PERFECT CATEGORIES

by JOHN ISBELL (Received 16th December 1974)

Introduction

This note extends to categories Fountain's theorem (2) that for a perfect monoid S, every flat S-set is projective. (The converse is known (4).)

Fountain used the theorem for monoids to prove that perfection is also equivalent to the pair of properties:

A. Every locally cyclic S-set is cyclic.

 M_R . The principal right ideals of S satisfy the minimum condition.

A similar result for categories \mathscr{C} is a corollary, since it was known (4) that \mathscr{C} is perfect if and only if it has property A and every monoid $\mathscr{C}(X, X)$ is perfect.

Theorem. The following three conditions on a category *C* are equivalent:

- (a) *C* is perfect;
- (b) Every flat (set-valued) functor on \mathscr{C} is projective;
- (c) Every weakly flat (set-valued) functor on C is projective.

The implication $(c) \Rightarrow (b)$ is trivial; $(b) \Rightarrow (a)$ is known (4); so we need to prove $(a) \Rightarrow (c)$.

Definitions and background

The basic reference for flat functors is the seminar notes of Grothendieck and Verdier (3), which treat them as generalised representable functors and call them "ind-objets" ("objet" meaning a representable functor). They are defined (3) as the direct limits of directed systems of representable functors. The standard term is now *flat functor*, although as far as I know it has not made its way from lectures into print. As with (flat) modules, so with functors $F: \mathcal{C} \rightarrow \mathcal{S}$, the property is equivalent to this: the set-valued functor () $\otimes F$, on cat(\mathcal{C}^{op} , \mathcal{S}) to \mathcal{S} , is left exact. There are results like that in (3), from which this result became clear when the tensor product $G \otimes F$ of contravariant G and covariant F was defined. F. W. Lawvere tells me that this was well known in Zurich certainly by 1966. The explicit definition of \otimes is simple enough (using the notation of (4); Latin letters denote points of F, which are ordered pairs consisting of an object X of \mathcal{C} and an element e of F(X), Greek letters denote morphisms of \mathcal{C} , and of course a juxtaposition αp is meaningful only when the object of p is the domain of α); form $G \otimes F$ from the coproduct

JOHN ISBELL

of all $G(X) \otimes F(X)$ by identifying $(q\alpha, p)$ with $(q, \alpha p)$, for every meaningful instance of these expressions.

The definition of \otimes was published by B. Mitchell (5), whose results do not touch on flatness but include these fundamentals: for representable $G = h_Y$, $G \otimes F$ is F(Y); for representable $F = h^X$, $G \otimes F$ is G(X); in general, \otimes is co-continuous in each variable.

Weakly flat functors (as in Stenström (5)) are the direct limits of projective functors. Recall that projective functors are the retracts of free functors; in turn, free functors are coproducts of representable ones. One verifies by inspection that each of these constructions preserves the following property which the representable functors plainly have:

(*) In F there are no relations $\alpha p = \beta q$ except those given by relations $\alpha v = \beta \delta$ in C and points o, by means of p = vo, $q = \delta o$; and there are no relations $\alpha p = \beta p$ except those given by $\alpha v = \beta v$, p = vo.

Thus (*) is true of weakly flat functors F. (Actually it characterises them. Grothendieck-Verdier showed (3, Theorem 8.3.3) that this and indecomposability characterise flat functors.)

Proof of $(a) \Rightarrow (c)$

We can use Fountain's lemmas to prove:

Theorem. If \mathscr{C} is perfect then every weakly flat functor $F: \mathscr{C} \to S$ is projective.

Proof. Perfection implies (4) property A: every locally cyclic functor is cyclic, or in other words every ascending chain of cyclic subfunctors is finite. Then (following Fountain's numbering of lemmas):

(2) Every generating set of points of F contains an irredundant generating set.

For let M be the set of all maximal cyclic subfunctors $\mathscr{C}p$ of F. A generating set S must include, for each $\mathscr{C}p$ in M, some s such that $p \in \mathscr{C}s$; then

$$\mathscr{C}p\subset\mathscr{C}s, \mathscr{C}p=\mathscr{C}s\in M.$$

(3) The indecomposable summands of F are cyclic.

