ON MINIMAL SETS OF GENERATORS FOR PRIMITIVE ROOTS

FRANCESCO PAPPALARDI

Abstract

A conjecture of Brown and Zassenhaus (see [2]) states that the first $\log p$ primes generate a primitive root $(\bmod p)$ for almost all primes p. As a consequence of a Theorem of Burgess and Elliott (see [3]) it is easy to see that the first $\log ^{2} p \log ^{\log }{ }^{4+\epsilon} p$ primes generate a primitive root $(\bmod p)$ for almost all primes p. We improve this showing that the first $\log ^{2} p / \log \log p$ primes generate a primitive root $(\bmod p)$ for almost all primes p.

For a given odd prime number p, we define the function κ as

$$
\kappa(p)=\min \left\{r \mid \text { the first } r \text { primes generate } \mathbb{F}_{p}^{*}\right\} .
$$

In 1969, H. Brown and H. Zassenhaus conjectured in [2] that $\kappa(p) \leq[\log p]$ with probability almost equal to one.

If we denote by $g(p)$ the least primitive root modulo p, then a Theorem of D. A. Burgess and P. D. T. A. Elliott states that

$$
\pi(x)^{-1} \sum_{p \leq x} g(p) \ll \log ^{2} x(\log \log x)^{4}
$$

If U is the number of primes up to x for which $g(p) \geq T$, then

$$
U T \ll \sum_{p \leq x} g(p) \ll \pi(x) \log ^{2} x(\log \log x)^{4} .
$$

For any $\epsilon>0$, we choose $T=\log ^{2} x(\log \log x)^{4+\epsilon / 2}$ so that $U=\mathrm{o}(\pi(x))$ and since $g(p) \leq T$ is product of primes less that T, we deduce that for almost all primes $p \leq x$,

$$
\kappa(p) \leq \log ^{2} x(\log \log x)^{4+\epsilon / 2} \leq \log ^{2} p(\log \log p)^{4+\epsilon} .
$$

We will prove the following:
TheOrem 1. Let π be the prime counting function. For all but

$$
\mathrm{O}\left(\frac{x}{\exp \left\{\frac{(\log \log \log x)^{3} \log x}{4(\log \log x)^{3}}\right\}}\right)
$$

[^0]primes $p \leq x$, we have that
$$
\kappa(p) \leq \pi\left(\frac{\log ^{2} p}{e^{2}} \exp \left\{2 \frac{(\log \log \log p)^{3}}{(\log \log p)^{2}}\right\}\right)
$$

The proof is based on a uniform estimate for the size of the set

$$
\mathcal{H}_{m, r}(x)=\#\left\{p \leq x| | \Gamma_{r} \left\lvert\,=\frac{p-1}{m}\right.\right\}
$$

where m and r are given integers strictly greater than one, and

$$
\Gamma_{r}=\left\langle p_{1}, \ldots, p_{r}(\bmod p)\right\rangle
$$

is the subgroup of \mathbb{F}_{p}^{*} generated by the first r primes.
As a subgroup of the cyclic group \mathbb{F}_{p}^{*} with index m, Γ_{r} is the subgroup of m-th powers $(\bmod p)$. Hence

$$
\mathcal{H}_{m, r}(x)=\left\{p \leq x \mid p \equiv 1(\bmod m) \text { and } p_{i} \text { is an } m \text {-th power }(\bmod p) \forall i=1, \ldots, r\right\}
$$

If $n_{m}(p)$ is the least prime which is not congruent to an m-th power $(\bmod p)$, then we can also write:

$$
\mathcal{H}_{m, r}(x)=\left\{p \leq x \mid p \equiv 1(\bmod m) \text { and } n_{m}(p)>p_{r}\right\}
$$

We will need to use the large sieve inequality, the proof of which can be found in [1]. That is:

Lemma 2 (The Large Sieve). