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AFFINE BAIRE-ONE FUNCTIONS ON CHOQUET SIMPLEXES

JIRI SPURNY

Metrisable Choquet simplexes with the set of extreme points being an F^-set are
characterised by means of the behaviour of the space of affine Baire-one functions.

1. INTRODUCTION

Let X be a compact convex set in a locally convex space. According to the Choquet-
Bishop-de Leeuw theorem (see [1, Theorem 1.4.8]), for every x e X there exists a prob-
ability measure fi on X representing x which is maximal with respect to the Choquet
ordering (see the next section for the definitions and notation not explained here). If this
measure is uniquely determined, X is called a Choquet simplex (briefly simplex). If the
set ext X of all extreme points of X is moreover closed, the set X is a Bauer simplex.
There are a lot of conditions characterising Bauer simplexes. We list here conditions
which are related to the structure of the space %LC(X) of affine continuous functions on
X.

For a compact convex set X the following conditions are equivalent:

(i) X is a Bauer simplex;

(ii) for every continuous function / on extX there exists a continuous affine
function h on X such that / = h on extX;

(iii) for every continuous function / on X there exists a continuous affine func-
tion h on X such that / = h on ext X;

(iv) X is a simplex and the function x •-»• Sx(f), x € X, is continuous for every
continuous function / on X (here Sx stands for the uniquely determined
maximal measure representing x & X);

(v) the upper envelope /* = inf{/i: h ^ / , h is continuous affine} is affine and
continuous for every continuous convex function / on X;
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236 J. Spumy [2)

(vi) the space %LC(X) of all affine continuous functions on X is a lattice in its
natural ordering.

Proof of this theorem can be found in [1, Theorem II.4.1 and Theorem II.4.3] or in
[3, Satz 2].

If X is a Choquet simplex and ext X is an i^-set in X, it is well-known that any
bounded Baire-one function / on ext X can be extended to an affine Baire-one function
h to the whole set X (a standard method of the proof can be found, for example, in [18,
Theoreme 37]). Hence it is natural to ask whether an analogue of the aforementioned
theorem can be valid if we deal with affine Baire-one functions instead of continuous
affine functions and with Choquet simplexes with the set of all extreme points being an
Fff-set instead of Bauer simplexes. This question is a generalisation of a problem posed
by Jellett in [11].

The aim of the paper is to provide such a characterisation, at least for metrisable
compact convex sets (see Corollary 3.5). In order to prove it we improve and gener-
alise ideas contained in [21] where the equivalence (i) <=$• (ii) of Theorem 3.5 is shown
for metrisable compact convex sets. We prove in Example 3.18 that a Choquet sim-
plex constructed by Talagrand in [23] provides a counterexample to the implication
(ii) = > (i) of Corollary 3.5 if we omit the assumption of metrisability. Thus the conjec-
ture of Jellett posed in [11] is false in general.

We remark that the results of the paper are formulated in a more general context of
function spaces.

2. PRELIMINARIES

All topological space will be considered as Hausdorff. If A" is a compact space, we
denote by C(K) the space of all continuous functions on K. We shall identify the dual of
C{K) with the space M(K) of all Radon measures on K. Let Ml(K) denote the set of
all probability Radon measures on K and let tx stand for the Dirac measure at i e K.

If if is a topological space, we write Bb(K) for the space of all bounded Baire functions

on K, that is, the smallest space containing C(K) and closed with respect to taking
pointwise limits of bounded sequences. The space of all bounded Baire-one functions on
K, that is, the space of pointwise limits of bounded sequences of continuous functions, is
denoted by B\(K). (Baire-one functions are sometimes called functions of the first Baire

class.) We shall need the following facts on Baire-one functions.

THEOREM 2 . 1 . Let f : K —¥ R be a function on a topological space K.

(a) If f is a bounded Baire-one function, then there exists bounded sequences

{un} and {ln} such that each un, —ln, is upper semicontinuous, un / * /

and /„ \ / .

(b) If f € B\{K), the set D of all points of discontinuity of f is a set of the
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[3] Affine Baire-one functions 237

first category in K. In particular, the set of all points of continuity of f is
a dense set provided K is a Baire space.

(c) The function f on a normal space K is of the first Baire class if and only
if both sets {x G K : f(x) < c} and {x G K : f(x) > c} are Fa-sets in K
for every c g R .

(d) The space B\{K) of bounded Baire-one functions on K is closed with
respect to the uniform convergence.

(e) If f is a bounded Baire-one function and e > 0, t iere exists a partition

{Ai,..., An} ofK consisting ofFa-sets and real numbers c\,..., Cn so that

(f) If f is a Baire-one function, K is metrisable and g : K -+ R is such that

i x G K : \f(x) — g(x)\ > e\ is finite for every e > 0, then g is a Baire-one

function as well.

The proofs of assertions (a), (b), (c) and (d) can be found, for example, in [16,
Lemma 3.5, Example 2.D.11, Example 3.A.I].

By virtue of the lack of suitable references, we include proofs of the remaining
assertions. Starting with (e), let / be a bounded Baire-one function on a topological
space K and e > 0. Let {Ui}"=1 be an open cover of f(K) by sets of the diameter less
than e. Then {f~l{Ui)}"_l is a cover of K consisting of sets expressible as a countable
union of sets from A, where A denotes the algebra of sets in K which are both Fa and
Gs- Using the method of the reduction theorem [13, Section 26, II, Theorem 1] we find a
disjoint cover {AJ" = 1 of A" such that Ai C f~l(Ui), 1 < i ^ n, and each A{ is a countable
union of sets from A- If c* is an arbitrary number from Ui, it is easy to verify that

sup <e .

For the proof of (f), we consider functions

t \

9(x) , |/(z) - 9(x)\ > - i

, otherwise .

Then {gn} is a sequence of Baire-one functions which uniformly converges to g. Thus g

is a Baire-one function likewise.

Throughout the paper we shall consider a function space H on a compact space K.

By this we mean a (not necessarily closed) linear subspace of C(K) containing the constant
functions and separating the points of K. Let MXCH) be the set of all %-representing

measures for x G K, that is,

MX(H) := {n G Ml(K) : f(x) = f f dp for any / G U j .
1
 JK

 }
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238 J. Spumy [4]

If ft € -MX(H), we say that x is a barycenter of (i and denote x = r(fi). Where no
confusion can arise we simply say that // represents x.

The set
ChnK :={xeK: MX(H) = {ex}}

is called the Choquet boundary of %. It may be highly irregular from the topological
point of view but it is a G^-set if K is metrisable (see [1, Corollary 1.5.17]).

