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Laplace Transform Type Multipliers for
Hankel Transforms

Jorge J. Betancor, Teresa Martı́nez, and Lourdes Rodrı́guez-Mesa

Abstract. In this paper we establish that Hankel multipliers of Laplace transform type are bounded

from Lp(w) into itself when 1 < p < ∞, and from L1(w) into L1,∞(w), provided that w is in the

Muckenhoupt class Ap on ((0,∞), dx).

1 Introduction

If m is a bounded measurable function on (0,∞) we define the multiplier operator

for the Hankel transform associated with m by

(1.1) Tm f = hµ(mhµ( f )).

Here hµ( f )(x) =
∫ ∞

0

√
xy Jµ(xy) f (y) dy is the Hankel transform defined by [28],

where Jµ denotes, as usual, the Bessel function of the first kind and order µ. Through-

out this paper we will always assume that µ > −1/2. Since hµ is an isometry of

L2(0,∞) [26, Ch. VIII], Tm is a bounded operator from L2(0,∞) into itself. Condi-

tions on the function m can be specified in order that Tm maps boundedly Lp-type

spaces. Guy [14] established the first results on multipliers for Hankel transforms.

More recently, Gosselin and Stempak [13], Betancor and Rodrı́guez-Mesa [4] and

Kapelko [16, 17] obtained Mihlin–Hörmander type multipliers theorems for Han-

kel transforms. Also in [4], a Hankel version of a result of Córdoba and Fefferman

[7] concerning the boundedness of multipliers on weighted Lp-spaces was estab-

lished. Results on multipliers for Hankel transforms on Hardy spaces were shown

in [3]. Other classes of results about multipliers for Hankel transforms were proved

by Gasper and Trebels [8–12].

If f is a suitable function, it is easy to see by partial integration that

(1.2) hµ(∆µ f )(x) = x2hµ( f )(x),

where ∆µ denotes the Bessel operator ∆µ = −x−µ−1/2Dx2µ+1Dx−µ−1/2. This oper-

ator ∆µ is positive and self-adjoint in L2(0,∞). According to (1.1) and (1.2) we can

formally write that Tm f = m(∆
1/2
µ ) f .

In this paper we investigate the Lp-boundedness of the multiplier Tm when m is

of Laplace transform type, i.e., m(x) = x
∫ ∞

0
e−xtk(t) dt , x ∈ (0,∞), where k is a
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bounded measurable function in (0,∞). Following Stein [22], we say that Tm is a

Hankel multiplier of Laplace transform type.

We obtain a representation for Tm involving Poisson kernel associated with the

operator ∆µ. For every x ∈ (0,∞), the function ϕx(y) =
√

xy Jµ(xy), y ∈ (0,∞), is

an eigenfunction of ∆µ, since ∆µϕx(y) = y2ϕx(y), y ∈ (0,∞). Hence the Poisson

kernel in the ∆µ-setting (see [27] and [19, (16.4)]) is defined by

Pµ(t, x, y) =

∫ ∞

0

e−tz
√

xz Jµ(xz)
√

yz Jµ(yz) dz

=
2µ + 1

π

∫ π

0

t(xy)µ+1/2 sin2µ θ

[(x − y)2 + t2 + 2xy(1 − cos θ)]µ+3/2
dθ, t, x, y ∈ (0,∞).

(1.3)

The corresponding Poisson integrals were studied by Philipp [21]. We get the follow-

ing representation for the Hankel multiplier Tm as an integral operator including Pµ

in its kernel.

Theorem 1.1 Let Tm be a Hankel multiplier of Laplace transform type. For every

f ∈ L2(0,∞) and x /∈ supp f ,

Tm f (x) =

∫ ∞

0

Km(x, y) f (y) dy, Km(x, y) =

∫ ∞

0

k(t)
(

− d

dt

)

Pµ(t, x, y) dt.

