (1) By Theorem 4.1, R is left self-injective. Hence, by [10, Theorem 1.2], R

is left C2, so, R is von Neumann regular because R is left pp. Also we have Sl(R) �= 0
since there is an injective maximal left ideal. �

By [21], a ring R is said to be left HI if R is left hereditary containing an injective
maximal left ideal. Osofsky [13] proves that left self-injective left hereditary ring is
semi-simple Artinian. We can generalize the result as follows.

COROLLARY 4.6. The following conditions are equivalent for a ring R.
(1) R is semi-simple Artinian.
(2) R is left MC2 left HI.
(3) R is left minsymmetric left HI.
(4) R is left mininjective left HI.
(5) R is left DS left HI.
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