We say that a function h € H is H-exposing for x e K if h attains its maximum
precisely at x. Obviously, any "W-exposed point is contained in the Choquet boundary of
U.

We introduce the following main examples of function spaces.
(a) In the "convex case", the function space H is the linear space 2lc(X) of all

continuous affine functions on a compact convex subset A" of a locally convex space. In
this example, the Choquet boundary of 2lc(A) coincides with the set of all extreme points
of X and is denoted by ext X.

Hence the barycenter of a probability measure fi on X is a unique point r(/i) € X
for which

/(r(M))= / fd» for any / e W{X),
Jx

that is, x is 2lc(X)-represented by fi. A bounded Borel function / on X is said to satisfy
the barycentric formula if f(r{(i)) = fi(f) for any // € Ml(X).

(b) In the "harmonic case", U is a bounded open subset of the Euclidean space
Rm and the corresponding function space % is H([/), that is, the family of all continuous
functions on U which are harmonic on U. In the "harmonic case", the Choquet boundary
of H(C/) coincides with the set d^U of all regular points of U.

We define the space ACH) of all H-affine functions as the family of all bounded
Borel functions on K satisfying

JK
fdfj, for each x € K and /x € MX(H).

K

Further, let AC(H) be the family of all continuous "H-affine functions on K. Then AC{H)
is a uniformly closed function space with MX{H) = MX(AC{H)) for every x e K. It is
easy to deduce that AC(H) coincides with H in both "convex" and "harmonic" case.

We write Bi(U) for the set of all pointwise limits of sequences from H and by B\CH)
we understand the set of bounded elements from B\{H). We denote by B^(H) the family
of all functions on K which are pointwise limits of bounded sequence of functions from
H. Obviously we have the following inclusion

but the converse need not hold (see [15, Example 5.5]).
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[5] Affine Baire-one functions 239

An upper bounded Borel function / is called H-convex if / ( x ) ^ /z(/) for any x G K

and (j. G MX(H). A function / is H-concave if —/ is "H-convex. Let KC(H) denote the
family of all continuous H-convex functions on K. Notice that the space K.C(H) — K.C(H)

is uniformly dense in C(K) due to the lattice version of the Stone-Weierstrass theorem.

The convex cone K.C{H) determines a partial ordering -< (called the Choquet order-

ing) on the space M+(K) of all positive Radon measures on K:

H<v if p(f) ^ «/(/) for each / G £C{H).

Lemma 1.4.7 in [l] implies that for any measure /x G Ml{K) there exists a maximal
measure v with \i X v. If we take n to be the Dirac measure ex in a point x G K, we obtain
that for any point x G K there exists a maximal measure v such that f(x) — v{f) for
every / G H. This is the content of the famous Choquet-Bishop-de-Leeuw theorem [1,
Theorem 1.4.8].

If K is metrisable, then a measure /x G M+(K) is maximal if and only if
fj.(K\Ch-n K) = 0. In nonmetrisable spaces every maximal measure fi satisfies /z(G) = 0
for any Gg-set disjoint from ChH K (see [8, Lemma 27.14]) and n(B) = 0 for any Baire
set B C K \ Ch-u K (see [1, Corollary 1.4.12 and the subsequent Remark]).

If a maximal measure representing x £ K is uniquely determined for every x € K,

we say that W is a simplicial function space. In the "convex case" it is equivalent to say
that X is a Choquet simplex (see [1, Theorem II.3.6]). As an example of a simplicial
function space serves the space H(£/) from the "harmonic case" (see [5], for a simple
proof see [17]). We denote the unique maximal measure representing x e K by 6X.

For a function / : K —»• R we define the upper envelope /* as

/ " ( * ) : = i i d { h ( x ) : h > f , h < = H } , x & K .

The lower envelope / , is defined as / , := - ( - / ) * . In Theorem 3.1 we shall deal with an
upper envelope generated by 'H-affine Baire-one functions. This envelope is defined as

f(x) := inf{/i(x) :h>f,he A(H) D £? (# )} , x 6 K .

We remark that H is a simplicial function space if and only if /* is an "H-affine function
for every / € -W(H) (see [6, Theorem 3.1] or [1, Theorem II.3.7 and the subsequent
Remark]) where W(H) is the smallest family of functions containing H and closed with
respect to taking infimum of finite families.

For a simplicial function space H we define an operator T by

It is well-known (see for example [15, Proposition 6.1]) that Tf G A(7i) for any bounded
Baire function / on K. Moreover, Tf = f* for every "H-convex bounded upper semicon-
tinuous function f on K (see [6, Theorem 3.1]). Note also that Tf = f on ChnK for
every / G &(K).
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We write JHX for the space of all Radon measures n on K which satisfies fj.(h) = 0
for every h e H. It follows from [6, Corollary 3.5] that % is simplicial if and only if there
is no nonzero measure p, € (AC(H)) such that its total variation |/i| is maximal.

If / and g are functions on a set X, we write / V g for the pointwise maximum of
/ and g. The restriction of a function / : X ->• R to a set F is denoted by / \ F. The
characteristic function of a set F C X is denoted by XF-

If x is a point of a metric space (X, p) and e > 0, let U(x, r) = {y € X : p(x, y) < e}.
We write dist(F, G) for the distance of sets F, G C X. For a set F C X we denote by
Ue(F) = {y € X : dist(y, F) < e} the e-neighbourhood of F. For a set ,4 C X we denote
by der A the set of all accumulation points of A.

3. RESULTS

The main result of the paper reads as follows.

THEOREM 3 . 1 . Let H be a function space on a compact space K. Consider the
following assertions:

(i) 1i is simplicial and C/i« K is an Fa-set;
(ii) for any bounded Baire-one function on Ch-H K there exists an H-afSne

Baire-one function h such that f = h on Ch-n K;
(iii) for any bounded Baire-one function f on K there exists an H-afEne Baire-

one function h such that f = hon C/i« K;
(iv) H is simplicial and the operator T maps B\(K) into B\{K) D A{U);
(v) / is an 'H-a&ne Baire-one function for every H-convex function

f € Bl(K);
(vi) A(H) n Bi(K) is a lattice in the naturai ordering.

Then (i) = > (ii) = ^ (iii) <=>• (iv) = > (v) =*> (vi). If K is supposed to be metrisable,
then the assertions (i)-(v) are equivalent.

REMARK 3.2. For a simplicial function space %, any function / € B\(K) n A{V.)
is in fact a pointwise limit of a bounded sequence of functions from AC(H), that is,
B\(K) n A(H) = B?(AC{UJ). This assertion was proved in [15, Theorem 6.3].