In [2] some operators of harmonic analysis associated to ∆µ were investigated

using Calderón-Zygmund theory. These were inspired by the studies of Mucken-

houpt and Stein about Riesz transforms associated with the Bessel type operator

Sµ = −x−2µ−1Dx2µ+1D. In Section 3 we establish that the kernel Km of the Han-

kel multiplier Tm is a Calderón–Zygmund kernel in the region Ω = {(x, y) : 0 <
x/b < y < bx} for all b > 1. Moreover |Km(x, y)| ≤ C/x when 0 < y < x/2,

and |Km(x, y)| ≤ C/y when 2x < y. Calderón–Zygmund theory of singular inte-

grals and the boundedness properties of Hardy operators give the strong type (p, p),

1 < p < ∞, and the weak type (1, 1), as stated in the following theorem, which is the

main result of this paper. Here Ap(0,∞), 1 ≤ p < ∞, represents the Muckenhoupt

class of weights on ((0,∞), dx).

Theorem 1.2 Let 1 ≤ p < ∞ and w ∈ Ap(0,∞). Suppose that m is a function of

Laplace transform type. Then the Hankel multiplier operator Tm is bounded from Lp(w)

into itself, 1 < p < ∞, and from L1(w) into L1,∞(w).

Similar results for 1 < p < ∞ were proved in quite general settings [22]. To use

[22, p. 58], we need the compactness of the space and that the derivative operator

commutes with ∆µ. It is required that the Poisson semigroup be markovian, that

is, that it map constants into constants [22, p. 121]. None of these conditions are

satisfied in our case. Indeed, in the ∆µ-setting the Poisson semigroup Pµ is defined

[21] by

Pµ( f )(t, x) =

∫ ∞

0

Pµ(t, x, y) f (y) dy, t, x ∈ (0,∞).
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According to [5, Remark 2.5], if f ∈ L∞(0,∞), then the function u = Pµ( f ) is a

solution of the Laplace type equation ∂2/∂t2u−∆µu = 0. In particular this happens

when f = χ(0,∞), the indicator function of (0,∞). However, it is clear that con-

stant functions do not verify the last partial differential equation. Hence the Poisson

semigroup Pµ is not markovian.

On the other hand, as was mentioned by Nowak and Stempak [20], by using trans-

plantation theorems for Hankel transforms [14] we are able to derive Lp-bounded-

ness results for Hankel multipliers by applying known results for Fourier multipliers

(adapted to the cosine Fourier transform, for instance). However, using this trans-

plantation procedure, the weak type results established in Theorem 1.2 cannot be ob-

tained. Moreover, weighted Lp-boundedness for Hankel multipliers cannot be estab-

lished by transference from boundedness results for multipliers with respect to other

orthogonal systems (Jacobi [15], Laguerre [24] or Bessel [6] functions) for general

Ap-weights.

A remarkable particular case of Hankel multipliers of Laplace transform type are

the imaginary powers ∆
iλ
µ , λ ∈ R, defined by ∆

iλ
µ f = hµ(y2iλhµ( f )). Note that

y2iλ
Γ(1 − 2iλ) = y

∫ ∞
0

e−ytt−2iλdt , y ∈ (0,∞). A straightforward corollary from

Theorem 1.2 is the following.

Corollary 1.1 Let 1 ≤ p < ∞, λ ∈ R and w ∈ Ap(0,∞). Then the imaginary

power ∆
iλ
µ of ∆µ is bounded from Lp(w) into itself when 1 < p < ∞, and from L1(w)

into L1,∞(w) when p = 1.

The situation is different when we consider the negative powers ∆
−α/2
µ , 0 < α< 1,

defined through

(1.4) ∆
−α/2
µ f = hµ(y−αhµ( f )).

This is not a Laplace transform type multiplier for Hankel transforms, since y−α
=

y
∫ ∞

0
e−xyxα dx, y ∈ (0,∞) and xα is not bounded on (0,∞). The right-hand side of

(1.4) makes sense when, for instance, f belongs to the image by Hankel transform of

the space C∞
c (0,∞) of the infinitely differentiable functions on (0,∞) with compact

support (which is a dense subspace of Lp(0,∞), 1 ≤ p < ∞, see [25, Corollary 4.8]).

