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1. Introduction

The explicit description of divisorial contractions is a beautiful object in itself, and in

dimension three it is one of the most important remaining problems. The aim of this

paper is to continue the study of this, following my previous paper [Kwk01].

Let f : ðY � EÞ ! ðX 3 PÞ be a divisorial contraction in dimension three which

contracts its exceptional divisor E to a point P. The theorem in [Kwk01] is that

any such contraction to a smooth point P is obtained by a suitable weighted

blow-up. In the proof of this theorem, a numerical game for types of singularities

on Y and for dimensions of OX=OXð�iEÞ’s plays an essential role, and it also works

even if P is a Gorenstein singularity. In this paper, we treat the case where P is a

compound A1 point, starting with this game, and prove the following theorem:

THEOREM 1.1 (= Theorem 2.5). Let Y be a Q-factorial normal variety of dimension

three with only terminal singularities, and let f : ðY � EÞ ! ðX 3 PÞ be an algebraic

germ of a divisorial contraction which contracts its exceptional divisor E to a compound

A1 point P. Then f is a weighted blow-up. More precisely, under a suitable analytic

identification P 2 X ffi o 2 ðxyþ z2 þ wN ¼ 0Þ � C4, f is one of the following weighted

blow-ups:

ð1Þ General case: f is the weighted blow-up with its weights wtðx; y; z;wÞ

¼ ðs; 2t� s; t; 1Þ, where s; t are coprime positive integers such that s4 t4N=2.

ð2Þ Exceptional case: N ¼ 3 and f is the weighted blow-up with its weights

wtðx; y; z;wÞ ¼ ð1; 5; 3; 2Þ.
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Compound A1 singularities are among the mildest of singularities, except for

smooth points, allowed for P and, so there are many ways of obtaining a natural

local description of X at P in our case. This makes it difficult to analyze divisorial

contractions to X because many contractions may possibly occur.

The hardest part of the theorem is found in the general case. Adding that there

exist infinitely many such weighted blow-ups from the choice of an analytic identifi-

cation P 2 X ffi o 2 ðxyþ z2 þ wN ¼ 0Þ � C4, some difficulties arise in controlling

the value of N, which should be large compared to the discrepancy of f. For this,

we introduce a special surface P 2 S � X (Definition 6.5) and reduce the problem

to constructing a special surface of which the strict transform on Y has only rela-

tively mild singularities.

Y. Kawamata has produced a description in the case where P is a terminal quo-

tient singularity ([Kwm96]), and A. Corti has described the case where P is an ordin-

ary double point ([Co00, Theorem 3.10]), a special case of Theorem 1.1. He,

with M. Mella, has also treated the case where P is analytically isomorphic to

o 2 ðxyþ z3 þ w3 ¼ 0Þ � C4 ([CM00, Theorem 3.6]). Though every case of the above

admits only one or two divisorial contractions, respectively, in this paper we can

also see the essence of their proof, comparing discrepancies and using Shokurov’s

connectedness lemma.

Recently, a study of Mori fiber spaces using the Sarkisov program was made (for

example, [Co00], [CPR00] and [CM00]), which requires a precise description of divi-

sorial contractions. I am convinced that Theorem 1.1 can be used to tackle Conjec-

ture 1.2 of [CM00].

2. Statement of Theorem

We will work over the complex number field C. A variety means an irreducible,

reduced, separated scheme of finite type over SpecC. Though our objects are alge-

braic in themselves and we work in the algebraic category throughout the paper,

we often use analytic functions for convenience. This produces no problem when

adding higher terms to them if necessary to put them into algebraic functions.

Our argument does not depend on the local ring OX;P itself, but only on a quotient

OX;P=mn
P by a sufficiently large multiple of the maximal ideal mP � OX;P. We use

basic terminologies in [Kþ92, Chapters 1, 2].

First we define a divisorial contraction. Here it means a morphism which may

emerge in the minimal model program.

DEFINITION 2.1 Let f :Y ! X be a morphism with connected fibers between

normal varieties. We call f a divisorial contraction if it satisfies the following condi-

tions:

(1) Y is Q-factorial with only terminal singularities.

(2) The exceptional locus of f is a prime divisor.
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(3) �KY is f-ample.

(4) The relative Picard number of f is one.

We recall the classification of terminal Gorenstein singularities in dimension three.

DEFINITION 2.2. Let P 2 X be an algebraic germ (resp. an analytic germ) of a

variety (resp. an analytic space) of dimension three. We call P a cDV (compound Du

Val) point if a general hyperplane section is normal and has a Du Val singularity at

P. The singularity P is said to be cAn, cDn, cEn (compound An;Dn;En) according to

the type of Du Val singularity on a general hyperplane section.

THEOREM 2.3 ([R83, Theorem 1.1]). Let P 2 X be an algebraic germ (resp. an

analytic germ) of a normal variety (resp. analytic space) of dimension three. Then P is

a terminal Gorenstein singularity if and only if P is an isolated cDV point.

Remark 2.4. (1) Let P 2 X ffi o 2 ð f ¼ 0Þ � C4 be a terminal Gorenstein singu-

larity in dimension three. We can divide such singularities by rank r of the Hessian

matrix of f at o.

– r ¼ 1. P is cDn, cE6, cE7, or cE8.

– r ¼ 2. P is cAn with n5 2.

– r ¼ 3. P is cA1, but is not an ordinary double point.

– r ¼ 4. P is an ordinary double point.

(2) If P is an isolated cA1 point, we have an analytic identification P 2 X ffi o 2

ðxyþ z2 þ wN ¼ 0Þ � C4 for some N5 2. This N depends only on P 2 X itself.

It is now time to state the theorem precisely.

THEOREM 2.5. Let Y be a Q-factorial normal variety of dimension three with only

terminal singularities, and let f : ðY � EÞ ! ðX 3 PÞ be an algebraic germ of a divi-

sorial contraction which contracts its exceptional divisor E to a compound A1 point P.

Then f is a weighted blow-up. More precisely, under a suitable analytic identification

P 2 X ffi o 2 ðxyþ z2 þ wN ¼ 0Þ � C4, f is one of the following weighted blow-ups.

ð1Þ General case: f is the weighted blow-up with its weights wtðx; y; z;wÞ

¼ ðs; 2t� s; t; 1Þ, where s; t are coprime positive integers such that s4 t4N=2.

ð2Þ Exceptional case: N ¼ 3 and f is the weighted blow-up with its weights

wtðx; y; z;wÞ ¼ ð1; 5; 3; 2Þ.

Remark 2.6. Consider an analytic germ of a cA1 point o 2 ðxyþ z2 þ wN ¼ 0Þ �

C4 (N5 2) and blow-up this with weights as in Theorem 2.5. Then the exceptional

locus of this weighted blow-up is irreducible, and the weighted blown-up analytic

space has actually only terminal singularities.
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As in [Kwk01], in our argument we often identify prime divisors on different vari-

eties if they are the same as valuations.

NOTATION 2.7. Let X be a normal variety and let E be an algebraic valuation, that

is, a valuation of the function field of X which is obtained as an exceptional divisor of

some birational morphism f :Y ! X from a normal variety Y. Let D be a Q-divisor

on X or D ¼ mM, where m is a rational number and M is a linear system of finite

dimension on X which has no base points of codimension one.

(1) Let Z be a normal variety which is birational to X. DZ denotes the strict trans-

form of D on Z.

(2) OXðiEÞ ði 2 ZÞ denotes f�OYðiEÞ.

