ON MINIMAL SETS OF GENERATORS FOR PRIMITIVE ROOTS

FRANCESCO PAPPALARDI

ABSTRACT. A conjecture of Brown and Zassenhaus (see [2]) states that the first \(\log p \) primes generate a primitive root \(\pmod{p} \) for almost all primes \(p \). As a consequence of a Theorem of Burgess and Elliott (see [3]) it is easy to see that the first \(\log^2 p \log \log^4 p \) primes generate a primitive root \(\pmod{p} \) for almost all primes \(p \). We improve this showing that the first \(\log^2 p / \log \log^4 p \) primes generate a primitive root \(\pmod{p} \) for almost all primes \(p \).

For a given odd prime number \(p \), we define the function \(\kappa \) as

\[
\kappa(p) = \min\{r \mid \text{the first } r \text{ primes generate } F^*_p\}.
\]

In 1969, H. Brown and H. Zassenhaus conjectured in [2] that \(\kappa(p) \leq \lceil \log p \rceil \) with probability almost equal to one.

If we denote by \(g(p) \) the least primitive root modulo \(p \), then a Theorem of D. A. Burgess and P. D. T. A. Elliott states that

\[
\pi(x)^{-1} \sum_{p \leq x} g(p) \ll \log^2 x (\log \log x)^4.
\]

If \(U \) is the number of primes up to \(x \) for which \(g(p) \geq T \), then

\[
U T \ll \sum_{p \leq x} g(p) \ll \pi(x) \log^2 x (\log \log x)^4.
\]

For any \(\epsilon > 0 \), we choose \(T = \log^2 x (\log \log x)^{4+\epsilon}/2 \) so that \(U = o(\pi(x)) \) and since \(g(p) \leq T \) is product of primes less that \(T \), we deduce that for almost all primes \(p \leq x \),

\[
\kappa(p) \leq \log^2 x (\log \log x)^{4+\epsilon}/2 \leq \log^2 p (\log \log p)^{4+\epsilon}.
\]

We will prove the following:

THEOREM 1. Let \(\pi \) be the prime counting function. For all but

\[
O\left(\frac{x}{\exp\left\{ \frac{1}{4(\log \log x)} \right\}} \right)
\]

of the primes \(p \leq x \),

\[
\kappa(p) \leq \log^2 x (\log \log x)^{4+\epsilon}/2 \leq \log^2 p (\log \log p)^{4+\epsilon}.
\]
primes \(p \leq x \), we have that
\[
\kappa(p) \leq \pi \left(\frac{\log^2 p}{e^2} \exp \left\{ 2 \frac{(\log \log \log p)^3}{(\log \log p)^2} \right\} \right).
\]

The proof is based on a uniform estimate for the size of the set
\[
\mathcal{H}_{m,r}(x) = \# \left\{ p \leq x \mid |\Gamma_r| = \frac{p - 1}{m} \right\}
\]
where \(m \) and \(r \) are given integers strictly greater than one, and
\[
\Gamma_r = \langle p_1, \ldots, p_r \pmod{p} \rangle
\]
is the subgroup of \(\mathbb{F}_p^* \) generated by the first \(r \) primes.

As a subgroup of the cyclic group \(\mathbb{F}_p^* \) with index \(m \), \(\Gamma_r \) is the subgroup of \(m \)-th powers \((\mod{p})\). Hence
\[
\mathcal{H}_{m,r}(x) = \{ p \leq x \mid p \equiv 1 \pmod{m} \text{ and } p_i \text{ is an } m\text{-th power } (\mod{p}) \forall i = 1, \ldots, r \}.
\]

If \(n_m(p) \) is the least prime which is not congruent to an \(m \)-th power \((\mod{p})\), then we can also write:
\[
\mathcal{H}_{m,r}(x) = \{ p \leq x \mid p \equiv 1 \pmod{m} \text{ and } n_m(p) > p_r \}.
\]

We will need to use the large sieve inequality, the proof of which can be found in [1]. That is:

Lemma 2 (The Large Sieve). Let \(\mathcal{N} \) be a set of integers contained in the interval \(\{1, \ldots, z\} \) and for any prime \(p \leq x \), let \(\Omega_p = \{ h \pmod{p} \mid \forall n \in \mathcal{N}, n \neq h \pmod{p} \} \) and
\[
L = \sum_{q \leq x} \mu^2(q) \prod_{p|q} \frac{\Omega_p}{p - |\Omega_p|},
\]
then
\[
|\mathcal{N}| \leq \frac{z + 3x^2}{L}.
\]

In our case, let \(\mathcal{N} = \{ n \leq z \mid \forall q|n, q < p_r \} \) and note that if \(p \in \mathcal{H}_{m,r}(x) \), then
\[
\Omega_p \supset \{ h \pmod{p} \mid h \text{ is not an } m\text{-th power } (\mod{p}) \}
\]
therefore, for such \(p \)'s, \(|\Omega_p| \geq p - 1 - (p - 1)/m \) and
\[
L \geq \sum_{p \in \mathcal{H}_{m,r}(x)} \frac{|\Omega_p|}{p - |\Omega_p|} \geq \frac{m - 1}{2} |\mathcal{H}_{m,r}(x)|.
\]