According to [23, Lemma 2, p. 23], we get hµ(Pµ(t, x, · ))(z) = e−tz
√

xz Jµ(xz) for

f ∈ hµ(C∞
c (0,∞)). Plancherel equality for Hankel transforms [28, Theorem 5.1-2]

allows us to write

∆
−α/2
µ f (x) =

1

Γ(α)

∫ ∞

0

tα−1

∫ ∞

0

Pµ(t, x, y) f (y) dydt, x ∈ (0,∞).

Straightforward manipulations using homogeneity lead us to see that if ∆
−α/2
µ can

be extended as a bounded operator from Lp(0,∞) into Lq,∞(0,∞), then p < q

and 1
p
− 1

q
= α. Hence it is clear that the multiplier operator ∆

−α/2
µ is bounded

neither from Lp(0,∞) into itself nor from L1(0,∞) into L1,∞(0,∞), in contrast

with the Laplace transform type multipliers for Hankel transforms. According to

[19, p. 86], 0 ≤ Pµ(t, x, y) ≤ C t
(x−y)2+t2 for t, x, y ∈ (0,∞), and we can obtain the
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Lp-boundedness properties for the negative powers ∆
−α/2
µ from the corresponding

ones for the negative powers of the Laplacian operator in one dimension.

Theorem 1.3 Let 0 < α < 1 and 1 ≤ p < q < ∞. Then the operator ∆
−α/2
µ

is a bounded operator from Lp(0,∞) into Lq(0,∞), provided that 1 < p < ∞ and
1
p
− 1

q
= α, and from L1(0,∞) into L1/(1−α),∞(0,∞).

Throughout this paper, C represents a suitable positive constant that can change

from one line to another.

2 Proof of Theorem 1.1

The following lemma will be useful in the remainder of the paper.

Lemma 2.1 For every t, x, y ∈ (0,∞), we have | d
dt

Pµ(t, x, y)| ≤ C
(x−y)2+t2 .

Proof Let t, x, y ∈ (0,∞). By considering the formula (1.3) for the Poisson kernel

Pµ, we can write

∣

∣

∣

d

dt
Pµ(t, x, y)

∣

∣

∣
≤ C(xy)µ+1/2

(
∫ π

0

sin2µ θ dθ

((x − y)2 + t2 + 2xy(1 − cos θ))µ+3/2

+

∫ π

0

sin2µ θt2 dθ

((x − y)2 + t2 + 2xy(1 − cos θ))µ+5/2

)

≤ C(xy)µ+1/2
(

∫ π/2

0

+

∫ π

π/2

) sin2µ θ dθ

((x − y)2 + t2 + 2xy(1 − cos θ))µ+3/2

= C(xy)µ+1/2(I1(t, x, y) + I2(t, x, y)).

Taking into account that sin θ ∼ θ and θ2/2 ∼ 1 − cos θ when θ ∈ [0, π/2], and

then applying the change of variables z2
=

xy
(x−y)2+t2 θ

2, we get

I1(t, x, y) ≤ C

∫ π/2

0

θ2µ dθ

((x − y)2 + t2 + xyθ2)µ+3/2

≤ C(xy)−µ−1/2

(x − y)2 + t2

∫ π
2

√
xy√

(x−y)2 +t2

0

z2µdz

(1 + z2)µ+3/2
≤ C(xy)−µ−1/2

(x − y)2 + t2
.

On the other hand, by considering the change of variable σ = π − θ and using

again that sin σ ∼ σ and σ2/2 ∼ 1 − cos σ, σ ∈ [0, π/2], we obtain

I2(t, x, y) =

∫ π/2

0

sin2µ σ dσ

((x − y)2 + t2 + 2xy(1 + cos σ))µ+3/2

≤ C

∫ π/2

0

σ2µ dσ

((x − y)2 + t2 + xyσ2)µ+3/2
≤ C

(xy)−µ−1/2

(x − y)2 + t2
.
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Proof of Theorem 1.1 Let f ∈ L2(0,∞). Our objective is to establish that

〈Tm f , g〉 =

〈

∫ ∞

0

Km(x, y) f (y) dy , g(x)
〉

,

for every g ∈ L2(0,∞) with compact support outside of the support of function f .

