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Laplace Transform Type Multipliers for
Hankel Transforms

Jorge J. Betancor, Teresa Martinez, and Lourdes Rodriguez-Mesa

Abstract. In this paper we establish that Hankel multipliers of Laplace transform type are bounded
from LP(w) into itself when 1 < p < oo, and from L!(w) into L:°°(w), provided that w is in the
Muckenhoupt class A? on ((0, c0), dx).

1 Introduction

If m is a bounded measurable function on (0, co0) we define the multiplier operator
for the Hankel transform associated with m by

(11) Tmf = h/L(Mhu(f))-

Here h,(f)(x) = fOOO VXy Ju(xy) f(y) dy is the Hankel transform defined by [28],
where J, denotes, as usual, the Bessel function of the first kind and order 1. Through-
out this paper we will always assume that ;1 > —1/2. Since h, is an isometry of
L%(0, 00) [26, Ch. VIII], T,, is a bounded operator from L?(0, o) into itself. Condi-
tions on the function m can be specified in order that T, maps boundedly L?-type
spaces. Guy [14] established the first results on multipliers for Hankel transforms.
More recently, Gosselin and Stempak [13], Betancor and Rodriguez-Mesa [4] and
Kapelko [16, 17] obtained Mihlin—-H6rmander type multipliers theorems for Han-
kel transforms. Also in [4], a Hankel version of a result of Cérdoba and Fefferman
[7] concerning the boundedness of multipliers on weighted L?-spaces was estab-
lished. Results on multipliers for Hankel transforms on Hardy spaces were shown
in [3]. Other classes of results about multipliers for Hankel transforms were proved
by Gasper and Trebels [8—12].
If f is a suitable function, it is easy to see by partial integration that

(1.2) (A f) () = £ hy,(f) (%),

where A, denotes the Bessel operator A, = —x~#~1/2Dx*1Dx~#=1/2_ This oper-
ator A, is positive and self-adjoint in L*(0, 00). According to (1.1) and (1.2) we can
formally write that T, f = m(A,l/ 2) f.

In this paper we investigate the L?-boundedness of the multiplier T,, when m is
of Laplace transform type, i.e., m(x) = xfooo e *k(t) dt, x € (0,00), where k is a
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bounded measurable function in (0, cc0). Following Stein [22], we say that T, is a
Hankel multiplier of Laplace transform type.

We obtain a representation for T}, involving Poisson kernel associated with the
operator A,. For every x € (0, 00), the function ¢.(y) = /Xy ].(xy), y € (0,00), is
an eigenfunction of A, since A, px(y) = Y20.(¥), y € (0,00). Hence the Poisson
kernel in the A ,-setting (see [27] and [19, (16.4)]) is defined by

(1.3)
Pu(t,x,y) = / e "/xz],(x2)\/yZ],(yz) dz
0

21T t(xy)"*1/2 sin* 0
T Jy [(x— )2+ 2 +2xy(1 — cosB)]#+3/2

do, t,x,y € (0,00).

The corresponding Poisson integrals were studied by Philipp [21]. We get the follow-
ing representation for the Hankel multiplier T}, as an integral operator including P,
in its kernel.

Theorem 1.1 Let T,, be a Hankel multiplier of Laplace transform type. For every
f € L*(0,00) and x ¢ supp f,

o0 oo d
Tuf0) = [ Kue Sy Katwon) = [ k(=) Butx e
0 0

In [2] some operators of harmonic analysis associated to A, were investigated
using Calderén-Zygmund theory. These were inspired by the studies of Mucken-
houpt and Stein about Riesz transforms associated with the Bessel type operator
S, = —x #7'Dx**1D. In Section 3 we establish that the kernel K,, of the Han-
kel multiplier T, is a Calderon—Zygmund kernel in the region = {(x,y) : 0 <
x/b < y < bx} forall b > 1. Moreover |K,;(x,y)| < C/xwhen 0 < y < x/2,
and |K,(x, y)| < C/y when 2x < y. Calder6n—Zygmund theory of singular inte-
grals and the boundedness properties of Hardy operators give the strong type (p, p),
1 < p < 00, and the weak type (1, 1), as stated in the following theorem, which is the
main result of this paper. Here A, (0, 00), 1 < p < oo, represents the Muckenhoupt
class of weights on ((0, c0), dx).

Theorem 1.2 Let1 < p < ocoand w € A,(0,00). Suppose that m is a function of
Laplace transform type. Then the Hankel multiplier operator T,, is bounded from LP (w)
into itself, 1 < p < oo, and from L' (w) into L1>°(w).

Similar results for 1 < p < oo were proved in quite general settings [22]. To use
[22, p. 58], we need the compactness of the space and that the derivative operator
commutes with A . It is required that the Poisson semigroup be markovian, that
is, that it map constants into constants [22, p. 121]. None of these conditions are
satisfied in our case. Indeed, in the A,-setting the Poisson semigroup P, is defined
(21] by

Pu(F)(tx) = / Pt ) () dy, tx € (0,00).
0
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According to [5, Remark 2.5], if f € L®°(0, 00), then the function u = P,(f) is a
solution of the Laplace type equation 8*/9t*u — A,u = 0. In particular this happens
when f = X(0,00), the indicator function of (0, 00). However, it is clear that con-
stant functions do not verify the last partial differential equation. Hence the Poisson
semigroup P, is not markovian.

On the other hand, as was mentioned by Nowak and Stempak [20], by using trans-
plantation theorems for Hankel transforms [14] we are able to derive LP-bounded-
ness results for Hankel multipliers by applying known results for Fourier multipliers
(adapted to the cosine Fourier transform, for instance). However, using this trans-
plantation procedure, the weak type results established in Theorem 1.2 cannot be ob-
tained. Moreover, weighted L?-boundedness for Hankel multipliers cannot be estab-
lished by transference from boundedness results for multipliers with respect to other
orthogonal systems (Jacobi [15], Laguerre [24] or Bessel [6] functions) for general
A,-weights.

A remarkable particular case of Hankel multipliers of Laplace transform type are
the imaginary powers Ai}, A € R, defined by AiMf = h,(y**h,(f)). Note that
yHAD(1 — 2i)) = yfooo e 7't27dt, y € (0,00). A straightforward corollary from
Theorem 1.2 is the following.

Corollary 1.1 Let1 < p < 0o, A € Rand w € A,(0,00). Then the imaginary
power AL’\ of A, is bounded from LP (w) into itself when 1 < p < oo, and from L' (w)
into LY (w) when p = 1.

The situation is different when we consider the negative powers A;a/ 0<a<l,
defined through

(1.4) AP = hy(y ().

This is not a Laplace transform type multiplier for Hankel transforms, since y =% =
y fooo e x“dx, y € (0,00) and x“ is not bounded on (0, 00). The right-hand side of
(1.4) makes sense when, for instance, f belongs to the image by Hankel transform of
the space C2°(0, 0o) of the infinitely differentiable functions on (0, 0o) with compact
support (which is a dense subspace of L (0, 00), 1 < p < 00, see [25, Corollary 4.8]).
According to [23, Lemma 2, p. 23], we get h,(P,(t,x, -))(z) = e *y/xz],(xz) for
f € hu(C2°(0,00)). Plancherel equality for Hankel transforms [28, Theorem 5.1-2]
allows us to write

A;“/zf(x): ﬁ/{) t“_l/o P,(t,x,y)f(y)dydt, x € (0,00).