For let S be an irredundant generating set. The claim is that $\mathscr{C}p$, $\mathscr{C}q$ are disjoint for $p \neq q$ in S. Indeed, if not, then (*) gives p = vo, $q = \delta o$, with $\mathscr{C}o$ containing $\mathscr{C}p$ and $\mathscr{C}q$, contrary to maximality.

The indecomposable summands are, of course, also flat (but we need only (*), which they evidently inherit).

(5) The indecomposable summands of F are projective.

For this we must recall that perfection implies (4) property D: every isotropy set has a minimal left ideal generated by an idempotent. (An isotropy

96

set, meaning a coset of an identity l_x in a left congruence, is (4) simply an isotropy set in $\mathscr{C}(X, X)$, or left unitary subsemigroup (2).)

Let *E* be an indecomposable summand of *F*. *E* being flat cyclic, of the form h^{X}/ρ for some left congruence ρ , we shall construct an isomorphism with a projective $h^{X}\alpha$, where $\alpha: X \to X$ is idempotent. $(h^{X}\alpha(Y)$ is the subset of $h^{X}(Y)$ consisting of all elements $\xi\alpha; h^{X}$ retracts onto $h^{X}\alpha$ by ϕ , where $\phi_{Y}(\xi) = \xi\alpha$.) We need to note that when $\beta\rho = v\rho$ in E(Y), there exists $\theta: X \to X$ in \mathcal{C} , ρ equivalent to 1_{X} , such that $\beta\theta = v\theta$. For $\beta(1_{X}\rho) = v(1_{X}\rho)$ and (*) yield $\beta\delta = v\delta$ and $1_{X}\rho = \delta o$ for some $\delta: W \to X$ and $o \in E(W)$. But $1_{X}\rho$ generates *E*, so *o* is $\eta(1_{X}\rho)$ and we may put $\theta = \delta\eta$.

Let $B = 1_X \rho$ and let $B\alpha$ be a minimal left ideal of B generated by idempotent α . By Lemma 8.12 of (1), αB is a minimal right ideal of B. By the remark above, for each β in B (since $\beta \rho = \alpha \rho$) there is θ in B with $\beta \theta = \alpha \theta$. So $\beta \theta B \subset \alpha B$, $\alpha B = \beta \theta B$ by minimality, and therefore $\alpha \in \beta B$.

Define $f: h^{\chi}/\rho \to h^{\chi}\alpha$ by $f_{\chi}(\xi\rho) = \xi\alpha$. If $\xi\rho$ is equal to $\zeta\rho$, then $\xi\beta = \zeta\beta$ for some β in B (by the remark above), so $\xi\alpha = \zeta\alpha$ since $\alpha \in \beta B$. Evidently f is natural, and surjective. Since $(\xi\alpha)\rho = \xi(\alpha\rho) = \xi(1_{\chi}\rho) = \xi\rho$, f is injective and (5) is proved.

The theorem follows since F is a coproduct of projectives.

REFERENCES

(1) A. H. CLIFFORD and G. B. PRESTON, *The algebraic theory of semigroups*, Vol. II (Math. Surveys no. 7, Amer. Math. Soc., 1967).

(2) J. FOUNTAIN, Perfect semigroups. Proc. Edinburgh Math. Soc. 20 (1976), 87-93.

(3) A. GROTHENDIECK et J. L. VERDIER, *Prefaisceaux* (Lecture Notes in Mathematics 269, Springer-Verlag, 1972), 1-217.

(4) J. R. ISBELL, Perfect monoids, Semigroup Forum 2 (1971), 95-118.

(5) B. MITCHELL, The dominion of Isbell, Trans. Amer. Math. Soc. 167 (1972), 319-331.

(6) В. STENSTRÖM, Flatness and localization over monoids, Math. Nachr. 48 (1971), 315-334.

STATE UNIVERSITY OF NEW YORK AT BUFFALO Amherst New York 14226

E.M.S.-20/2-G