Using Plancherel equality for Hankel transforms [28, Theorem 5.1-2] we get

〈Tm f , g〉 =

∫ ∞

0

hµ(mhµ f )(x)g(x) dx =

∫ ∞

0

m(u)hµ( f )(u)hµ(g)(u) du

=

∫ ∞

0

u

∫ ∞

0

e−tuk(t) dthµ( f )(u)hµ(g)(u) du

=

∫ ∞

0

k(t)

∫ ∞

0

(

− d

dt

)

e−tuhµ( f )(u)hµg(u) du dt,

where, to justify the interchange of integrals in the last equality, we have used Hölder’s

inequality, the fact that hµ is an isometry in L2(0,∞), and the boundedness of the

function k, in order to see that
∫ ∞

0

|hµ( f )(u)hµ(g)(u)|
∫ ∞

0

ue−tu|k(t)| dtdu ≤ C‖hµ f ‖2‖hµg‖2 ≤ C‖ f ‖2‖g‖2.

Since for every t > 0 there exists C > 0 such that
∫ ∞

0
|ue−tuhµ( f )(u)hµ(g)(u)| du ≤

C‖ f ‖2‖g‖2, we can write

〈Tm f , g〉 =

∫ ∞

0

k(t)
(

− d

dt

)

∫ ∞

0

e−tuhµ( f )(u)hµ(g)(u) dudt.

On the other hand, we note that the functions h1(u) = e−tuhµ( f )(u) and h2(u) =√
xu Jµ(xu)e−tu, u ∈ (0,∞), belong to L2(0,∞) for every t, x ∈ (0,∞). Then the

Plancherel formula for hµ and hµ(Pµ(t, x, · ))(z) = e−tz
√

xz Jµ(xz) lead to

〈Tm f , g〉 =

∫ ∞

0

k(t)
(

− d

dt

)

∫ ∞

0

hµ(e−tuhµ f )(x)g(x) dxdt

=

∫ ∞

0

k(t)
(

− d

dt

)

∫ ∞

0

∫ ∞

0

hµ(
√

xu Jµ(xu)e−tu)(y) f (y) dyg(x)dxdt

=

∫ ∞

0

k(t)
(

− d

dt

)

∫ ∞

0

g(x)

∫ ∞

0

Pµ(t, x, y) f (y) dydxdt.

From here, we can write

〈Tm f , g〉 =

∫ ∞

0

k(t)

∫ ∞

0

g(x)
(

− d

dt

)

∫ ∞

0

Pµ(t, x, y) f (y) dydxdt

=

∫ ∞

0

k(t)

∫ ∞

0

g(x)

∫ ∞

0

(

− d

dt

)

Pµ(t, x, y) f (y) dydxdt

=

∫ ∞

0

g(x)

∫ ∞

0

f (y)Km(x, y) dydx.
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Thus, to finish the proof we have to justify the interchange of the integrals and the

differentiation under the integral sign in the above equalities. Since x ∈ supp g,

y ∈ supp f ,
∫ ∞

0
| f (y) d

dt
Pµ(t, x, y)| dy < ∞ by Hölder’s inequality and Lemma 2.1.

Since supp f ∩ supp g = ∅, Hölder’s inequality, and Lemma 2.1 give us

∫ ∞

0

∫ ∞

0

|g(x) f (y)
d

dt
Pµ(t, x, y)| dxdy ≤ C

ε2
‖g‖2‖ f ‖2,

where ε ≤ |x − y|, x ∈ supp g and y ∈ supp f . Finally, by proceeding as above we

get that

∫ ∞

0

∫ ∞

0

∫ ∞

0

|g(x)k(t) f (y)
d

dt
Pµ(t, x, y)| dydtdx

≤ C

∫ ∞

0

∫ ∞

0

|g(x)|
∫ ∞

0

| f (y)|
∫ ∞

0

dt

(x − y)2 + t2
dydx ≤ C

ε
‖g‖2‖ f ‖2.

3 Proof of Theorem 1.2.

The following result shows that the kernel Km is locally a Calderón–Zygmund kernel.

Proposition 3.1 Let b > 1. There exists C > 0 such that for every x, y ∈ (0,∞),

x 6= y

(i) |Km(x, y)| ≤ C
|x−y| .

(ii) |∂xKm(x, y)| + |∂yKm(x, y)| ≤ C
|x−y|2 , provided that 1

b
≤ y ≤ bx.

Proof Since k is a bounded function on (0,∞), by using Lemma 2.1 we get

|Km(x, y)| =

∣

∣

∣

∫ ∞

0

k(t)
(

− d

dt

)

Pµ(t, x, y) dt
∣

∣

∣

≤ C

∫ ∞

0

1

(x − y)2 + t2
dt ≤ C

|x − y| .

Let b > 1. To analyze the estimate in (ii) we consider the expression (1.3) for Poisson

kernel Pµ and write Km in the following form:

Km(x, y) = −2µ + 1

π
(xy)µ+1/2

∫ ∞

0

k(t)

(
∫ π

0

sin2µ θdθ

((x − y)2 + t2 + 2xy(1 − cos θ))µ+3/2

− (2µ + 3)t2

∫ π

0

sin2µ θdθ

((x − y)2 + t2 + 2xy(1 − cos θ))µ+5/2

)

dt.
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Note that by symmetry it is sufficient to study the term ∂xKm. Assume that x, y ∈
(0,∞), x 6= y, and 1

b
x ≤ y ≤ bx. Differentiating under the integral sign, we obtain

∂xKm(x, y) = (µ + 1/2)
Km(x, y)

x
+

(2µ + 1)(2µ + 3)

π
(xy)µ+1/2×

×
∫ ∞

0

k(t)

[
∫ π

0

(x − y cos θ) sin2µ θ dθ

((x − y)2 + t2 + 2xy(1 − cos θ))µ+5/2

−
∫ π

0

(2µ + 5)t2(x − y cos θ) sin2µ θdθ

((x − y)2 + t2 + 2xy(1 − cos θ))µ+7/2

]

dt

= I1(x, y) + I2(x, y) + I3(x, y).

When 1
b
x ≤ y ≤ bx, we have |x − y| ≤ Cx. Then the estimate in (i) gives that

|I1(x, y)| ≤ C
x|x−y| ≤ C

|x−y|2 . To analyze I j(x, y), j = 2, 3, we observe first that

|I j(x, y)| ≤ CI(x, y), j = 2, 3, where

I(x, y) = (xy)µ+1/2

∫ π

0

|x − y cos θ| sin2µ θ

×
∫ ∞

0

dtdθ

((x − y)2 + t2 + 2xy(1 − cos θ))µ+5/2
.

If θ ∈ [0, π], by making the change of variables t2
= ((x − y)2 + 2xy(1 − cos θ))u2,

it is easy to see that
∫ ∞

0

1

((x − y)2 + t2 + 2xy(1 − cos θ))µ+5/2
dt =

Cµ

((x − y)2 + 2xy(1 − cos θ))µ+2
,

being Cµ =
∫ ∞

0
1

(1+u2)µ+5/2 du. Then since |x − y| ≤ C y,

|I(x, y)| ≤ C(xy)µ+1/2

∫ π

0

sin2µ θ|x − y cos θ| dθ

((x − y)2 + 2xy(1 − cos θ))µ+2
≤ C( J1(x, y) + J2(x, y)),

where by the change of variables σ = π − θ, θ ∈ [π/2, π]. Then by using sin z ∼ z,

1 − cos z ∼ z2/2, z ∈ [0, π/2], we have

J1(x, y) = (xy)µ+1/2|x − y|
∫ π

0

sin2µ θ

((x − y)2 + 2xy(1 − cos θ))µ+2
dθ

≤ C(xy)µ+1/2|x − y|

×
∫ π/2

0

sin2µ θ

(

1

((x − y)2 + 2xy(1 − cos θ))µ+2

+
1

((x − y)2 + 2xy(1 + cos θ))µ+2

)

dθ

≤ C(xy)µ+1/2|x − y|
∫ π/2

0

θ2µ

((x − y)2 + xyθ2)µ+2
dθ.
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The change of variables σ2
=

xy
|x−y|2 θ

2 leads to J1(x, y) ≤ C|x − y|−2. Also, by

proceeding in a similar way and taking into account that |x − y| ≤ Cx, we get

J2(x, y) = (xy)µ+1/2 1

x

∫ π

0

sin2µ θ

((x − y)2 + 2xy(1 − cos θ))µ+1
dθ ≤ C

|x − y|2 .

Proof of Theorem 1.2 Let ϕ be a smooth function on (0,∞)× (0,∞) with support

in the region Ω = {(x, y) ∈ (0,∞) × (0,∞) : x
3
≤ y ≤ 3x}, such that 0 ≤

ϕ ≤ 1, ϕ(x, y) = 1, when x, y ∈ (0,∞), x
2

< y < 2x, and satisfying |∂xϕ(x, y)| +

|∂yϕ(x, y)| ≤ C
|x−y| , x 6= y.

We define operators

Tglob
m f (x) =

∫ ∞

0

Km(x, y)(1−ϕ(x, y)) f (y) dy, T loc
m f (x) = Tm f (x)−Tglob

m f (x).

Let us analyze first the operator T
glob
m . We can write, for x ∈ (0,∞),

Tglob
m f (x) =

(

∫ x/2

0

+

∫ ∞

2x

)

Km(x, y)(1 − ϕ(x, y)) f (y) dy = T
glob
m,1 f (x) + T

glob
m,2 f (x).

We observe that |x − y| ∼ x when y ≤ x/2, and |x − y| ∼ y when y ≥ 2x. These

estimates and Proposition 3.1(i) allow us to write

|Tglob
m,1 f (x)| ≤ CH1(| f |)(x), |Tglob

m,2 f (x)| ≤ CH2(| f |)(x),

H1 and H2 being the classical Hardy operators defined by

H1( f )(x) =
1

x

∫ x

0

f (x) dx and H2( f )(x) =

∫ ∞

x

f (y)

y
dy, x ∈ (0,∞).

It is well known that Hardy operators are bounded from Lp(w) into itself for

1 < p < ∞ and from L1(w) into L1,∞(w), when w belongs to the Muckenhoupt

class of weights Ap(0,∞) on ((0,∞), dx) (see [1, 18]). Then the global part T
glob
m

verifies the assertion of theorem.

Let us now study the operator T loc
m . We observe first that since hµ is an isometry of

L2(0,∞), the operator Tm is a bounded operator from L2(0,∞) into itself. Moreover,

we have just seen that T
glob
m is a bounded operator from L2(0,∞) into itself. Then also

T loc
m is a bounded operator from L2(0,∞) into itself.

On the other hand, T loc
m is a Calderón–Zygmund operator with kernel

Km(x, y)ϕ(x, y). In fact, by taking into account Proposition 3.1 and the imposed

conditions on function ϕ, we have for every x, y ∈ (0,∞), x 6= y,

|Km(x, y)ϕ(x, y)| ≤ C

|x − y| ,

|∂x(Km(x, y)ϕ(x, y))| + |∂y(Km(x, y)ϕ(x, y))| ≤ C

|x − y|2 .
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Classical Calderón–Zygmund theory gives that T loc
m is bounded from Lp(w) into itself

for 1 < p < ∞, and from L1(w) into L1,∞(w), provided that w belongs to the

Muckenhoupt class of weights Ap(0,∞) on ((0,∞), dx). This completes the proof of

the theorem.

To finish, we would like to comment that after having proved Proposition 3.1, the

boundedness of the local part T loc
m also can be seen by using [20, Proposition 4.2].
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