Straightforward manipulations using homogeneity lead us to see that if A;a/ ® can

be extended as a bounded operator from L?(0, c0) into L2°°(0, 00), then p < ¢
and % — é = «. Hence it is clear that the multiplier operator A;a/ ? is bounded

neither from L?(0, 0o) into itself nor from L'(0, 00) into L1°°(0, c0), in contrast
with the Laplace transform type multipliers for Hankel transforms. According to

[19, p. 86],0 < P,(t,x,y) < Cm for t,x,y € (0,00), and we can obtain the
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LP-boundedness properties for the negative powers A;“/ ? from the corresponding
ones for the negative powers of the Laplacian operator in one dimension.

Theorem 1.3 Let0 < o < land1 < p < q < oo. Then the operator A;a/z
is a bounded operator from LF(0, 00) into L1(0, 00), provided that 1 < p < oo and

% - é = q, and from L'(0, o0) into L'/(1=9-2°(0, c0).

Throughout this paper, C represents a suitable positive constant that can change
from one line to another.

2 Proof of Theorem 1.1

The following lemma will be useful in the remainder of the paper.

Lemma 2.1 Foreveryt,x,y € (0,00), we have |%Pﬂ(t,x, )| < (X_y%

Proof Lett,x,y € (0,00). By considering the formula (1.3) for the Poisson kernel
P, we can write

sin* 0 df
(x — )2 + 12+ 2xy(1 — cos §))r+3/2

d ™
“ < u+1/2
artes| < corn( [

. /’T sin?* 02 do
o ((x— )2 +1t2+2xy(1 — cos))r+5/2

/2 ™ in?* 0do
e pe1/2 / / sin
< Clop o ﬂ/z) ((x = p)> + £ + 2y(1 — cos )3/

= Clxey)™ V21 (1, %, y) + L(t, x, y)).

Taking into account that sin @ ~ 6 and 6%/2 ~ 1 — cos when 6 € [0, 7/2], and

then applying the change of variables z> = (x_’;ﬁé’z, we get
/2 0% do
L(t <C
(%, 7) < /0 (ST

o Syt /% 2 Clay)
> (x_)/)2+t2 0 (1+Z2)u+3/2 —_ (x—y)2+t2'

On the other hand, by considering the change of variable 0 = 7 — # and using
again thatsino ~ 0 and 6?/2 ~ 1 — cos o, o € [0, /2], we obtain

Lt.x )_/W/2 sin* o do

2H%5Y) = o ((x— )2+ 12+ 2xy(1 + cos o))r+3/2
_ C/ﬂ'/Z o2t do - (xy)—;L—l/Z
o (k= y)2+ 2+ xyo?)rt2 T T (x— y)2 412

https://doi.org/10.4153/CMB-2008-049-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2008-049-3

Laplace Transform Type Multipliers for Hankel Transforms 491

Proof of Theorem 1.1 Let f € L?(0, 00). Our objective is to establish that

(i) = (| Katwn)f)dy ).

for every ¢ € L*(0, 00) with compact support outside of the support of function f.
Using Plancherel equality for Hankel transforms [28, Theorem 5.1-2] we get

(Tof.g) = /0 By (b ) (x)g () dx = /0 (), () (1)) (1) di
:/ u/ e "k(t) dthﬂ(f)(u)hﬂ(g)(u) du
0 0

o0 o0 d
- /0 () / (— %) e Pyt dut,

where, to justify the interchange of integrals in the last equality, we have used Holder’s
inequality, the fact that h,, is an isometry in L?(0, 00), and the boundedness of the
function k, in order to see that

| on@wl [ e ko] drdu < £l < CI7Elgl
0 0

Since for every ¢t > 0 there exists C > 0 such that [~ [ue™"h,,(f)(u)h,,(g) ()| du <
Cll fl2llgll2; we can write

<Tmf,g>=/0 k(t)( jt) /OOe_t”hﬂ(f)(u)hu(g)(u)dudt.