REMARK 3.3. If / is a Baire-one affine function on a compact convex set X, then / is
a pointwise limit of a bounded sequence of affine continuous functions. The proof of this
assertion can be found in [18, Theoreme 80]. If we write 2t(X) for the space of affine
functions on X, we have the following equalities

A(*c(X))nB1(X) = %(X)nBl(X) = B?{<&c(X)) =Bb
l(W(X)) = S,(ac(X)) .

The first equality is the Choquet barycentric theorem [7] (see also [1, Theorem 1.2.6]).
The inclusion QL(X) D Bi(X) C B?(X) follows from the aforementioned [18, Theoreme
80] and the remaining inclusions are trivial.
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[7] Affine Baire-one functions 241

REMARK 3.4. If / is a bounded Baire-one function on a compact convex set X,
~2 f{r{n)) for every fi € MX{X) (see [20, Theorem 3]). In other words, / is an
2lc(X)-convex function.

With these facts in mind, we can rewrite the preceding Theorem 3.1 for the "convex
case" in the form laid down in Corollary 3.5.

COROLLARY 3 . 5 . Let X be a compact convex set in a locally convex space.
Consider the following assertions:

(i) X is a Choquet simplex and ext X is an Fa-set;
(ii) for any bounded Baire-one function on ext X there exists an affine Baire-

one function h on X such that f — h on extX;
(iii) for any bounded Baire-one function on X there exists an affine Baire-one

function h on X such that f = h on extX;
(iv) X is a Choquet simplex and the operator T maps B^(X) into Bi(Qlc(X));
(v) / is an affine Baire-one function for every convex function f 6 B\(X);
(vi) Si(2lc(X)) is a lattice in the natural ordering.

Then (i) = ^ (ii) =>• (iii) <=> (iv) ==> (v) ==*• (vi). If X is supposed to be
metrisable, then the assertions (i)-(v) are equivaient.

We start with a preliminary well-known result called the minimum principle for
Baire concave functions.

PROPOSITION 3 . 6 . Let f be an %-concave Baire function on K such that
f ^ 0 on ChH K. Then f^OonK.

PROOF: Let / be an "H-concave Baire-one function on K which is positive on the
Choquet boundary Chy, K. Suppose that f(x) < 0 for some x € K. Then

L := {y € K : f(y) < /(*)}

is a Baire set not intersecting Ch^ K. According to [l, Corollary 1.4.12 and the sub-
sequent Remark], fi(L) = 0 where // is a maximal measure representing x. Then the
following inequalities

f(x) > /x(/) = f fdn> f f{x) dp = f{x)
JK\L JK\L

yields a contradiction and concludes the proof. D

LEMMA 3 . 7 . Let W. be a simplicial function space on a compact space K and f

be a bounded H-convex Baire-one function on K. Then f = f on Ch-u K.

PROOF: Let x be a point in the Choquet boundary of 7i. We fix a strictly positive

e and set

C , otherwise ,
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where C > 0 is chosen so that / + e ^ C on K. Then I is a lower semicontinuous
•H-concave function.

As / is a Baire-one function, we can find a bounded sequence {un} of upper semi-
continuous functions on K so that, for each n 6 N, a, < / and un /• f. For y 6 K we
find a measure n € My{%) so that fi(l) = i.(y) (see [6, Lemma 1.1]). Then

i(y) > J.(v) = MO > M/) S> /(v) > «»(»), n 6 N .

Thus un < Z,. An easy compactness argument gives the existence of a continuous
H-convex function kn (kn is even in — W(H)) such that un < kn < lt.

Since ki ^ / and % is simplicial, the analogue of Edwards' "in-between" theorem
[6, Theorem 3.2] provides an 'H-affine continuous function a.\ SO that k\ < a\ ^ I. In the
second step we construct an 'H-afBne continuous function 02 so that A2 V 01 ^ a2 ^ /.
If we proceed with this inductive construction, we obtain an increasing sequence {an} of
"W-aifine continuous functions satisfying un ^ a,, < 1. By setting a := liman we obtain
an "H-affine Baire-one function such that / < a ^ 1. Thus / ^ a, in particular

/(*Ko(x) </(*) + *.

As e and x are arbitrary, / = / on C/i« A". D

PROPOSITION 3 . 8 . Suppose that A(H) n B\(K) is a iattice in its natural or-
dering. Then V. is a simplicial function space and T(f V g) is the least upper bound in
A{U) n B\{K) for every couple f and g ofH-affine Baire-one functions.

Conversely, let H be a simplicial function space such that T{f V g) is a Baire-one
function for every f,g € A{U) n B\(K). Then A{%) n B\{K) is a lattice in its natural
ordering.

PROOF: In order to prove the first assertion we need to verify that /* is an H-affine
function for every / 6 -W(H). Let / = /1 V • • • V /„ where fx, . . . , / „ G %. Thanks to
the assumption there exists an "H-affine Baire-one function h such that h ^ / and h is
the least "H-affine Baire-one function with this property. In particular,

We are going to prove the reverse inequality. For a given x € K we use [6, Lemma
1.1] and find a measure \i € MX(H) so that f'(x) = fi{f). Then

/•(*) = /i(/) ^ p(h) = h(x) ,

which gives the equality h = /*. Thus the upper envelope /* is ft-anine for every
/ € —W(W) and H is simplicial according to the characterisation of simplicial spaces
mentioned in Section 2.
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[9] Affine Baire-one functions 243

Moreover, Tf = /* = h is a Baire-one function for every ^-convex continuous
function / € - W ( W ) . It follows from the uniform density of W{U) - W(U) in C{K)
that T(C(K)) C Bb(K). Thus Tg is a Baire function for any bounded Baire function g
onK.

Further, let / , g be %-affine Baire-one functions on K and h be the least upper
bound of / and g in A(H) nB\{K). According to the definition, (/ V g) = h. Lemma 3.7
yields that h = f V g on Chn K. Hence h = T(f V g) on Chn K and Proposition 3.6
applied to the functions h - T(f V g) and T(f V g) - h gives that /i = T(f V 5) on K.

It remains to prove the converse assertion. Let % be a function space satisfying the
assumption in the statement. If/ and g are "W-affine Baire-one functions, then T(fVg) is
an Ti-amne function because T(B*(lf)) c A(H). Thanks to the hypothesis, it is a Baire-
one function. It immediately follows from the minimum principle (see Proposition 3.6)
that_/ V g < T{f V 5) ^ h for every h e A{U) D Bj(iS') satisfying h ^ f V g. Thus
(/ V 5) = T(/ V <?) and the space of all %-affine Baire-one functions is a lattice in the
natural ordering. D

In order to clarify the core of the proof of Theorem 3.1, we construct a simple
example of a metrisable Choquet simplex X such that ext X is not an Fff-set. This
example serves as a guide for the proof of the most difficult part (the implication
(v) =>• (i)) of Theorem 3.1. Namely, we suppose that Ch^K is not an Fa-set and
try to find a closed set F which "looks" like X.

