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On Sharkovsky's cycle

coexistence ordering

Peter E. Kloeden

A theorem of Sharkovsky on the coexistence of cycles for one-

dimensional difference equations is generalized to a class of

difference equations of arbitary dimension. The mappings

defining these difference equations are such that the ith

component depends only on the first i independent variables.

1. Introduction

In 196U Sharkovsky [4] proved a remarkable theorem on the coexistence

of cycles of different periods for one-dimensional difference equations

defined in terms of continuous mappings from a compact interval into

itself. Recent work on the chaotic behaviour of such difference equations,

in particular the "period three implies chaos"result of Li and Yorke [3],

has given fresh significance to this theorem: see Kloeden, Deakin, Tirkel

[2].

This note considers the generalization of Sharkovsky's Theorem to

difference equations of more than one dimension. First a simple example is

given of a two-dimensional difference equation for which Sharkovsky's

Theorem does not hold. Then attention is restricted to a class of

difference equations which includes all of the above one-dimensional

difference equations and important higher dimensional difference equations

such as the twisted horseshoe difference equation of Guckenheimer, Oster,

and Ipaktchi [/], and it is shown that Sharkovsky's Theorem is valid for

all difference equations of any dimension which belong to this class.
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2 . P r e l i m i n a r i e s

N
Let I be a compact subset of F , where N 5 1 , and let f : I •*•

be a continuous mapping. Associated with this mapping there is an

A?-dimensional first order difference equation

(2.1) x"+1 =/(**)

which for each x € J generates an iterative sequence x , x , x , . . . .

Such an iterative sequence is said to form a cycle of period k if

0 1 k—1 k 0

x , x , ..., x are a l l different and x = x . Note that here

x , x , . . . , x are a l l fixed points of the kfh iterate

J = f o f o . . . o f (k times) of the mapping / .

For a fixed but otherwise arbitrary difference equation (2.1)

Sharkovsky [4] defined an ordering —< on the set of natural numbers IN

n —c n if the difference equation (2.1) has a cycle of period

n whenever it has a cycle of period n ;

and he proved the following theorem.

THEOREM (Sharkovsky). For N = l , l a compact interval and

f •. I •*• I a continuous mapping, the ordering —c satisfies

This ordering will in the sequel be called the Sharkovsky ordering.

Sharkovsky's proof of the above theorem involves l i t t l e more than

repeated use of the Intermediate Value Theorem, but is rather long. For a

succinct, English language version of this proof, with minor corrections,

see Stefan [5].

o
Now let I be a closed disc in F centred on the origin and let

f : I •*• I be defined by
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for a l l [x , x_) € J . Then f : I -*• I and / i s continuous. Also

every (x , x ) € J \ ( 0 , 0) belongs to a cycle of period three, whereas

(0, 0) belongs to a cycle of period one for the difference equation (2.1)

associated with t h i s mapping f . To see th is note that using the complex

variable z = x + ix , the mapping f can be wri t ten as

f(z) = a.z

A/3where a = -% + i — is a complex cubic root of uni ty . Thus Sharkovsky's

Theorem i s not in general valid for N 2 2 . This example also shows tha t

the "period three implies chaos" resu l t of Li and Yorke [3] i s not in

general t rue for difference equations of more than one dimension.

3. A class of difference equations

Let J be a compact subset of F of the form

N

(3.1) I 'Til,

i=l ^

where I. is a compact interval for i, = 1, 2, ..., N and let f : I -*• I

be a continuous mapping of the form

(3.2) f^, x2, ..., xN) = j\(xx, x2, .... xj

for i = 1, 2, ..., N , that is to say a mapping for which the ith

component /. depends only on the first i independent variables

Conditions (3.1) and (3.2) are satisfied by all one-dimensional

difference equations defined in terms of continuous mappings from a compact

interval into itself. When N = 2 they are also satisfied, for example,

by the twisted horseshoe difference equation of Guckenheimer, Oster and

Ipaktchi [7], for which / = [f , /J is defined on I = [0, l] 2 by

2x for 0 £ x £ % ,

^ for % £ xx £ 1 ,
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f2l
x
1>

 x
2)

 = xx/2 + X2/10 f o r

Sharkovsky's Theorem holds for such difference equations.

THEOREM. For any llf i 1 , J c F a compact set of the form (3.1)

and f : I ->• I a continuous mapping of the form (3 .2) , the ordering —<

is the Sharkovsky ordering.