On the other hand, we note that the functions h;(u) = e~ "h,(f)(u) and hy(u) =
VaxuJ,(xu)e™™, u € (0,00), belong to L*(0, 0o) for every t,x € (0,00). Then the
Plancherel formula for h, and h,,(P,(t, x, - ))(z) = e~ "*\/xz],(xz) lead to

OO d > —tu
<Tmf,g>:/0 k(t)(—a)/o hy(e™"hy f)(x)g(x) dxdt

- / ko) / / (Vi Gea)e™) () £ () dyg ()t
0

© d
:/0 k(t)(—a)/o g(x)A Pu(t,xa)’)f()’)d)’dxdt-

From here, we can write

(Tnf,8) = / k(t) / g(x) - / P,(t,x,y)f(y) dydxdt
0
- / ko) / ¢(x) / ) Pult, % ) () dyds

- / ¢(x) / () Kn(x, ) dydx.
0 0
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Thus, to finish the proof we have to justify the interchange of the integrals and the
differentiation under the integral sign in the above equalities. Since x € suppg,
y €supp f, [~ |f(»)LP,(t,x,y)|dy < oo by Holder’s inequality and Lemma 2.1.
Since supp f N supp g = &, Holder’s inequality, and Lemma 2.1 give us

[ [ iseorongpatexplasdy < Slglll I
0 0

where ¢ < |x — y|, x € suppg and y € supp f. Finally, by proceeding as above we
get that

/ / / |g(x)k(t)f(y)%Pu(t,x7 y)| dydtdx

C
<c [7 [l [l [ o e < Sl m

3 Proof of Theorem 1.2.

The following result shows that the kernel K,,, is locally a Calderén—-Zygmund kernel.

Proposition 3.1 Letb > 1. There exists C > 0 such that for every x,y € (0, 00),
X7y

(1) [Knlx, )| < \x iR

(i) |0cKim(x, y)| + [0, Kin(x, y)| < ﬁ,provided that ; < y < bx.

Proof Since k is a bounded function on (0, c0), by using Lemma 2.1 we get

IKon(x, )| = ’/ k(t) )Pﬂ(t %, 9) dt‘

o 1 C
gc/ > 2dt§ .
o (x—y)+t lx — yl

Let b > 1. To analyze the estimate in (ii) we consider the expression (1.3) for Poisson
kernel P, and write K, in the following form:

2 1 e
mmw:—i¢4wwm/ ko)
7T 0

/ sin®* 0d6
o ((x— )2 +12 +2xy(1 — cos §))n+3/2
s 20
sin" 0d0
— (2u+3)t? 0t
(Gr+d) /0 ((x—yp)2+t2+2xy(1 —cos€))ﬂ+5/2)
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Note that by symmetry it is sufficient to study the term 0,K,,. Assume that x,y €
(0, 00), x # y,and %x < y < bx. Differentiating under the integral sign, we obtain

Kn(x, y) N (2pu+1)(2p+3)
X

o] i _ s 2
o / k(1) / (x — y cos@)sin” 0do
0 o ((x— )2 +12 4 2xy(1 — cosf))r+5/2
T (2u+5)t2(x — y cos b)) sin* 0d
o ((x— )2 +12+2xy(1 — cos0))1+7/2

O Koy (x, )/) =(p+ 1/2) (xy);tﬂ/zx

=1L(x,y) +L(x,y) + L(x,y).

When %x < y < bx, we have |x — y| < Cx. Then the estimate in (i) gives that
IL(x,y)| < ﬁ < ﬁ To analyze Ii(x,y), j = 2,3, we observe first that
[Ij(x,y)| < CI(x,y), j = 2,3, where

I(x,y) = (xy)“’H/Z/ |x — y cos 6] sin® 0
0

o /OO dtdo
o ((x— )2+ 12+ 2xy(1 — cosf))m+3/2’

If 0 € [0, 7], by making the change of variables t* = ((x — y)? + 2xy(1 — cos 6))u?,
it is easy to see that

dt = L
/0 ((x — )2 + 12 + 2xy(1 — cos 0))1+5/2 ((x — y)? + 2xy(1 — cos ) )r+2’
being C,, = [ s du. Then since [x — y| < Cy,