The standard technique is to construct a suitable function space H and then set X
to be the state space S{H) of ti. It can be shown that S(%) shares with H a lot of
properties and thus the behaviour of S(?{) is determined by the function space "H. Below
we briefly described this construction. Details can be found in [1, Chapter 2, Section 2],
[2, Chapter 1, Section 4] or [8, Chapter, Section 29].

If % is a function space on a compact space, we set

Then S(%) endowed with the weak-star topology is a compact convex set which is metris-
able if K is metrisable. Let <$> : K -> S(H) be the evaluation mapping denned as
<j>(x) = sx, x € K, where sx(h) = h(x) for h G~H. Then 0 is a homeomorphic embedding
of K onto 4>(K) and 4>{Chn K) = ext S{H).

Let $ : H -»• 2 l c (S(^) ) be the mapping defined for h G U by $(/i)(s) := s{h),

s e S(7£). Then $ serves as an isometric isomorphism of % into 2lc(S('H)), and $ is onto
if and only if the function space H is uniformly closed in C(K). In this case the inverse
mapping is realised by

Further, according to [4, Theorem], S(AC(H)) is a Choquet simplex if and only if H is
simplicial.
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Let X stand for the compact convex set S(AC(H)) and </>: K ->• X and $ : AC(U)
—• 2lc(X) be the mappings defined above (here we deal with the function space AC{H)
instead of %). If % is a simplicial function space, we can use methods of [15, Propo-
sition 6.1 and Corollary 6.2] to deduce that any function / € A{%) is even completely
Ac(H)-affine, that is, n(f) = 0 for every \i € {AC{UJ)L. According to [22, Theo-
rem 4.3], there exists an isometric isomorphism / of the space A(H) of all completely
Ac(H)-affine functions onto the space of all bounded Borel functions on X satisfying the
barycentric formula. Moreover, / = $ on AC(H) and I~lF = Fo(j> for any bounded Borel
function F on X satisfying the barycentric formula. The restriction of / onto the space
A(H) Pi B\(K) (denoted likewise) serves as an isometric isomorphism mapping
A(H) D B\{K) onto Bi(*c{X)). Since 1(1) = \\I\\ = 1, If > 0 if and only if / > 0.
Hence I is even a lattice isomorphism between A("H) D B\(K) and Bi(pLe(X)).

From the view of the previous paragraphs the following proposition is not surprising.

PROPOSITION 3 . 9 . Let % be a function space on a compact space K and X
denotes the state space S(AC(H)). Then ACH)nBi(K) isalatticein the natural ordering
if and only if B\ (%LC(X)) is a lattice in the natural ordering.

PROOF: Let <f>: K -> X and $ : AC(H) -> 2lc(X) be the mappings defined above.
If A{H) n B\(K) is a lattice, then U is a simplicial function space due to Proposi-

tion 3.8. According to Remark 3.2, A(H) nB\(K) = A("H)C\B\(K). Using the isometric
lattice isomorphism / : A(H) n B^K) ->• Si (2lc(X)) we easily deduce that Bx (2tc(J\T)) is
a lattice as well.

Conversely, if Bi(2tc(X)) is a lattice, we use Proposition 3.8 and obtain that
2tc(X) is a simplicial function space, that is, X is a Choquet simplex. Hence AC(H)
and consequently H is a simplicial function space and we can use again the mapping
/ : A{U) n B\(K) ->• Bx (ac(X)) to verify that A{V.) n B\{K) is a lattice in the natural
ordering (we remind that A{H) D B\(K) = A{H) n B\(K) again). D

EXAMPLE 3.10. There exists a metrisable compact convex set X such that ext X is not
an i^-set and Bi (%LC(X)) is not a lattice in the natural ordering.

PROOF: Let {qn} be an enumeration of rational numbers contained in [0,1]. We
define a subset K C R2 as follows:

K := ([0,1] x {0}) U {(qn, n"1), (qn, -n"1) : n € N} .

(We write (a,b) for a point in R2 with the coordinates a and 6.) Obviously, K is a
compact set in R2 (considered with the usual Euclidean topology). Let

H = {/ € C{K) : /(ft.,0) = i ( / (?„ , -n- 1 ) + /(?„, n " 1 ) ) ^ €

Then U is a correctly defined simplicial function space, Ch%Kr\ ([0,1] x {0}) = {(z,0)
G K : x is irrational } and H = Ac{%). The verification of these assertions is analogous
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to the one used in Example 3.17 where a similar construction is used as a counterexample

to the implication (vi) = > (i) of Theorem 3.1.

Unlike Example 3.17, the space A{"H)nB\{K) is not a lattice in the natural ordering.

Indeed, let

{1, 6 > 0 ,

0 , 6 = 0 ,

- 1 , 6 < 0 .

Then / is an %-affine Baire—one function but

J o , 6 = 0 and a is irrational,

1 1 , otherwise

is not a Baire-one function because T(f V —/) has no point of continuity on [0,1] x {0}.
According to Proposition 3.8, A{V.) n B\{K) is not a lattice in the natural ordering.

The sought compact convex set X is defined as the state space S(H) ofH. It follows
from the general properties of a state space cited above and in Proposition 3.9 that ext X
is not an Fa-set, X is a Choquet simplex and 5i(2lc(X)) is not a lattice in the natural
ordering. D

The main construction needed in the proof of Theorem 3.1 begins with the following
two lemmas.

LEMMA 3 . 1 1 . Let K be a metrisable compact space and F be a Gg-subset of
K such that F = K = K\F. Let {Kn} be a sequence of compact subsets of F. Then
F\ \Jn Kn is dense in K.

PROOF: We claim that each Kn is a nowhere dense subset of F. Indeed, let n be
a fixed positive integer and suppose that Kn is not nowhere dense in F. Then we can
find a nonempty open set U C K such that U D F ^ 0 and U nF C Kn. Since K \ F is
dense in K, we may find a point x € U C\ {K \ F). Due to density of F in K there is a
sequence {xk} of points of F such that x = \\mxk. Since x € U and U is open in K, we
may assume that xk e U n F for each integer k. As U f\F C Kn and Kn is a closed set,
x€KnC F. This contradicts the fact that x€K\F.

Since K \ F is dense in K, every Kn is nowhere dense in K. Since F is a residual
subset of K as well as K\\JnKn, the set F \ U n ^ n is residual in K. According to [9,
Theorem 3.9.3], F\ \Jn Kn is dense in K. D

LEMMA 3 . 1 2 . Let H be a function space on a metrisabie compact set K, x be

a point in Ch-n K and {xn} be a sequence of points converging to x. Then /*„ -> ex for

every sequence {/*„} where y.n 6 A/lXn('H).

P R O O F : If we suppose the contrary, then there exists a measure fj, ^ ex and a

subsequence {/Jtnk} so that / i n t —> /i. It is straightforward to verify that fj. is an
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^-representing measure for x. Since \i is not the Dirac measure at x, we have arrived to
a contradiction with the assumption that x 6 Ch-n K. D

PROPOSITION 3 . 1 3 . Let ti be a simpUcial function space on a compact metric

space (K, p) such that Ch-n K is not an Fa-set. Then there exists a nonempty closed set

F C K with C := F\ Ch-H K being a countable set and compact sets {Ky : y € C} so

that

(a) C

(b) Ky C Chn K for every y 6 C;

(c) Ky n F = 0 ify eC andKvnKx = <D ify,x €C,y? x;

(d ) {y e C : Sy(Ky) ^ 1 - e} is finite for every e > 0; and

(e) {y €C : Ky£ Ue(F)} is finite for every e > 0.

PROOF: Since C/i« K is assumed not to be an Fff-set, we can use Hurewicz' theorem
(see [12, Theorem 21.22]) and find a closed subset H of K such that

H n ChnK = H \ ChnK = H

and H \ Ch-n K is countable. For every y 6 H \ Chy. K we find an increasing sequence
{Ly,m} of compact subsets of Ch-uK such that Sy(\Jm Ly,m) — 1. We enumerate the
countable family

{Ly,m:meN,yeH\ChuK}

into a single sequence {Z-*}. We pick an arbitrary point xo € H\\JkLk and set

oo

Fo := {x0} and I := HnChnKnf)(H\Lk) .
k=l

It follows from Lemma 3.11 that the set / is dense in H.

We construct by induction sets Uk,Vk, A^, Bk, Ft, K^j, k,j € N, so that, for every

keN,

(i) Ak = {xkJ : j G N} C / , Bk = {ykJ : j 6 N} C H \ Chn K, both sets
consists of distinct elements, the set Fk := Ak U Bk satisfies

Ffc n (Fo U • • • U Ft_i) = 0 and

(ii) Uk, Vk are open subsets of K,

UkDLk, (F 1 n-- -nH)D(F 0 U---UF f c ) and Uk

(iii) Kkj, j 6 N, is a compact set,

oo

Kkd C | J Lykhm , and KklJl n Kk2dl = 0
m=l

if 1 ^ Aa < k2 ^ A; or if j u j 2 G N, j x ^ j 2 ;
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(iv) for every j e N,

p(xkj,ykj) < j£ , Kkj c u(xkJ, —) , and Snj(Kkj) > 1 - -^ .

In the first step of the construction we find a couple of disjoint open sets U\, Vi.in
K so that L\ C U\ and XQ e V\. Using density of/ we select a sequence {xij} of distinct
points of / n Vi such that Xij -»• x0- Let r7 > 0, j € N, be positive numbers such that

2. U(xld,rj)cVu

3. the family {U(xij,rj) : j € N} is pairwise disjoint, and

4. i o

Now we use density of H \ Chy, K in H and Lemma 3.12 to find points yij € U(xij, r;)
n(H\ Chn K), j € N, such that 6yij (C/(iij, r,)) > 1 - (1/j). Since

oo

^j)n U ^.i.-) =*wj(^u.rj)) > i " " •
m = l •>

we can use the regularity of <5Wlj and find a compact set

m=l

so that

Obviously,
der Ax = der{ilv, : j 6 N} = { i 0 } = Fo ,

as well as
derBx = d e r { y i j : j e N } = {x0} = Fo .

Since the validity of the remaining properties (ii)-(iv) follows directly from the construc-
tion, the first step is finished.

Suppose now that the construction has been completed for every integer i < k. It
easily follows from (i) that the set Fo U • • • Fk is closed and does not intersect \Jk Lk.

Thus we can find a couple of disjoint open sets Uk+i and Vk+i so that Lk+\ C Uk+i and
Fo U • • • U Fk c Vfc+j. Since H contains no isolated points and FQ U • • • U Fk is countable,
this set has an empty interior in H. Now we are going to construct a countable set
Ak+l = {xk+ij : j £ N } of distinct points of / so that

(1) Afc+i n (Fo U • • • U Ffc) = 0 and der,4fc+1 = Fo U • • • U Fk .
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To this end, let {Nm} be a sequence of finite 1/m-net of F0U- • -UF*. We use density
of / in H and the fact that Fo U • • • U Fk has an empty interior in H and inductively find
finite sets

Mmc(InVk+l)\(F0U---UFk) , m€N,

so that

,^j : x 6 M m } and Mm n (Mr U • • • UMm.,) = 0

for each m € N. If we enumerate points of |Jm Afm into a single sequence {z* + l j } and
define Ak+X := {z*+i,> : j € N}, we obtain a set satisfying (1).

As above we get from (i) and (iv) that the set

(2) F0U--L)Fku\J{KiJ:l^i^k,jeN}

is closed and does not intersect A^+i- Hence we can find strictly positive numbers rj SO
that

1. rj < l/(jk),

2. U(xk+lJ,rj) C Vk+lt

3. the family {U(xk+u,rj) : j € N} is pairwise disjoint, and

4. U(xk+ij,rj) does not intersect the set (2).

As in the first step of the construction, for every integer j we pick a point

, rj) n(H\ ChHK)

and a compact set

Kk+1J C U(xk+ld,rj) n ( J L»+ l J ,m
m=l

so that

By setting Bk+i := {yk+ij : j G N} we finish the inductive step of the construction.

We set
OO 00

F := (J Fk , and C := | J Bk .
*=o

Then (ii) yields

*=o t=i it=i

Since the latter set is closed,

FcK\\JUk
k=l
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as well. Thus F does not intersect \Jk Lk which together with (iii) gives that

(3)

The property (i) implies that C is a dense subset of |Jfc Fk and thus also of F. By the
same reasoning we get that F D Ch-n K is dense in F. We claim that F D C/i« K is not
FCT-separated from C, that is, there exists no Faset Z satisfying FnCh-n K C Z C K\C.

Indeed, if FnCh-n K were separated from C by an Fff-set Z, then the sets FC\ChH K
and F\Z would be a couple of disjoint dense G^-sets in F. But this is impossible as F
is a Baire space.

Hence we can use [12, Theorem 21.22] again and find a closed set

F C (F D ChHK) u C

such that

(4) FnCh-uK = F\ChnK = F .

Obviously, C = F\Chn K is a countable set. For every y G F\ChH K we set Ky :— KVk i

We claim that F and compact sets {Ky : y G F\ ChH K} posses all the required
properties.

Indeed, property (a) is stated in (4) and properties (b) and (c) follows from (iii), (3)
and from the choice of compact sets Lk.

It remains to verify (d) and (e). To this end, let e > 0. Let k0 be an integer satisfying
l/fc0 < e, If y € C then y = ykj for some k,j e N. Then the condition (iv) implies that
Sykj(Kkj) > 1 - e if k ^ k0 and j e N or if j ^ k0 and 1 < k < k0. Hence the set
{yeC: 5y{Ky) ^ 1 - e} is finite.

Similarly we get from the condition (iv) that

:J,fycUe(F)
if k ^ 2k0 and j G N or 1 < k < 2fc0 and j ^ 2k0. This observation completes the proof
of the proposition. D

Now we are ready for the proof of the main theorem.

P R O O F : [Proof of Theorem 3.1] For the proof of the implication (i) =>(ii) , suppose
that % is simplicial and Ch-u K is an Fff-set. Thus we can write Chn K = \Jn Fn where
{Fn} is an increasing sequence of compact sets. Let / be a bounded Baire-one function on
Chn K and {/„} be a sequence of continuous functions on C/i« K converging pointwise
to / . We may assume that | |/ | | , | |/n| | are bounded by a positive number M. According
to [6, Corollary 3.6], there exists a sequence {hn} of H-affine continuous functions on K

such that hn = /„ on Fn and \\hn\\ = \\fn\\.
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The proof will be completed by showing that the sequence {hn} converges pointwise
to the function h(x) := 8x(f), x 6 K. Notice that the definition is meaningful since
maximal measures are carried by C/i« K due to [8, Lemma 27.14].

For a fixed x 6 K and e > 0 we find an integer n0 such that / \f — fn\ d5x < e
JCh-nK

and 6x(Fn) > 1 — e for all n ^ n0. Then, for n > no, we have

f \f-fn\dSx+ f 2Md6
JFn0 JK\Fna

^ e + e2M ,

which proves the required statement and concludes the first part of the proof.

Since the implication (ii) =>-(iii) is obvious, we proceed to the proof of (iii) = > (iv).
Let % be a function space on a compact K satisfying the condition (iii). First of all we
verify that "H is simplicial.

Indeed, for a given continuous "%-convex function / on K we find an "H-affine Baire-
one function h with h = f on Ch-u K. Thanks to Proposition 3.6, h > / on K. For a
given x e K, [6, Lemma 1.1] yields the existence of a measure fi € Mx(7i) such that

= f*{x). Then
/ • (x) =

On the other hand, let g € % satisfy g > / . Then g ^ h on Ch-u K and thus g ^ h

on if, which again follows from Proposition 3.6. Hence

h(x) ^ mt{g(x) :geH,g2f} = f'{x) .

Thus /* = h is 'H-anine for every H-convex continuous function / and H is a simplicial
function space.

It remains to check that Tf is a Baire-one function for every / € B\{K). Thanks to
the previous paragraph, Tf is a Baire-one function for any 7{-convex continuous function
/ . Hence T{C(K)) C Bb{K) which gives that Tg is a Baire function for any bounded
Baire function g on K.

If / is a bounded Baire-one function on K, let h be an K-affine Baire one function on
K with / = h on C/i« /f. Then h = T / on Chn K and the application of Proposition 3.6
yields that h = Tf on if. Thus Tf is a Baire-one function as required.

As the implication (iv) ^^- (iii) is obvious, the next step will be the proof of the
implication (iv) = • (v). Let / be an %-convex Baire-one function on K. Due to the
condition (iv), Tf is an 'H-am'ne Baire-one function. Moreover, Tf — f on Ch^ K and
Tf ^ f on K by Proposition 3.6. Thus Tf ^ / .
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On the other hand, given an "H-affine Baire-one function h with h ^ / , the minimum
principle laid down in Proposition 3.6 gives that h ^ Tf. Thus Tf ^ f and / = Tf is
an W-afBne Baire-one function.

In order to prove (v) =^- (vi), let / and g be %-affine Baire-one functions. Since
h — ( / V g) is an 'H-affine Baire-one function, h is obviously the least upper bound for
the couple / and g in A{H) D B\{K). Thus A{U) D B\{K) is a lattice in its natural
ordering.

It remains to prove the implication (v) = » (i) provided K is metrisable. Since
(v) =i> (vi), we know from Proposition 3.8 that % is a simplicial function space. We fix
on K a compatible metric p.

If we assume that Ch-n K is not an F<,-set, let F, C and {Kx : x € C} be sets
constructed in Proposition 3.13. By setting

f l , on \J{KX : x € C} ,

1 0 , otherwise ,

we get a Baire-one function on K.

Indeed, the set H := FU \J{KX : x £ C} is closed according to the condition (e) of
Proposition 3.13. Thus / = XH \ XF is a Baire-one function.

It follows directly from the definition that / is an "H-convex function on K. We
conclude the proof by showing that / is not a Baire-one function on F.

To this end we pick an arbitrary e € (0,1). If h € A{H) D BX{K) satisfies h ^ / ,
then

h(x) = Sx(h) 2 Sx(f) >l-e

for all but finitely many points x € C. We denote this exceptional set by Ce.

On the other hand, given a point z 6 C/ty K n F, the function kz := XK\{Z)
 ls an

H-concave lower semicontinuous function. Thus Tkz = (kz), is a lower semicontinuous
•H-affine function satisfying / ^ Tkz which gives 0 < f(z) ^ Tkz(z) = 0.

Hence we have obtained that

/ = 0 on FDChnK and / > l - £ : o n C \ C e .