(3) Assume that KX þD is Q-Cartier. aKXþDðEÞ denotes the discrepancy of E with

respect to KX þD, that is, KY ¼ f �ðKX þDÞ þ aKXþDðEÞEþ ðothersÞ.

(4) Assume that D is Q-Cartier. mDðEÞ denotes the multiplicity of E with respect to

D, that is, f �D ¼ DY þmDðEÞEþ ðothersÞ.

3. Review of Singular Riemann–Roch Technique

In this section we review some of the numerical results in [Kwk01, x 4] obtained

by using the singular Riemann–Roch formula. Let Y be a Q-factorial normal

variety of dimension three with only terminal singularities, and let f : ðY � EÞ !

ðX 3 PÞ be an algebraic germ of a divisorial contraction which contracts its excep-

tional divisor E to a Gorenstein point P. We fix this situation throughout this

section.

Let KY ¼ f �KX þ aE and let r be the global Gorenstein index of Y, that is, the

smallest positive integer such that rKY is Cartier. Because a and r are coprime by

[Kwk01, Lemma 4.3], we can take an integer e such that ae � 1 modulo r.

Let

I ¼ Q : type
1

rQ
ð1;�1; bQÞ

� �
be the set of fictitious singularities of Y, that is, terminal quotient singularities

obtained by flat deformations of non-Gorenstein singularities of Y. Then

ðOYQ
ðEQÞÞQ ffi ðOYQ

ðeKYQ
ÞÞQ, where ðYQ;EQÞ is the deformed pair near Q from

ðY;EÞ. We note that bQ is coprime to rQ and that e is also coprime to rQ because

r divides ae� 1. Hence, vQ ¼ ebQ is coprime to rQ. Here � denotes the smallest

residue modulo rQ, that is, j ¼ j� b j=rQcrQ, where b c denotes the round down, that

is, bjc ¼ maxfk 2 Zjk4 jg. Replacing bQ with rQ � bQ if necessary, we may

assume that vQ 4 rQ=2. With this description, r is one if I is empty, and otherwise

r is the lowest common multiple of frQgQ2I. We define J ¼ fðrQ; vQÞgQ2I. Moreover,

we set
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dðiÞ ¼ dimC OXðiEÞ=OXðði� 1ÞEÞ ði 2 ZÞ;

DðiÞ ¼
X
04 j<i

dð�jÞ ¼ dimC OX=OXð�iEÞ ði5 0Þ:

We note that dðiÞ ¼ 0 if i5 1, and that dð0Þ ¼ 1.

PROPOSITION 3.1 ([Kwk01, Proposition 4.4]).

ð1Þ rE3 2 Z>0.

ð2Þ aE3 ¼ 2�
P

Q2I

vQðrQ � vQÞ
rQ

.

ð3Þ DðiÞ ¼ i2 þ Bi � i2B1 ð04 i4 aÞ, where Bi ¼
P

Q2I

ivQðrQ � ivQÞ

2rQ
.

ð4Þ If a5 2, then Dð2Þ ¼ 4�
P

Q2I vQ 2 f1; 2; 3; 4g.

THEOREM 3.2 ([Kwk01, Theorem 4.5]). Assume that a5 2. Then according the

value of Dð2Þ, exactly one of the cases given in Table I holds.

Set r1 ¼ 1, r2 ¼ r in the case III, and consider the cases II-b and III. In these cases

we have

DðiÞ

¼ Ni ¼ i ð04 i4 minfr1; agÞ

¼ Ni > i ðminfr1; ag < i4 minfr2; agÞ

> Ni > i ðminfr2; ag < i4 aÞ;

8><>:
where Ni is the number of elements in the set

Ii ¼ fðs; tÞ 2 Z25 0jsþ r1t < ig:

4. First Step to Proof

In this section we take the first step to the proof of Theorem 2.5. We keep numerical

data in Section 3.

– KY ¼ f �KX þ aE;

– r : the Gorenstein index,

– e : an integer such that ae � 1 modulo r,

– I ¼ fQ : type 1
rQ
ð1;�1; bQÞg: the set of fictitious singularities of Y,

Table I.

Case Dð2Þ J a

I 1 fð7; 3Þg or fð3; 1Þ; ð5; 2Þg 2

II-a 2 fðr; 2Þg 2 or 4

II-b 2 fðr1; 1Þ; ðr2; 1Þg ðr1 � r2Þ ðr1 þ r2Þ=r1r2E3
III 3 fðr; 1Þg ð1þ rÞ=rE3
IV 4 ; 2

In this case f is the blow-up along a smooth point P.
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– vQ ¼ ebQ ðvQ 4 rQ=2Þ,

– J ¼ fðrQ; vQÞgQ2I,

– dðiÞ ¼ dimC OXðiEÞ=OXðði� 1ÞEÞ ði 2 ZÞ;

– DðiÞ ¼ dimC OX=OXð�iEÞ ði5 0Þ:

Additionally, we define an integer N5 2 as

P 2 X ffi o 2 ðxyþ z2 þ wN ¼ 0Þ � C4:

First we construct a tower of normal varieties.

CONSTRUCTION 4.1. We construct birational morphisms gi :Xi ! Xi
1 between

normal factorial varieties, closed subvarieties Zi � Xi, and prime divisors Fi on Xi

inductively, and define positive integers n;m, with the following procedure.

(1) Define X0 as X and Z0 as P.

(2) (a) If Zi�1 is a point, we define gi as the blow-up of Xi�1 along Zi�1.

(b) If Zi
1 is a curve, we define bi :BlZi
1ðXi
1Þ ! Xi
1 as the blow-up of Xi
1
along Zi
1, and define b0i :Xi ! BlZi
1ðXi
1Þ as a resolution of singularities
near b
1i ðZi
1Þ. Precisely, b0i is a proper morphism which is isomorphic over
BlZi
1ðXi
1Þnb
1i ðZi
1Þ, and Xi is smooth near ðbi � b0iÞ
1ðZi
1Þ. We note
that b0i is isomorphic at the generic point of the center of E on

BlZi
1ðXi
1Þ. We define gi ¼ bi � b0i :Xi ! Xi
1.

(3) Define Zi as the center of E on Xi with the reduced induced closed subscheme

structure, and Fi as the only gi-exceptional prime divisor on Xi which contains

Zi.

(4) We stop this process when Zn ¼ Fn. This process must terminate after finite steps

like [Kwk01, Construction 3.1] and thus we get the sequence Xn ! � � � ! X0.

(5) We define m4 n as the largest integer such that Zm�1 is a point.

(6) We define gji ( j4 i) as the induced morphism from Xi to Xj.

Remark 4.2. Zi � Fi (14 i4 n) is exactly one of the cases given in Table II.

Table II.

Case i Zi Zi � Fi

P1 1 � i < m point the vertex point 2 Q0ð� P3Þ
P2 a nonvertex point 2 Q0ð� P3Þ
P3 a point 2 Qð� P3Þ
P4 a point 2 P2

C1 i ¼ m < n curve a curve� Q0ð� P3Þ
C2 a curve � Qð� P3Þ
C3 a curve � P2

C 0 m < i < n a curve � Fi

S i ¼ n surface the surface ¼ Fi
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Q0 (resp. Q) in Table II denotes the cone ðxyþ z2 ¼ 0Þ (resp. the smooth quadratic

ðxyþ zw ¼ 0Þ) � P3 with homogeneous coordinates x; y; z;w.