If we let \(\Psi(s, t) \) denote the number of integers \(n \leq s \) free of prime factors exceeding \(t \), then
\[
\mathcal{H}_{m,r}(x) \leq \frac{8x^2}{(m - 1)\Psi(x^2, p_r)}.
\]

Estimating the function \(\Psi(x, y) \) is a classical problem in Number Theory. In 1983, R. Canfield, P. Erdős and C. Pomerance (see [4]) proved the following:
LEMMA 3. Let $u = \frac{\log z}{\log y}$. There exists an absolute constant c_1 such that

$$\Psi(z, y) \geq z \exp \left\{ -u \left(\log u + \log \log u - 1 + \frac{(\log \log u) - 1}{\log u} + c_1 \frac{1}{\log^2 u} \right) \right\},$$

for all $z \geq 1$ and $u \geq e^e$.

Applying Lemma 3 with $z = x^2$ and $y = p_r$, we get the following:

LEMMA 4. Let $u = 2 \log x / \log p_r$. There exists an absolute constant c_1 such that

$$\mathcal{H}_{m,r}(x) \leq \frac{8}{m} \exp \left\{ u \left(\log u + \log \log u - 1 + \frac{(\log \log u) - 1}{\log u} + c_1 \frac{1}{\log^2 u} \right) \right\},$$

for all $x \geq 1$ and $u \geq e^e$.

PROOF OF THEOREM 1. Let us take p_r is the range

$$\log^2 x \geq p_r \geq \frac{\log^2 x}{e^2} \exp \left\{ \frac{(\log \log \log x)^3}{(\log x)^2} \right\}.$$

If we set $\log_2 x = \log x$, $\log_3 x = \log \log x$ and $u = 2 \log x / \log p_r$, then we can write the estimates:

$$\log x \leq u \leq \frac{\log x}{\log_2 x - 1 + \log_3 x / 2 \log_2 x};$$

$$\log_2 x - \log_3 x \leq \log u \leq \log_2 x - \log_3 x + \frac{1}{\log_2 x};$$

$$\log_2 u \leq \log_3 x - \frac{\log_3 x}{\log_2 x} + c_2 \frac{\log_3^2 x}{\log_2 x};$$

$$\frac{1}{\log_2 x} - \frac{2}{\log_3^2 x} \leq \frac{1}{\log u} \leq \frac{1}{\log_2 x} + c_3 \frac{\log_3 x}{\log_2 x},$$

where c_2 and c_3 are absolute constants.

Now let us apply Lemma 4 and deduce that

$$m \mathcal{H}_{m,r}(x) \ll \exp \left\{ \log x \frac{\log_2 x - 1 + c_4 \frac{\log_3 x}{\log_2 x}}{\log_2 x - 1 + \log_3 x / 2 \log_2 x} \right\}$$

$$\ll \exp \left\{ \log x \left(1 - \frac{\log_3 x}{2 \log_2 x} + c_5 \frac{\log_3^2 x}{\log_2^2 x} \right) \right\}$$

where c_4 and c_5 are absolute constants.

Now we are ready to estimate

$$\# \{ p \leq x \mid [\Gamma_p^* : \Gamma_r] > 1 \}.$$

We note that the index $[\Gamma_p^* : \Gamma_r]$ is at most x as it is a divisor of $p - 1$.

https://doi.org/10.4153/CMB-1995-068-4 Published online by Cambridge University Press
Since for all but $O\left\{ \frac{\log x}{\log \log x} \right\}$ primes p, we may assume that

$$p > x / \exp(2 \log x / \log \log x),$$

if we set $p_r > x / \exp(2 \log_p^3 x / \log_p^2 x)$ then p_r is in the range of (1) and by (2) the number of such primes p for which $[F_p^* : \Gamma_r] > 1$ is

$$\ll \sum_{m=2}^{x} h_m(x) \leq \left(\sum_{m=2}^{x} \frac{1}{m} \right) \exp \left\{ \log x \left(1 - \frac{\log^3 x}{2 \log^2 x} + c_5 \left(\frac{\log^2 x}{\log^3 x} \right) \right) \right\} = O\left(\frac{x}{\exp\left(\frac{\log x \log^3 x}{4 \log^2 x} \right)} \right)$$

and this completes the proof.

ACKNOWLEDGMENTS. A version of Lemma 4 has been proven recently also by S. Konyagin and C. Pomerance in [5].

I would like to thank Professor Ram Murty for his suggestions and for a number of interesting observations.

REFERENCES

Dipartimento di Matematica
Terza Università degli Studi di Roma
Via Corrado Segre, 4
Roma
00146–Italia
e-mail: pappa@mat.uniroma3.it