Since
F n ChnK = F D (C \ Cc) = F ,

the function / has no point of continuity on F and hence cannot be of the first Baire-class.
This concludes the proof. 0

REMARK 3.14. We note that the proof of (ii) ==> (i) in Theorem 3.1 for metrisable
compact sets can be substantially simplified, namely we do not need Proposition 3.13.
We briefly indicate this simplification.
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We assume that K is metrisable and the condition (ii) of Theorem 3.1 holds. It is
easy to check that H. is a simplicial function space. If we assume that Chy K is not an
F<,-set, we proceed as in the proof of Proposition 3.13 and find a closed set H so that
H n Chn K = H \ Chy K = H and H \ ChH K is countable. For every x e H \ ChH K
we find an Fa-set Kx C Chy K such that 6X(KX) = 1. Then

A := H D ChnK\ \J{KX :x&H\ ChyK}

is not Fa-separated from H \ Chy K, that is, there is no F^-set Z C K satisfying Ac Z
and Zn(H\Chy K) = 0. (Otherwise HnChy K would be an FCT-set which is impossible.)
Another use of [12, Theorem 21.22] provides a compact set F C A U (H \ Chy K) so that
F T L A — FD(H\ Chy K) = F. Then XF is a bounded Baire-one function on K and

I 0 , on F \ ChyK .

Thus the function T(XF), lacking a point of continuity on F, is not of the first Baire
class. Since T(XF) is the only possible W-anine extension of XF t Chy K, the function
XF \ Chy K has no W-affine Baire-one extension on K.

REMARK 3.15. We remark that for a function space % on a metrisable compact space
K another "in-between" condition equivalent to (i) in Theorem 3.1 can be formulated.
Namely, Theorem 3.1 (i) holds if and only if for every couple / , — g of bounded Baire-one
^-convex functions with / ^ g there exists an "%-affine Baire-one function h so that
/ ^ h ^ g. (This condition is a Baire-one analogue of Edwards' "in-between" theorem
[6, Theorem 3.2].)

We sketch the proof of the assertion. If % is a simplicial function space and Chy K is
an FCT-set, Theorem 3.1 (iv) and Proposition 3.6 easily yields the validity of the condition
cited above.

Conversely, suppose that the "in-between" condition holds. First we have to prove
that H is simplicial. To this end, let / be an ^-convex continuous function on K. If
H € Aix(H) represents x € K and e > 0, we use the generalisation of the Lebesgue
monotone convergence theorem (see [10, Theorem 12.46]) and find an ?i-concave contin-
uous function k such that / < k and /x(/*) ^ /i(Ar) - e. An appeal to the "in-between"
property provides an 'H-affine Baire-one function h so that / < h ^ k. As in the proof
of Proposition 3.8 we get that h(x) ^ f*(x). Thus

fj,(f*) ^ fi{k) — e ^ A*(/I) — £ = h(x) — e ^ /*(x) — e .

As e is arbitrary, n(f) ^ f*{x)- Since the converse inequality is obvious, /x(/*)
— f*(x) and /* is ?{-affine. According to the characterisation of simplicial spaces cited
in Section 2, % is simplicial.
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To finish the proof we have to verify that Ch-u K is an F^-set. Assuming the contrary,
Proposition 3.13 provides sets F , C and Kx, x € C, with the corresponding properties.
We split C into a couple of disjoint dense sets C\ and C2. By setting

, \l on \J{KX : x e C{\ , J fo on \J{KX : x G C2} ,
/ = < and £ = <

I 0 otherwise , I 1 otherwise ,

we obtain a couple of Baire-one functions (see the proof of (v) ==> (i) of Theorem 3.1)
such that / ^ g, f is "H-convex and g is "H-concave. Obviously, any %-affine function
h satisfying / < h ^ g has no point of continuity on F and thus cannot be of the first
Baire-class. This contradiction finishes the proof of the remark.

REMARK 3.16. We consider X to be Poulsen's simplex (see [2, Chapter 3.7] for its
construction and properties). Then extX = X and thus extX cannot be an Faset. We
remark that 5i(2lc(X)) is not a lattice in the natural ordering.

Indeed, the compact convex set constructed in Example 3.10 is affinely homeomor-
phic to a closed face F of X (see [2, Theorem 7.6]). Thus B l (a c (F) ) is not a lattice in
the natural ordering. We use [14, Theorem 3.6] and find an affine retraction r of X onto
F, that is, r : X -> F is an affine continuous mapping and r(x) = x for every x G F .
If / ,g are affine Baire-one functions on F , the functions for,gor are affine Baire-one
functions on X. Assuming that Bi(pic(X)) is a lattice, we can find an affine Baire-one
function h on X so that h ~£ f V g and h is the least affine Baire-one function with this
property. It does no harm to verify that h \ F is the least affine Baire-one function on
F which is greater or equal to / V g. But this contradicts the fact that B\ (2lc(F)) is not
a lattice in the natural ordering.

The following example shows that the implication (vi) = ^ (i) of Theorem 3.1 need
not hold in general. The construction is a slight modification of Example 3.10.

EXAMPLE 3.17. There exists a metrisable Choquet simplex X such that B\ (2lc(X)) is
a lattice in the natural ordering but ext X is not an F^-set.

PROOF: First of all we shall construct a function space H o n a metrisable compact
space K such that:

(a) Chfi K is not an Fff-set;

(b) H is a simplicial function space;

(c) H = AC{H); and

(d) A(H) n B\{K) is a lattice in the natural ordering.

Let {qn} be an enumeration of rational numbers contained in [0,1]. We define a
subset K C R2 as follows:

K := ([0,1] x {0}) U {(?„, n"1) , (?„, - n " 1 ) : n € N} .
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Obviously, K is a compact set in R2. Given a natural number n, for the sake of brevity
we shall write q°, q+ and q~ instead of {qn, 0), (qn, 1/n) and (qn, -(1/n)), respectively.

The function space H will consist of all continuous functions f on K which satisfies

(5) /(«£) = i/(9-)
7*

Obviously, "H contains the constant functions. In order to check that % separates points
of K we can consider the following family of functions:

hxa{x, y) := | i - xo| , x0 € [0,1] ;

{0, (i,j,) = g+,

n . (x,y) = q- , n € N ;

1 , otherwise ,

{0 , (x,y)=q-,

^ T , {x,y)=q+, n e N .

1 , otherwise ,

Thus U is a function space.
We claim that ChH K = K\{q° : n 6 N}. Indeed, no point of the set {q° : n 6 N}

lies in the Choquet boundary % of K. On the other hand, functions denned above show
that for every point in K \ {g£ : n € N} there exists an 'H-exposing function and thus
K \ {g° : n £ N} = Ch-n K. It follows that ChH K is not an Fff-set and the property (a)
is proved.