Remark 4.3. We remark that OXð�iEÞ ¼ OXð�iFnÞ for any i because E and Fn are

the same as valuations.

From the next lemma, we have only to prove that Fn equals, as valuations, the

only exceptional divisor obtained by a weighted blow-up of X emerging in

Theorem 2.5.

LEMMA 4.4 ([Kwk01, Lemma 3.4]). Let fi :Yi ! X with i ¼ 1, 2 be projective

birational morphisms between normal varieties. Assume that Ei, the exceptional locus

of fi, is an anti-fi-ample prime divisor for each i, and that E1 and E2 are the same as

valuations.

Second we evaluate various discrepancies and multiplicities.

NOTATION 4.5. (1) We define a positive integer l4m as the largest integer satis-

fying that l ¼ 1 or that Zl�1 is of type P1.

(2) For curves Zi (m4 i < n), we define the degree di of Zi as follows.

(a) In cases C1 and C2, di denotes the degree of Zi considered as a subvariety in

P3 as in Remark 4.2.

(b)In case C3, di denotes the degree of Zi considered as a subvariety in P2 as in

Remark 4.2.

(c) In case C0, di denotes the degree of the finite morphism Zi ! Zi
1.

NOTATION 4.6. Let M be a general f-very ample linear system of finite dimension

on Y. We define positive rational numbers m; ci by the following equations.

KY þ mM ¼ f �ðKX þ mMXÞ;

g�0nðmMXÞ ¼ mMXn
þ

X
14 i4 n

ciðg
�
inFiÞ þ ðothersÞ:

Remark 4.7. (1) Because M is a general f-very ample linear system on Y, for any

algebraic valuation G we have aKXþmMX
ðGÞ ¼ aKY

ðGÞ.

(2) Putting G ¼ Fi in (4.7.1), we obtain

aKX
ðFiÞ �

X
14 j4 i

cjmFj
ðFiÞ ¼ aKY

ðFiÞ
> 0 ði < nÞ

¼ 0 ði ¼ nÞ;

(

since Y has only terminal singularities.

We give an evaluation for ci’s.
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PROPOSITION 4.8.

(1) 1 > c1 except the case n ¼ 1.

(2) cn > aKXn�1
ðFnÞ except the case n ¼ 1.

(3) (a) If Zi is a point of type P1 or P4, then ci 5 ciþ1.

(b) If Zi is a point of type P2, then 2ci 5 ciþ1.

(c) If Zi is a curve of type C3 or C0, then ci 5 diciþ1.

(d) If Zi is a curve of type C1, then 2ci 5 diciþ1.

(4) If Zi is of type P3 or C2, then ci 5 1.

Proof. (1) Putting i ¼ 1 into Remark 4.7.2, we have 1
 c1 > 0.

(2) We use Remark 4.7. Because

KXn
þ mMXn

¼ g�nðKXn�1
þ mMXn�1

Þ þ ðaKXn�1
ðFnÞ � cnÞFn þ ðothersÞ

¼ g�nðg
�
0;n�1ðKX þ mMXÞ þ aKY

ðFn�1ÞFn�1 þ ðothersÞÞþ

þ ðaKXn�1
ðFnÞ � cnÞFn þ ðothersÞ

¼ g�0nðKX þ mMXÞþ

þ ðaKXn�1
ðFnÞ � cn þ aKY

ðFn�1ÞmFn�1
ðFnÞÞFn þ ðothersÞ;

we have

aKXn�1
ðFnÞ � cn þ aKY

ðFn�1ÞmFn�1
ðFnÞ ¼ aKY

ðFnÞ ¼ 0:

Hence

cn � aKXn�1
ðFnÞ ¼ aKY

ðFn�1ÞmFn�1
ðFnÞ > 0:

(3a) We will prove (3) with the same idea. Let l be a general line on Fi ffi Q0 � P3

or ffi P2 through Zi, and let l0 be its strict transform on Xiþ1. Then,

04 ðmMXiþ1
� l0ÞXiþ1

¼ �ciþ1ðFiþ1 � l
0ÞXiþ1

� ciðFi � l ÞXi
¼ �ciþ1 þ ci:

(3b) Let c be a general conic on Fi ffi Q0 � P3 through Zi, and let c0 be its strict

transform on Xiþ1. Then,

04 ðmMXiþ1
� c0ÞXiþ1

¼ �ciþ1ðFiþ1 � c
0ÞXiþ1

� ciðFi � cÞXi
¼ �ciþ1 þ 2ci:

(3c) Let l be a general line on Fi ffi P2 in case C3 and a general fiber of Fi ! Zi�1

in case C0, and let l0 be its strict transform on Xiþ1. Then,

04 ðmMXiþ1
� l0ÞXiþ1

¼ �ciþ1ðFiþ1 � l
0ÞXiþ1

� ciðFi � lÞXi
¼ �diciþ1 þ ci:

(3d) Let c be a general conic on Fi ffi Q0 � P3, and let c0 be its strict transform on

Xiþ1. Then,

04 ðmMXiþ1
� c0ÞXiþ1

¼ �ciþ1ðFiþ1 � c
0ÞXiþ1

� ciðFi � cÞXi
¼ �diciþ1 þ 2ci:
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(4) Our proof is a generalization of the proof of [Co00, Theorem 3.10] using Sho-

kurov’s connectedness lemma ([Kþ92, Theorem 17.4]). Let H be a general hyper-

plane section on X through P, and let L be a general hyperplane section on Xi�1

through Zi�1 such that Zi 6� LXi
\ Fi, and that LXi

\ Fi consists of two lines l1 þ l2
on Fi ffi Q � P3, which are fibers of two rulings of Q ffi P1 � P1. Then

g�0iðKX þ mMX þ aKY
ðFi�1ÞHÞ þ g�i L

¼ KXi
þ mMXi

þ LXi
þ 0Fi�1Xi

þ ciFi þ ðothersÞ;

where we omit the term aKY
ðFi�1ÞH if i ¼ 1. Because

aðg�
0i
ðKXþmMXþaKY

ðFi�1ÞHÞþg�
i
LÞðFnÞ

¼ �mðaKY
ðFi�1Þg�0iHþg�

i
LÞðFnÞ

4 �mLðFnÞ ¼ �1;

we have

Zi � LLCðXi; g�0iðKX þ mMX þ aKY
ðFi�1ÞHÞ þ g�i LÞ;

where LLC denotes the locus of log canonical singularities for a log pair, that is, the

union of centers of all algebraic valuations with discrepancies 4� 1. Moreover,

LXi
\ Fi � LLCðXi; g�0iðKX þ mMX þ aKY

ðFi�1ÞHÞ þ g�i LÞ:

Since Zi 6� LXi
\ Fi ffi l1 þ l2, using the connectedness lemma for two small contrac-

tions in the analytic category contracting l1; l2 respectively, we obtain

P1 � P1 ffi Fi � LLCðXi; g�0iðKX þ mMX þ aKY
ðFi�1ÞHÞ þ g�i LÞ;

that is, ci 5 1. &

We have a refined restriction as a corollary of preceding results.

COROLLARY 4.9. (1) If a ¼ 1, then f is the usual blow-up of X along P.

(2) Assume that a5 2, that is, n5 2. Then;

(a) Case I never occurs:

(b) Neither case P3 nor case C2 occurs.

(c) Exactly one of cases P2 and C1 occurs:

(d) m < n.

(e) 8di ¼ 1.
(f) 2 > 2c15 � � � 5 2cl 5 clþ15 � � � 5 cn > 1.

Proof. (1) This comes from Lemma 4.4.

(2a) Since a ¼ 2 in case I, we have n ¼ 2 and

� Z1 is a point of type P1 and N5 4, or

� Z1 is a curve.
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In both cases, a general hyperplane section on X through P has multiplicity one

along F2, which means that OXð�2EÞ ¼ OXð�2F2Þ �= mP. This is a contradiction.

(2b) Propositions 4.8.1, 4.8.3a, and 4.8.4 imply this.

(2c) If neither case P2 nor case C1 occurs, then from Proposition 4.8 we have

1 > c15
Y

m4 i<n

di

 !
cn >

Y
m4 i<n

di

 !
aKXn�1

ðFnÞ:

This is a contradiction.

(2d–f) We obtain them by considering the following inequalities as in the proof

of (2c)

2 > 2c15
Y

m4 i<n

di

 !
cn >

Y
m4 i<n

di

 !
aKXn�1

ðFnÞ:

m < n comes from aKXn�1
ðFnÞ ¼ 1 and 2c. &

Remark 4.10. Because Corollaries 4.9.2c and 2e, Fl ffi Q0 and N5 2lþ 1 if n5 2.

We define l0 as the unique line on Fl ffi Q0 � P3 containing Zl.

The problem is reduced to investigating cases II-a, II-b, and III, which will be done

in the following sections. As the final part of this section, we give some information

for these remaining cases.

COROLLARY 4.11. (1) Ziþ1 6� FiXiþ1 \ Fiþ1.

(2) a ¼ nþm� l.

(3) (a) In cases II-a and II-b, Z1 � F1 ffi Q0 in P3 and it is a point.

(b) In case III, Z1 � F1 ffi Q0 in P3 and it is a line.

Proof. (1) This is trivial since mP 6¼ OXð
2EÞ ¼ OXð
2FnÞ.
(2) This comes from 1 and Corollary 4.9.2c.

(3) F1 ffi Q0 comes from a5 2 and Corollary 4.9.2b. We know the shape of

Z1 � F1 ffi Q0 2 P3 from the equation below.

5�Dð2Þ ¼ dimC OXð�2EÞ=m
2
P

¼ dimC Im ½ðv 2 mPjZ1 � divðvÞX1 Þ ! mP=m
2
P�

¼ dimCfv 2 GðP3;OP3 ð1ÞÞjv ¼ 0 or Z1 � divðvÞg;

where the second equality comes from mP 6¼ OXð�2EÞ. &

5. Exceptional Case

In this section, we treat the exceptional case, which corresponds to case II-a, and our

aim is the following.
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PROPOSITION 5.1. Assume that f is of type II-a. Then f is a weighted blow-up of

exceptional type.

Throughout this section we assume that f is of type II-a and struggle with Propo-

sition 5.1. We note that 1 < m < n by the assumption and Corollaries 4.9.2d and

4.11.3a, and that N5 3 by Remark 4.10.

First we restate the conclusion.

LEMMA 5.2. The following imply Proposition 5.1.

(1) ðn;m; l Þ ¼ ð3; 2; 1Þ.

(2) Z2 is a curve which intersects the strict transform of l0 on X2.

Proof. Though analytic functions seem to emerge in this proof, we stay in the

algebraic category by adding higher terms to them if necessary, as we have said in the

first paragraph in Section 2. First we prove a claim on an analytic description.

CLAIM 5.3. There exists an identification

P 2 X ffi o 2 ðxyþ z2 þ wN ¼ 0Þ � C4

satisfying the following conditions.

(1) l0 ¼ F1 \ divðyÞX1 \ divðzÞX1 .

(2) Z1 ¼ l0 \ divðwÞX1 .

(3) Z2 ¼ F2 \ divðzÞX2 .

Proof. It is trivial that we can choose an identification satisfying 1. Then by 1,

Z1 ¼ l0 \ divðw þ txÞX1 for some t 2 C. Because xy þ z2 þ wN ¼ xy0 þ z2 þ ðw0ÞN for
w0 ¼ w þ tx and y0 ¼ y þ ðwN 
 ðw þ txÞNÞ=x, by replacing y;w with y0;w0 we may

assume (2) moreover. Then Z2 ¼ F2 \ divðz þ tx2ÞX2 for some t 2 C by 5.2.2 and

Corollaries 4.9.2e and 4.11.1. Because xy þ z2 þ wN ¼ xy0 þ ðz0Þ2 þ wN for

z0 ¼z þ tx2 and y0 ¼ y 
 2txz 
 t2x3, by replacing y; z with y0; z0 we may assume (3)

moreover. &

Second we prove that F3 equals, as valuations, an exceptional divisor obtained by

a weighted blow-up of X.

CLAIM 5.4. Under the identification in Claim 5:3, F3 equals, as valuations, an

exceptional divisor obtained by the weighted blow-up of X with its weights

wtðx,y,z,wÞ ¼ ð1; 5; 3; 2Þ.
Proof. First we remark that x; z=x;w=x 2 OX1;Z1 generate local coordinates of X1

at Z1, that y=x ¼ 
ððz=xÞ2 þ xN
2ðw=xÞNÞ, and that F3 equals, as valuations, the

exceptional divisor obtained by the weighted blow-up of X1 with its weights

wtðx; z=x;w=xÞ ¼ ð1; 2; 1Þ. Thus we obtain
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ðmdivðxÞðF3Þ;mdivðyÞðF3Þ;mdivðzÞðF3Þ;mdivðwÞðF3ÞÞ ¼ ð1; 5; 3; 2Þ:

Since any v 2 OX;P has an expansion of a formal series v ¼ v1ðx; z;wÞ þ v2ðy; z;wÞ,

it is sufficient to prove that for any i5 0,

v ¼
X

ðp;q;r;sÞ2Ii

cpqrsx
pyqzrws 2 OXð�ðiþ 1ÞF3Þ ðcpqrs 2 CÞ

implies v ¼ 0, where

Ii ¼ fðp; q; r; sÞ 2 Z45 0jpþ 5qþ 3rþ 2s ¼ i; p or q ¼ 0g:

However, by replacing v with xjv for a sufficiently large j, we have only to show that

for any i5 0,

v ¼
X

ðp;q;rÞ2Ji

cpqrx
pzqwr 2 OXð�ðiþ 1ÞF3Þ ðcpqr 2 CÞ

implies v ¼ 0, where Ji ¼ fðp; q; rÞ 2 Z35 0jpþ 3qþ 2r ¼ ig.

Take any v ¼
P

ðp;q;rÞ2Ji
cpqrx

pzqwr contained in OXð�ðiþ 1ÞF3Þ. Then v ¼P
ðp;q;rÞ2Ji

cpqrx
pþqþrðz=xÞqðw=xÞr. Because F3 equals, as valuations, the exceptional

divisor obtained by the weighted blow-up of X1 with its weights wtðx; z=x;w=xÞ ¼

ð1; 2; 1Þ, it is enough to show that the weight of any monomial xpþqþrðz=xÞqðw=xÞr

(ð p; q; rÞ 2 Ji) with respect to its weights wtðx; z=x;w=xÞ ¼ ð1; 2; 1Þ equals i. But this

is trivial by a direct calculation ð pþ qþ rÞ þ 2qþ r ¼ pþ 3qþ 2r ¼ i. &

Only the proof of N ¼ 3 remains. Because of Lemma 4.4 and properties of toric

geometry, we have only to show the following claim.