To prove this theorem the following lemma is required. In i t N > 2 ,

I =fj Ii , f = [f±, f2, -.., fN_±) , i = (xi, x2, ..., x^J , and
i=l

\ 5- 5) x - T\.x ) »

where J is of the form (3.1) and f : I -*• I is a continuous mapping of

the form (3.2).

LEMMA. If for any q = 1, 2, 3, ... equation (3.3) has a cycle of

period q , then equation (2.1) also has a cycle of period q .

Proof. For a mapping f of the form (3.2) and x = {x, x~.) ,

equation (2.1) can be written

(3"U) **+1 - f \xn xn)

Let n , 1 , ..., TV7" be a cycle of period q of equation (3.3),

and define a mapping h : 1^ -*• !„ by

for all Xy € J . Then h is a continuous mapping from the compact

interval !"„ into itself, so it has a fixed point r\* = h(r\*) in !„

Define

Then nj = n* = fc(n*) = f ^ 1 , nj"1) , so
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0 (~0 o"l 1 ( M l] a-1 fo?-l q-l

is a cycle of period q of equation (3.*+), that is of equation (2.1) with

the mapping / of the form (3.2).

Proof of theorem. The theorem is proved by induction on N . By

Sharkovsky's Theorem it is true when N = 1 . Suppose that N 2: 2 and

that the ordering — < for the (iV-l)-dimensional difference equation

(3.3) is the Sharkovsky ordering. It will be shown that the ordering — <

for equation (3.M is then also a Sharkovsky ordering.

Let n , T] s . . . , IT be a cycle of equation (3.^) of period

p = (2k+l)2 . Then equation (3.3) has a cycle r\ , r\ , ..., rp~ of

period q , where q divides p , that is q = (2j+l)2 where

0 < j S It , 0 ± i < I , and 2j + 1 divides 2k + 1 . There are two

cases to be considered.

Case 1 (j = 0) . Here q = 2 for some 0 S i < I , so equation

(3.3) has a cycle of period 2 . As — < is the Sharkovsky ordering for

this difference equation, there are thus cycles of periods

2l~X -< . . . - < 2 -^ 1

for equat ion ( 3 . 3 ) . Hence by t h e lemma, equat ion (3 . ^ ) a l s o has cyc les of

per iods

Now let h : IN ->• IN be defined as in (3.5). As n°, n1, ••-, rf'1

is a cycle of period p of equation (3.U) and as fj , fj , .. ., fj^~ is a

cycle of period q = 2 of equation (3.3), this means that the one-

dimensional difference equation

(3.6) a:ff =

has a cycle of period (2fe+l)2 - 1 . Hence by Sharkovsky's Theorem,

equation (3.6) has cycles of all periods
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when k > 1 or

when k = 0 .

0 1 v—1
Let x^, x^, . . . , xN be a cycle of per iod r for equat ion ( 3 . 6 ) ,

and def ine

rs<? - s

: ^sq+t\
' N J '

for s = 0 , 1 , . . . , r - 1 and t = 0 , 1, . . . , q-1 , where q = Z% . Then

n° C°1 [fi1 C1] fn*7"1 C^"1] f~° fi\ f^'?"1 rr?-

i s a cycle of period rq = v2 of equation (3.1»). Doing th i s for each r

for which equation (3.6) has a cycle of period v shows that equation

(3.U) has cycles of a l l periods

when k - 1 , or

when k = 0 .

However from the first paragraph of this case, equation (3.1*) also

has cycles of all periods

2 i - 1 — c ... — e 2 — e 1 .

Hence equation (3.^) has cycles of all periods

when k 2 1 , or

when k = 0 .

Case 2 (j 5 l) . Here k 2 1 must hold, and equation (3.3) has a
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-1,cycle of period q = (2j+l)2 . As — < is the Sharkovsky ordering for

the (N-l)-dimensional equation (3.3), this difference equation thus has

cycles of all periods

(2j+3)2i - ^ ... — « (2k+l)2l — < (2fc+3)2Z — < . ..

—c 2? —c ... —e 2—< 1 .

Hence by the lemma, equation (3.1*) also has cycles of all of these periods.

Combining these two cases shows that the ordering — < for the

iV-dimensional equation (3.1*), or equivalently here (2.1), is the Sharkovsky

ordering. This completes the proof of the theorem.
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