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ON MINIMAL SETS OF GENERATORS 
FOR PRIMITIVE ROOTS 

FRANCESCO PAPPALARDI 

ABSTRACT. A conjecture of Brown and Zassenhaus (see [2]) states that the first log/? 
primes generate a primitive root (mod p) for almost all primes p. As a consequence of 
a Theorem of Burgess and Elliott (see [3]) it is easy to see that the first log2 p log log4+e p 
primes generate a primitive root (mod p) for almost all primes p. We improve this 
showing that the first log2/?/ log log/? primes generate a primitive root (mod /?) for 
almost all primes /?. 

For a given odd prime number/?, we define the function K as 

K,(p) = min{r | the first r primes generate F*}. 

In 1969, H. Brown and H. Zassenhaus conjectured in [2] that n(p) < [log/?] with 
probability almost equal to one. 

If we denote by g(p) the least primitive root modulo /?, then a Theorem of D. A. Burgess 
and P. D. T. A. Elliott states that 

K(X)~{ Y,8(P) < log2x(loglog:c)4. 
P<x 

If U is the number of primes up to x for which g(p) > T, then 

W < £ g(p) < TT(X) log2;c(log logJC)4. 

For any e > 0, we choose T = log2jc(loglogx)4+6/2 so that U = O(TT(X)) and since 
gip) < T is product of primes less that T, we deduce that for almost all primes/? < JC, 

K(P) < log^loglogjc)4^2 < log2/?(loglog/?)4+€. 

We will prove the following: 

THEOREM 1. Let ir be the prime counting function. For all but 

of x- ) 
vexp 
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primes p <x, we have that 

The proof is based on a uniform estimate for the size of the set 

_p-\ ^4,r(x) = #|p <x | |rr| 
m 

where m and r are given integers strictly greater than one, and 

Tr = {pu...,pr (mod/?)) 

is the subgroup of F* generated by the first r primes. 
As a subgroup of the cyclic group F* with index m, Vr is the subgroup of m-th powers 

(mod/?). Hence 

HnAx) ~ {p < x I P = 1 (mod m) and/?/ is an m-th power (mod p)\fi= 1 , . . . , r}. 

If nm(p) is the least prime which is not congruent to an m-th power (mod /?), then we 
can also write: 

HnAx) = \P < x I P = 1 (m°d rn) and wm(/?) > pr}. 

We will need to use the large sieve inequality, the proof of which can be found in [1]. 
That is: 

LEMMA 2 (THE LARGE SIEVE). Let 9^ be a set of integers contained in the interval 
{ 1 , . . . ,z} and for any prime p < x, let flp = {h (mod p) | V« G !A£, n ^k h (mod /?)} 
and 

q<x p\qP \llP\ 

then 

, r, ^ z + 3x2 

\*c\ < — ^ -
In our case, let fA£ = \n < z | V#|A2, </ < /?r} and note that if/? G HnAx)>tnen 

Qp D {/* (mod /?) | h is not an m-th power (mod /?)} 

therefore, for such/?'s, \Clp\ >p— 1 —(p— l)/m and 

peHnAx)P~\llP\ L 

If we let ^(s, t) denote the number of integers n < s free of prime factors exceeding 

t, then 

( m - l ^x 2 , / ? , ) 
Estimating the function ^(z, j ) is a classical problem in Number Theory. In 1983, 

R. Canfield, P. Erdôs and C. Pomerance (see [4]) proved the following: 
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log.y' 
LEMMA 3. Let u = ̂ . There exists an absolute constant c\ such that 

^(Ziy) > z e x P —u\ log w + log log u — 1 + +c\ 
(log log u)- 1 (log log u) 

log u log ?))• 
for all z > 1 and u > ee. 

Applying Lemma 3 with z = x2 and y = pn we get the following: 

LEMMA 4. Let u-2 logx/ \ogpr. 77zere ex to #« absolute constant c\ such that 

HnAx) < - exp 
m 

/1 i i 1 (log log u) — I (log log u) \ ) «(logM + loglogiz- l + ^ - ^ ^ f +ci v f / } J L 
logw log 

ybr all x > l a«ûf w > e*. 

PROOF OF THEOREM l. Let us take/?r is the range 

/ n , 2 ^ ^ log2 X \ (log log logXf 

(I) log2x>/7, > - ^ - e x p —f— -r-
e2 \ (log log x)2 

If we set log2x = log log JC, log3x = log log log x and u = 2 ^ ^ , then we can write the 
estimates: 

log* log* 

log2 x log2 x - l + log3 x/2 log2 x ' 

log2 x — log3 x < log u < log2 x — log3 x + 
log2x' 

i / i log3* log3x 
log2 u < log3x - — ± - + c2—j-; log2x ~zlog2x' 

-J ? _ < _ L < _ i _ + C 3 ^ . 
log2x log2x logw log2x log2x 

where ci and c3 are absolute constants. 
Now let us apply Lemma 4 and deduce that 

log2x-l+c4g 
mHnÀx) < expllogx- ° 2* 

l o g 2 x - l+log^x/21og2x 

(2) < exp M-^-«)} 
where C4 and c$ are absolute constants. 

Now we are ready to estimate 

#{p<x\[F;:rr}>\}. 

We note that the index [F* : Tr] is at most x as it is a divisor ofp — 1. 
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Since for all but 0(x/ exp J g f * ) primes/?, we may assume that 

p>x/ exp(2 log*/ log log*), 

if we set pr > X-^R exp(2 log^/?/ log^/?) then pr is in the range of (1) and by (2) the 
number of such primes/? for which [F* : Tr] > 1 is 

< < E ^ r W < ( E 1 ) e x p ( l o g , f l - ^ + c 5 ( ^ ) > l U o f X—^ 
iA ^iAml V\ \ 21og^ 5 V l o g ^ / J | l e x p ( !£ I£Mf) 

and this completes the proof. • 
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