CLAIM 5.5. Consider an analytic germ of a cA1 point o 2 ðxy þ z2 þ wN ¼ 0Þ � C4

ðN5 4Þ and blow-up this with its weights wt(x,y,z,w)=(1,5,3,2). Then the excep-

tional locus of this weighted blow-up is irreducible, and the weighted blown-up analytic

space is normal and has a nonterminal singularity.

Proof. Direct calculation shows that its exceptional locus is isomorphic to

ðxy þ z2 ¼ 0Þ � Pð1; 5; 3; 2Þ with weighted homogeneous coordinates x; y; z;w,

which is irreducible, and that all singularities on the obtained analytic space are one

terminal quotient singularity of type 1
5 ð
1; 3; 2Þ and one nonterminal singularity

isomorphic to o 2 ðxy þ z2 þ w2N
6 ¼ 0Þ � C4=Z2ð1; 1; 1;
1Þ. &

Now our problem is proving Lemma 5.2.1-2, which will be shown in Lemmas 5.8.1

and 5.9. We show all the possible cases.

LEMMA 5.6. a ¼ 4, and the tower Xn ! � � � ! X0 is exactly one of the following.

(1) ðn;m; l Þ ¼ ð3; 2; 1Þ, N5 3, r ¼ 5.

(2) ðn;m; l Þ ¼ ð4; 2; 2Þ, N5 5, r ¼ 5.

(3) ðn;m; l Þ ¼ ð4; 3; 3Þ, N5 7, r ¼ 7.
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Proof. Though a ¼ 2 or 4 in case II-a, a ¼ 2 is impossible because n5 3. Hence

a ¼ 4. By Corollary 4.11.2, it is trivial that the values of n;m; l in (1)-(3) cover all the

possibilities for a ¼ 4 and 1 < m < n.

Now we calculate the value of r in each case using Proposition 3.1.3. Because

a ¼ 4 and J ¼ fðr; 2Þg ðr5 5Þ, Proposition 3.1.3 implies that

Dð3Þ ¼ 3þmaxf0; 6� rg;

Dð4Þ ¼ 4þmaxf0; 8� rg:

Thus we have only to the next claim.

CLAIM 5.7. ð1Þ In case 5.6.1, Dð3Þ ¼ 4.
(2) In case 5.6.2, Dð3Þ ¼ 4.

(3) In case 5.6.3, Dð4Þ ¼ 5.

Proof. We will express OXð
iEÞ’s in each case under a suitable identification
P 2 X ffi o 2 ðxy þ z2 þ wN ¼ 0Þ � C4.

(1) As in Claim 5.3, we may assume that

l0 ¼ F1 \ divðyÞX1 \ divðzÞX1 and Z1 ¼ l0 \ divðwÞX1 :

Then

OXð�2EÞ ¼ ðy; z;wÞ þm2
P;

OXð�3EÞ ¼ ðv; yÞ þ ðz;wÞmP þm3
P;

where v ¼ tzzþ twwþ tx2x
2 for some tz; tw; tx2 2 C such that tz or tw is nonzero.

This implies (1).

(2) We may assume that l0 ¼ F2 \ divðyÞX2 \ divðzÞX2 . Then

OXð�2EÞ ¼ ðx; y; zÞ þm2
P;

OXð�3EÞ ¼ ðy; zÞ þ ðxÞmP þm3
P:

This implies (2).

(3) We may assume that l0 ¼ F3 \ divðyÞX3 \ divðzÞX3 . Then

OXð�2EÞ ¼ ðx; y; zÞ þm2
P;

OXð�3EÞ ¼ ðx; y; zÞ þm3
P;

OXð�4EÞ ¼ ðy; zÞ þ ðxÞmP þm4
P:

This implies (3). &

We exclude cases 5.6.2-3, which shows 5.2.1. Moreover, we determine the values of

ci’s in case 5.6.1.

LEMMA 5.8. (1) Neither case 5:6:2 nor case 5:6:3 occurs.

(2) In case 5:6:1, c1 ¼ 4=5, c2 ¼ 8=5, c3 ¼ 8=5.
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Proof. We note that mEðFiÞ 2 1
r Z for any i. Using Remark 4.7.2, for any i we have

aKX
ðFiÞ �

X
14 j4 i

cj ¼ aKY
ðFiÞ ¼ af �KXþ4EðFiÞ ¼ aKX

ðFiÞ � 4mEðFiÞ:

Hence
P
14 j4 i cj ¼ 4mEðFiÞ 2

4
r Z, and thus 8ci 2

4
r Z.

But on the other hand, ci’s satisfy the relations in Remark 4.7.2 and Corollary

4.9.2f. Using them we know that there is no possibility for such ci’s in cases 5.6.2-

3, and that 5.8.2 is the only possibility in case 5.6.1. &

Now it is sufficient to deal with only case 5.6.1. Lemma. 5.2.2 comes from the fol-

lowing lemma, and therefore we finish the proof of Proposition 5.1. Let l00 be the

strict transform of l0 on X2.

LEMMA 5.9. ð1Þ Let MF1 be the linear system on F1 ffi Q0 obtained by the total pull-

back of MX1 with the inclusion map F1,!X1. Then MF1 is a zero-dimensional linear sys-

tem consisting of some multiple of l0.

ð2Þ Let MF2 be the linear system on F2 ffi P2 obtained by the total pull-back of MX2

with the inclusion map F2,!X2. Then MF2 is a zero-dimensional linear system consist-

ing of some multiple of Z2.

Proof. (1) Let c be the multiplicity of MF1 along l0, and let l be a general line on

F1 ffi Q0 � P3. Then,

c=2 ¼ ðcl0 � l ÞF1 4 ðmMF1 � l ÞF1 ¼ �c1ðF1 � lÞX1 ¼ 4=5:

On the other hand,

�c=2 ¼ ðcl00 � l
0
0ÞF1X2

4 ðmMX2 � l
0
0ÞX2

¼ �c2ðF2 � l
0
0ÞX2 � c1ðF1 � l0ÞX1

¼ �c2 þ c1 ¼ �4=5:

By these two inequalities, we obtain c ¼ 8=5 and ðcl0 � l ÞF1 ¼ ðmMF1 � l ÞF1 . This

shows (1).

(2) Because Corollary 4.9.2e tells that Z2 is a line on F2 ffi P2, we know that g3
induces an isomorphism F2X3 ffi F2 ffi P2. Let MF2X3

be the linear system on

F2X3 ffi P2 obtained by the total pull-back of MX3 with the inclusion map

F2X3 ,!X3. It is enough to prove that MF2X3
¼ ;.

Let l be a general line on F2 ffi P2, and let l0 be the strict transform of l on X3. Then

ðmMF2X3
� l0ÞF2X3

¼ �c3ðF3 � l
0ÞX3 � c2ðF2 � lÞX2 ¼ �c3 þ c2 ¼ 0;

which shows that MF2X3
¼ ;. &

6. General Case

In this section we treat the remaining general case, which corresponds to Cases II-b

and III, and our aim is the following, which terminates the proof of Theorem 2.5.

108 MASAYUKI KAWAKITA

https://doi.org/10.1023/A:1016334006624 Published online by Cambridge University Press

https://doi.org/10.1023/A:1016334006624


PROPOSITION 6.1. Assume that f is of type II-b or III. Then f is a weighted blow-up

of general type.