Concerning the property (b), it is enough to prove that, for every n € N, the measure
(l/n)e.- + ((n — l)/n)eg+ is the only maximal measure 6^o representing the point <j£. For
n G N it immediately follows from the definition of hqn that any measure representing <?°
is supported by the set {q°, q~,q£}. Clearly,

x 1 n - 1
*" n «" n 9n

and H is simplicial.
For the proof of (c), let / be an 'H-afnne continuous function. Since any

"W-representing measure for a point g° is supported by {q^,Qn>9n}> w e Set t n a t

(6) Mqo(H) = co{eqo,5qo}, n e N .

Thus / , being an ~H-affine function, satisfies the equalities (5) and f € W according to
the definition.

In order to check the last assertion (d), it is enough to prove that T(f V g) is a
Baire-one function for every couple / and g of W-afBne Baire-one functions (see Propo-
sition 3.8). Let / and g be such functions with values in (0,1] and set h := / V g. We
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claim that

(7)

Indeed, for a fixed integer n we have

l foreveryne

By the same argument, ^(g^) — <?(g°)| ^ 2/n. We need to check this inequality for the
function h. The only nontrivial case is when h(q+) = /fa) aQd Hin) = dfan) (or y i c e

versa). Then

Hti) = ffa) = /(?n+) - / (O + M) ^ ffa) ~ /(«£) + ff(«J|)

and

h(q°n) = 9(q°n) = 9(q°n) -

Combining these inequalities together we get (7).
Applying this inequality (7) we obtain

2 2 4
n n n

Hence the set

{x G K : |77»(i) - = {in S [0,1] x {0} : |T/i(g2) - h(q°)\ > e, n e

is finite for every e > 0. By virtue of Theorem 2.1 (f) and Proposition 3.8, Th is a
Baire-one function and the space A(~H) D B\(K) is a lattice in the natural ordering.

According to Proposition 3.9, X :— S(7{) is a compact convex set such that
extA" = (^(ChfiK) is not an Fff-set and Bi(%Lc(X)) is a lattice in the natural order-
ing. D

The following example shows that Theorem 3.1 is not true in general if we omit
the assumption of the metrisability of the compact space K. Namely, we verify that the
simplex constructed by Talagrand in [23] satisfies the condition (ii) of Theorem 3.1 but
the set of all extreme points is not even a £-Borel set (the smallest family containing all
compact sets and closed with respect to taking countable unions and intersections).
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EXAMPLE 3.18. There exists a simplex X such that extX is not a /C-Borel set and
every bounded Baire-one function defined on ext X can be extended to an affine Baire-
one function defined on X.

PROOF: We recall M. Talagrand's construction from [23]. Let T := NN U {w} where
a; is a point not belonging to NN. Let A be a family of sets in NN such that

1. every A G A is a closed discrete set in NN considered with the usual topol-
ogy;

2. the family A is almost disjoint, that is, A n B is at most finite for every
couple A, B G A of distinct sets.

We consider T endowed with a topology r that makes each point of NN open and the
neighbourhoods of u) are of the form T\B, where B is the union of a finite set and finitely
many elements from A.

Talagrand proved that T is a completely regular space which is Kai in its Stone-
Cech compactification. In particular, T is a /C-analytic set, that is, it is the image of NN

under an upper semicontinuous compact-valued map (see [19, 2.1]). According to [19,
Theorem 2.7.1], T is a Lindelof space.

Let K be the compactification of T such that closed sets in K can be identified to
the algebra £ generated by A and finite sets of NN. (The compactification K is obtained
as the closure of y?(T) in {0,1}£, where (p(x) = {XL(X)}LeC, x G T.)

Then every set A is clopen in K (here A stands for the closure of A in K) and
T \ {ui} is an open subset of K. It follows from almost disjointness of A that every set
A G A determines a unique point {aA} = A \T and vice versa, every point x € K\T
is of the form aA for some A e A.

The most important step in the construction is a careful choice of the family A which
ensures that T is not a /C-Borel set in K.

For every A 6 A a couple of points b&,CA € NN is chosen so that these points are all
distinct and they do not belong to any member of A. Let

H:={fe C(K) : f(aA) = \{f{bA) + f(cA)),A G

It is easy to show that C/i« K = T and % = ACCH) is a simplicial function space.
After recalling M. Talagrand's construction we have to verify that every bounded

Baire-one function on T can be extended to an ?{-affine Baire-one function.
To this end we prove the following claim: Any countable set S C K \T is a Gg-set

inK.
Given a countable set 5 C K \ T, S = {an : n G N}, let An, n G N, be sets in A

such that {an} = An \T. Then G := Un^n *s a n °Pe n subset of K. If {xk} is an
enumeration of (Jn Ai, we define G* :=G\{xi,...,Xk}- Then G* are open subsets of K
and S = f\ Gk- Thus 5 is a Gf-subset of A" as desired.
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Let / be a bounded Baire-one function on T, and Tf the extension of / to K defined
by saying that {Tf)(aA) = (f(bA) + f(cA))/2 for A G A. We claim that Tf G B\{K).

According to Theorem 2.1 (d), we may suppose that / is the characteristic function
of a set F c T. We can also assume that w G F. Since T\F = {xeT : f(x) = 0} is an
Fff-set in T and T is Lindelof, T \ F is a Lindelof space as well. As T \ F is a discrete
space, it is a countable set.

Obviously,

{x G K : Tf(x) = 0} = (T\ F) U {aA G K \T : bA,cA G T\ F}

is a countable and thus also an FCT-set. Similarly,

[x G K : T/( i ) = i } = {aA G AT\T : bA € T \ F , c A G F}

U{aAeK\T:bAeF,cAeT\F}

is countable likewise. As the set

G := {x G K\T : Tf(x) = 0} U {x G K\T : T/(x) - i }

is a countable subset of K \T, the italicised claim yields that G is a Gf-subset of K.
Since T \ F is an open set in K, we get that

{xeK: Tf(x) = 1} =K\((T\F)UG)

is an FCT-set in K. Due to Theorem 2.1 (c), Tf is a Baire-one function on K and we have
proved that any bounded Baire-one function on ChH K can be extended to an 'H-affine
Baire-one function on K.

As in the previous examples, the required compact convex set X will be the state
space S(H) of %. Then A" is a simplex and extX = <j>(Chn K) is a ^-analytic set which
is not £-Borel. Let F be a bounded Baire-one function on extX. We find an "H-affine
Baire-one function g on K such that g = F o <fr on C/i?f K. As was mentioned in the
paragraph above Proposition 3.9, any 'H-affine function in a simplicial function space
is completely Ac(H)-a.&ne function. Since U = AC{H), [22, Theorem 4.3] yields the
existence of an affine Baire-one function G on X such that g — G o <j>. Then G is the
desired affine Baire-one extension of F and the proof is finished. D
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