T+u2)i+s/2

™ sin¥flx — ycosd| df
I(x, )] < Clxy)/? sin” f]x — y cos 0]

o ((x— )2 +2xy(1 — cosf))r+2 < Clhbey) + Rl p)),

where by the change of variables 0 = 7 — 6, 6 € [7/2,7]. Then by using sinz ~ z,
1 —cosz ~ z*/2,z € [0,7/2], we have

sin* @
¥)? + 2xy(1 — cos §))++2

o 1,+1/2 _ "
Ji(x, y) = (xy) 7 x yl/0 o

S C(xy);t+1/2|x _ )/|

/2 1
s 2 A
x /0 sm ( (x = )% + 2xp(1 — cos B))i+2

+ ! dag
((x — y)? + 2xy(1 + cos ) )12

o do
x— y)? +xyf2)p2

/2
S C(xy)’”1/2|x—y|/
o ((
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The change of variables o> —2L-0% leads to Ji(x,y) < Clx — y|~%. Also, by

= P
proceeding in a similar way and taking into account that |x — y| < Cx, we get

1 [T sin*" 9 C
— p+1/2 2 dg < .
L(x,y) = (xp) X /0 ((x — )2 + 2xy(1 — cos §))r+! = |x _ }’|2

Proof of Theorem 1.2 Let ¢ be a smooth function on (0, c0) x (0, co) with support
in the region @ = {(x,y) € (0,00) x (0,00) : 5 < y < 3x}, such that 0 <
© <1, 0(x,y) = 1,whenx,y € (0,00), 3 < y < 2x, and satisfying [D.¢(x, y)| +
10y, Y| < 6 # 5.

We define operators

TH f(x) = / Kin(x, ) 1=, y) f(1) dy, Tt f(x) = T f0) = TS f ().
0

Let us analyze first the operator T;‘gnk’b. We can write, for x € (0, 00),

glob _ =/ > _ __ pglob glob
T = ([ + [ ) Kl (0= gl ) f() dy = T F) + T £,
0 2x

We observe that [x — y| ~ x when y < x/2, and |x — y| ~ y when y > 2x. These
estimates and Proposition 3.1(i) allow us to write

ITEPf(0)] < CH(|fD&),  |TEY f(x)] < CHL(|f(),

H, and H, being the classical Hardy operators defined by

Hl(f)(x):)—lc/ f(x)dx and Hz(f)(x):/ %d}/, x € (0, 00).
0 X

It is well known that Hardy operators are bounded from L?(w) into itself for
1 < p < oo and from L!(w) into L""*°(w), when w belongs to the Muckenhoupt
class of weights A,(0,00) on ((0,00), dx) (see [1,18]). Then the global part Trgnlob
verifies the assertion of theorem.

Let us now study the operator T'%°. We observe first that since /1, is an isometry of
L%(0, c0), the operator T, is a bounded operator from L?(0, co) into itself. Moreover,
we have just seen that T8 is a bounded operator from L?(0, co) into itself. Then also
Tlfjc is a bounded operator from L2(0, co) into itself.

On the other hand, T¢ is a Calderén-Zygmund operator with kernel
Ku(x, y)p(x, y). In fact, by taking into account Proposition 3.1 and the imposed
conditions on function ¢, we have for every x, y € (0, 00), x # ¥,

C
|Kon(x, y)p(x, )| < ——,
lx — yl

C
|0 (Ko (%, y)p(x, )| + [0y (Kin (2, y)p(x, )| < =y
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Classical Calderén—Zygmund theory gives that T'¢ is bounded from L” (w) into itself
for 1 < p < oo, and from L!'(w) into LV*°(w), provided that w belongs to the
Muckenhoupt class of weights A, (0, oo) on ((0, 00), dx). This completes the proof of
the theorem. [ |

To finish, we would like to comment that after having proved Proposition 3.1, the
boundedness of the local part T!°¢ also can be seen by using [20, Proposition 4.2].
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