Throughout this section, except for Definition 6.5 and Proposition 6.6, we assume

that f is of type II-b or III and struggle with Proposition 6.1. We set ðr1; r2Þ ¼ ð1; rÞ in

case III in this section because we want to treat both cases II-b and III simulta-

neously.

First we restate the conclusion.

LEMMA 6.2. The following imply Proposition 6.1.

(1) l ¼ m.

(2) N5 2a.

(3) There exists an identification P 2 X ffi o 2 ðxyþ z2 þ wN ¼ 0Þ � C4 satisfying

that z 2 OXð�aEÞ.

Proof.We use the same idea as that in the proof of Lemma 5.2. First we note that

a ¼ n by (1) and Corollary 4.11.2. By (3) we have an identification P 2 X ffi o 2
ðxy þ z2 þ wN ¼ 0Þ � C4 satisfying that z 2 OXð
nEÞ. Moreover, by (1) we may
assume that

Zm ¼ Fm \ divðyÞXm
\ divðzÞXm

� Fm ffi Q0 � P3:

We have

ðmdivðxÞðFnÞ;mdivðzÞðFnÞ;mdivðwÞðFnÞÞ ¼ ðm; n; 1Þ:

CLAIM 6.3. Under the above identification, Fn equals, as valuations, an exceptional

divisor obtained by the weighted blow-up of X with its weights wtðx; y; z;wÞ
ðm; 2n 
 m; n; 1Þ.

Proof. First we remark that z=wm;w 2 OXm;Zm
generate local coordinates

of Xm at the generic point of Zm, that x=wm 2 O�
Xm;Zm

, that y=wm ¼ 
ðx=wmÞ
1
ððz=wmÞ2 þ wN
2mÞ, and that Fn equals, as valuations, the exceptional divisor dom-

inating Zm obtained by the weighted blow-up of Xm along Zm with its weights

wtðzm=w;wÞ ¼ ðn 
 m; 1Þ. Thus, we obtain

ðmdivðxÞðFnÞ;mdivðyÞðFnÞ;mdivðzÞðFnÞ;mdivðwÞðFnÞÞ ¼ ðm; 2n�m; n; 1Þ;

considering 6.2.2 also. Since any v 2 OX;P has an expansion of a formal series

v ¼ v1ðx; z;wÞ þ v2ðy; z;wÞ, it is sufficient to prove that for any i5 0,

v ¼
X

ðp;q;r;sÞ2Ii

cpqrsx
pyqzrws 2 OXð�ðiþ 1ÞFnÞ ðcpqrs 2 CÞ

implies v ¼ 0, where

Ii ¼ fðp; q; r; sÞ 2 Z45 0jmpþ ð2n�mÞqþ nrþ s ¼ i; p or q ¼ 0g:
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However, by replacing v with xjv for a sufficiently large j, we have only to show that

for any i5 0,

v ¼
X

ðp;q;rÞ2Ji

cpqrx
pzqwr 2 OXð�ðiþ 1ÞFnÞ ðcpqr 2 CÞ

implies v ¼ 0, where Ji ¼ fðp; q; rÞ 2 Z35 0jmpþ nqþ r ¼ ig.

Take any v ¼
P

ðp;q;rÞ2Ji
cpqrx

pzqwr contained in OXð�ðiþ 1ÞFnÞ. Then

v ¼
X

ðp;q;rÞ2Ji

cpqrðx=w
mÞ

p
ðz=wmÞ

qwmpþmqþr:

We remark that x=wm 2 O�
Xm;Zm

. Because Fn equals, as valuations, the exceptional

divisor dominating Zm which is obtained by the weighted blow-up of Xm along

Zm with its weights wtðz=w
m;wÞ ¼ ðn�m; 1Þ, it is enough to show that the weight

of any monomial ðz=wmÞ
qwmpþmqþr (ð p; q; rÞ 2 Ji) with respect to its weights

wtðz=wm;wÞ ¼ ðn�m; 1Þ equals i. But this is trivial by a direct calculation

ðn�mÞqþ ðmpþmqþ rÞ ¼ mpþ nqþ r ¼ i. &

There remains only proving that m; n are coprime. Because of Lemma 4.4 and the

properties of toric geometry, we have only to show the following claim:

CLAIM 6.4. Consider an analytic germ of a cA1 point o 2 ðxy þ z2 þ wN ¼ 0Þ � C4

ðN5 2nÞ and blow-up this with its weights wtðx; y; z;wÞ ¼ ðm; 2n 
 m; n; 1Þ, where

m; n are positive integers with m < n and are not coprime. Then the exceptional locus of

this weighted blow-up is irreducible, and the weighted blown-up analytic space is normal

and has a nonterminal singularity.

Proof. Direct calculation shows that its exceptional locus is isomorphic to

ðxy þ z2 ¼ 0Þ or ðxy þ z2 þ w2n ¼ 0Þ � Pðm; 2n 
 m; n; 1Þ with weighted homogene-
ous coordinates x; y; z;w, which is irreducible, and that the obtained analytic space

is singular along the line ðxy þ z2 ¼ w ¼ 0Þ � Pðm; 2n 
 m; n; 1Þ. Normality is easy.
&

Our problem is proving 6.2.1-3. For this we introduce one definition, which also

makes sense in more general situation as in Section 3.

DEFINITION 6.5. An algebraic surface P 2 S � X is said to be special of type s,

where s is a positive integer, if it satisfies the following conditions.

(1) S is normal and has a Du Val singularity of type As at P.

(2) f �S ¼ SY þ aE.

A special surface has beautiful properties.

PROPOSITION 6.6. Let P 2 S � X be a special surface of type s, and let fS be the

induced morphism from SY to S. Then SY is normal and KSY
¼ f �SKS. Especially, the

minimal resolution of S factors through SY.
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Proof. It is sufficient to show that SY is normal and that KSY
¼ f �SKS, because

these imply the last part of the statement. We will prove them simultaneously.

Let n :fSY ! SY be the normalization of SY. First we calculate the dualizing sheaf

oSY
on SY. Let Y

o � Y be the Gorenstein locus of Y. We remark that YnYo is a finite

set. By the adjunction formula, we obtain that

oSY
jYo\SY

¼ oYðSYÞ �OY
OSY

jYo\SY

¼ f �SðoXðSÞ �OX
OSÞjYo\SY

¼ f �SoSjYo\SY
:

On the other hand, we know that oSY
is ðS2Þ, that SYnðY

o \ SYÞ � SY is of codimen-

sion greater than one, and that f �SoS is invertible. Thus we obtain oSY
¼ f �SoS, and

our problem is reduced to only proving that n is isomorphism.
Second we calculate the dualizing sheaf oeSY

onfSY. Grothendieck duality tells that

oeSY

¼ HomOSY
ðn�OeSY

;oSY
Þ

¼ HomOSY
ðn�OeSY

; f �SoSÞ

¼ HomOSY
ðn�OeSY

;OSY
Þ �OeSY

n�f �SoS;

where the remark that oS is invertible induces the third equality.

Because S is canonical, the above equation shows that the conductor ideal sheaf

HomOSY
ðn�OeSY

;OSY
Þ � OeSY

has to equal OeSY

. Hence n is isomorphism. &

We come back to cases II-b and III treated in this section. In our situation, the

type of any special surface must be higher.

LEMMA 6.7. Let P 2 S � X be a special surface of type s. Then s5 r1 þ r2 
 1.
Proof. First we give easy statements about a Du Val singularity of type As.

CLAIM 6.8. Let P 2 S be an algebraic germ (resp. an analytic germ) of a Du Val

singularity of type As ðs5 1Þ, let fS : ðSY � EÞ ! ðS 3 PÞ be a nonisomorphic partial

resolution factored through by the minimal resolution of S, and let C be a general

hyperplane section on S through P.

(1) C has its multiplicity one along every prime component of E, that is,

f �SC ¼ CSY
þ E.

(2) The set CSY
\ E consists of two points, say Q1;Q2. These Q1;Q2 are Du Val sin-

gularities of types As1 ;As2 with s1 þ s2 < s ðs1; s25 0Þ. Here we define a Du Val

singularity of type A0 as a smooth point.

(3) For i ¼ 1; 2, the local intersection number ðCSY
� EÞSY;Qi

equals 1=ðsi þ 1Þ.

Proof. Let f : ðT � FÞ ! ðS 3 PÞ be the minimal resolution of S, and let g: T ! SY

be the induced morphism. F ¼
P
14 i4 s Fi is a chain of ð
2Þ-curves Fi’s. We order

the indices i’s so that they are compatible with the order of Fi’s in this chain. It is

fundamental to see that f �C ¼ CT þ F and that CT intersects F exactly at a point,
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say P1, on F1nF2 and at a point, say P2, on FsnFs
1 transversally, where we omit nF2
and nFs
1 if s ¼ 1. Let s1 (resp. s2) be the smallest nonnegative integer such that Fs1þ1
(resp. Fs
s2 ) is not contracted by g. Then Qi ¼ gðPiÞ (i ¼ 1; 2) is a Du Val singularity
of type si, and CSY

\ E consists of Q1;Q2. Because g�gðFs1þ1Þ ¼ ðs1 þ 1Þ
1F1þ
ðothersÞ (resp. g�gðFs
s2Þ ¼ ðs2 þ 1Þ
1Fs þ ðothersÞ), we have ðCSY

� EÞSY;Q1
¼ 1=

ðs1 þ 1Þ (resp. ðCSY
� EÞSY;Q2

¼ 1=ðs2 þ 1Þ). &

We begin to prove Lemma 6.7. We keep the notation fS :SY ! S in Proposition

6.6. Let H be a general hyperplane section on X through P. Then

P 2 C ¼ HjS � S is also a general hyperplane section on S through P. Because

mP 6¼ OXð�2EÞ, we have f �H ¼ HY þ E and f �SC ¼ HYjSY
þ EjSY

. The support of

EjSY
is exactly the exceptional locus of fS, and fS is factored through by the minimal

resolution of S by Proposition 6.6. Thus by Claim 6.8.1, we obtain that EjSY
is

reduced and that HYjSY
¼ CSY

, the strict transform of C on SY.

We calculate the intersection number of CSY
and EjSY

around f�1S ðPÞ.

ðCSY
� EjSY

ÞSY
¼ ðHY � E � SYÞY
¼ ðð f �H� EÞ � E � ð f �S� aEÞÞY
¼ aE3 ¼ ð1=r1Þ þ ð1=r2Þ;

where the last equality comes from Proposition 3.1.2.

By Claim 6.8.2, the set CSY
\ EjSY

consists of two points, say Q1;Q2, and thus

ðCSY
� EjSY

ÞSY;Q1
þ ðCSY

� EjSY
ÞSY;Q2

¼ ð1=r1Þ þ ð1=r2Þ:

We may assume that

ðCSY
� EjSY

ÞSY;Q1
5 ðCSY

� EjSY
ÞSY;Q2

:

Considering the set I and Claim 6.8.3, we know that

ðCSY
� EjSY

ÞSY;Q1
¼ 1=r1 and ðCSY

� EjSY
ÞSY;Q2

¼ 1=r2;

and that the local Gorenstein indices of Q1;Q2 are r1; r2. Therefore by Claims 6.8.2-

3, we obtain that Q1;Q2 are Du Val singularities of types Ar1�1;Ar2�1 with

ðr1 � 1Þ þ ðr2 � 1Þ < s, that is, r1 þ r24 sþ 1. &

Remark 6.9. The above proof tells that Y has exactly two non-Gorenstein singu-

larities in case II-b.

We obtain an upper-bound of the value of a.

LEMMA 6.10. r1 þ r25 2a.

Proof. aðr1r2E3Þ ¼ r1 þ r2 by Theorem 3.2. Thus we have only to show that

a 6¼ r1 þ r2 because of Proposition 3.1.1. mEðF1Þ 2 Z (resp. ð1=r1ÞZ, ð1=r2ÞZ) when
the center of F1 on Y is not a non-Gorenstein point (resp. is the non-Gorenstein

point of index r1, is the non-Gorenstein point of index r2). Like the proof of Lemma

5.8, we obtain c1 2 aZ (resp. a=r1Z, a=r2Z). By this and Proposition 4.8.1 we have a

(resp. a=r1, a=r2) < 1, which implies that a 6¼ r1 þ r2. &
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Combining Lemmas 6.7 and 6.10, we obtain a corollary.

COROLLARY 6.11. Let P 2 S � X be a special surface of type s. Then s5 2a 
 1.

Now we will prove 6.2.1-3 by constructing special surfaces.

LEMMA 6.12. There exists an identification P 2 X ffi o 2 ðxy þ z2 þ wN ¼ 0Þ � C4

satisfying that mdivðwÞðEÞ ¼ 1 and that z þ pðwÞ 2 OXð
aEÞ for some pðwÞ 2
La
1

i¼1
Cwi � C½w�.

Proof. We express OXð
iEÞ’s explicitly using the above claim. &

CLAIM 6.13. (1) Take an identification P 2 X ffi o 2 ðxy þ z2 þ wN ¼ 0Þ � C4

satisfing that mdivðwÞðEÞ ¼ 1. Then for 14 i4 minfr1; ag,

OXð�iEÞ ¼ ðxi; yi; ziÞ þ ðw
iÞ

for some xi ¼ xþ px
i ðwÞ, yi ¼ yþ p

y
i ðwÞ, zi ¼ zþ pz

i ðwÞ ð px
i ðwÞ, p

y
i ðwÞ, pz

i ðwÞ 2Li�1
j¼1 Cwj � C½w�Þ.

(2) Assume r1 < a.

(a) In 1, xr1 , yr1 or xr1 � yr1 � 2zr1 62 OXð�ðr1 þ 1ÞEÞ þ ðw
r1Þ.

(b) In 1, assume that xr1 62 OXð�ðr1 þ 1ÞEÞ þ ðw
r1Þ. Under this situation, for

r14 i4 a,

OXð�iEÞ ¼ ðyi; ziÞ þ
X

ðj;kÞ2[s5 iJs

ðxj
r1
wkÞ

for some yi ¼ yþ p
y
i ðxr1 ;wÞ, zi ¼ zþ pz

i ðxr1 ;wÞ ð p
y
i ðxr1 ;wÞ, pz

i ðxr1 ;wÞ 2
Li�1

s¼1L
ðj;kÞ2Js

Cxj
r1
wk � C½xr1 ;w�Þ, where

Ji ¼ fðs; tÞ 2 Z25 0jr1sþ t ¼ ig:

Proof. (1) We will construct xi; yi; zi inductively starting with x1 ¼ x, y1 ¼ y,

z1 ¼ z. Assume that we have constructed xi; yi; zi (14 i < minfr1; ag). There exists a
surjective map li,

li : ððxi; yi; ziÞ þ ðw
iÞÞ=ðmPðxi; yi; ziÞ þ ðw

iþ1ÞÞ

�!! OXð�iEÞ=OXð�ðiþ 1ÞEÞ:

By i < minfr1; ag and Theorem 3.2, dð�iÞ ¼ Dðiþ 1Þ �DðiÞ ¼ 1. Since mdivðwÞðEÞ ¼ 1,

we know that wi generates OXð�iEÞ=OXð�ðiþ 1ÞEÞ, and that xi þ txw
i,

yi þ tyw
i; zi þ tzw

i 2 Ker li for some tx; ty; tz 2 C. Hence, it is enough to put

xiþ1 ¼ xi þ txw
i; yiþ1 ¼ yi þ tyw

i; ziþ1 ¼ zi þ tzw
i.

(2a) As in the above proof, using xr1 ; yr1 ; zr1 in 1, we have a surjective map lr1 ,

lr1 : ððxr1 ; yr1 ; zr1 Þ þ ðw
r1ÞÞ=ðmPðxr1 ; yr1 ; zr1Þ þ ðw

r1þ1ÞÞ

�!! OXð�r1EÞ=OXð�ðr1 þ 1ÞEÞ:
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Dividing by ðwr1 Þ, we have another surjective map lr1 ,

lr1 : ðxr1 ; yr1 ; zr1 Þ=mPðxr1 ; yr1 ; zr1Þ

�!! OXð�r1EÞ=ðOXð�ðr1 þ 1ÞEÞ þ ðw
r1 ÞÞ:

By Theorem 3.2 and mdivðwÞðEÞ ¼ 1, dimC OXð�r1EÞ=OXð�ðr1 þ 1ÞEþ ðw
r1ÞÞ ¼

dð�r1Þ � 1 ¼ 1. Hence dimCKer lr1 ¼ 3� 1 ¼ 2, which shows (2a).
(2b) We will prove (2b) as in the proof of (1), constructing yi; zi inductively start-

ing with yr1 ; zr1 in 1. Assume that we have constructed yi; zi (r14 i < a). There exists

a surjective map li,

li : ðyi; ziÞ þ
X

ðj;kÞ2[s5 iJs

ðxj
r1
wkÞÞ=ðmPðyi; ziÞ þ

X
ðj;kÞ2[s5 iþ1Js

ðxj
r1
wkÞ

 !

�!! OXð�iEÞ=OXð�ðiþ 1ÞEÞ:

We know that xr1 ;w
r1 generate OXð�r1EÞ=OXð�ðr1 þ 1ÞEÞ because of the proof of

(2a). Thus any nonzero element in
L

ðj;kÞ2Ji
Cxj

r1
wk � C½xr1 ;w�, which always decom-

poses into a product of w
i�b i

r1
cr1 and b i

r1
c linear combinations of xr1 ;w

r1 , has exactly its

multiplicity i along E. On the other hand, by Theorem 3.2 and Lemma 6.10, we have

dð�iÞ ¼ Niþ1 �Ni, which is the number of elements in Ji. Thus fx
j
r1
wkgðj;kÞ2Ji

generate

OXð�iEÞ=OXð�ðiþ 1ÞEÞ, and that yi þ t
y
i ; zi þ tzi 2 Ker li for some t

y
i ; t

z
i 2

L
ðj;kÞ2Ji

Cxj
r1
wk � C½xr1 ;w�. Hence, it is enough to put yiþ1 ¼ yi þ t

y
i ; ziþ1 ¼ zi þ tzi . &

We will construct an identification in Lemma 6.12 using Claim 6.13. It is easy to

see that we can take an identification in 6.13.1. Lemma 6.12 is trivial if a4 r1 by

Claim 6.13.1. If r1 < a, by Claim 6.13.2a and an equation xyþ z2 þ wN ¼

ðx� y� 2zÞyþ ðyþ zÞ2 þ wN, we may assume that xr1 62 OXð�ðr1 þ 1ÞEÞ in the con-

struction of xr1 ; yr1 ; zr1 in 6.13.1. Then by Claim 6.13.2b, we obtain that

za ¼ zþ pz
aðxþ px

r1
ðwÞ;wÞ 2 OXð�aEÞ:

We express za as

za ¼ zþ pðwÞ þ qðx;wÞxðpðwÞ 2
Ma�1
i¼1

Cwi � C½w�; qðx;wÞ 2 C½x;w�Þ:

Thus, it is sufficient to replace y; z with

y0 ¼ y� 2qðx;wÞz� qðx;wÞ2x; z0 ¼ zþ qðx;wÞx

because xyþ z2 þ wN ¼ xy0 þ ðz0Þ2 þ wN. &

Corollary 6.11, Lemma 6.12, and the following lemma induce 6.2.1-3, which ter-

minates the proof of Proposition 6.1 and therefore also the proof of Theorem 2.5

completely.

114 MASAYUKI KAWAKITA

https://doi.org/10.1023/A:1016334006624 Published online by Cambridge University Press

https://doi.org/10.1023/A:1016334006624


LEMMA 6.14. ð1Þ Under the identification P 2 X ffi o 2 ðxy þ z2 þ wN ¼ 0Þ � C4 in

Lemma 6.12, assume N < 2a or pðwÞ 6¼ 0. Then there exists a special surface of type s

with s < 2a 
 1.
ð2Þ Under the identification P 2 X ffi o 2 ðxyþ z2 þ wN ¼ 0Þ � C4 in Lemma 6:12,

assume N5 2a, pðwÞ ¼ 0, and l < m. Then there exists a special surface of type 2a� 3.

Proof. (1) Take a surface P 2 S ¼ divðz þ pðwÞ þ cwaÞ for a general c 2 C. Then

P 2 S ffi o 2 ðxy þ ðpðwÞ þ cwaÞ2 þ wN ¼ 0Þ � C3, which is a Du Val singularity of

type As, where

s ¼ minf2a; aþ ord pðwÞ; ord ðpðwÞ2 þ wNÞg � 1:

Here ord qðwÞ ¼ supfi 2 Z5 0jw
i divides qðwÞg 2 Z5 0 [ fþ1g. We remark that

s < 2a� 1 if N < 2a or pðwÞ 6¼ 0. Because zþ pðwÞ 2 OXð�aEÞ and mdivðwÞðEÞ ¼ 1,

the multiplicity of S along E equals a. Thus P 2 S � X is special of type s.

(2) We may assume that l0 ¼ Fl \ divðyÞXl
\ divðzÞXl

. Since l < m, Zl is a point on l0
except the vertex point of Fl ffi Q0. Thus Zl ¼ l0 \ divðtxþ wlÞXl

for some t 2 C. We

note that txþ wl 2 OXð�ðlþ 1ÞFlþ1Þ � OXð�ðlþ 1ÞEÞ because Zl 2 divðtxþ wlÞXl
.

Take a surface P 2 S ¼ divðzþ wa�l�1ðtxþ wlÞ þ cwaÞ for a general c 2 C. Then

P 2 S ffi o 2 ðxyþ ðwa�l�1ðtxþ wlÞ þ cwaÞ
2
þ wN ¼ 0Þ � C3, which is a Du Val

singularity of type A2a�3. Because z 2 OXð�aEÞ, txþ wl 2 OXð�ðlþ 1ÞEÞ, and

mdivðwÞðEÞ ¼ 1, the multiplicity of S along E equals a. Thus P 2 S � X is special of

type 2a� 3. &
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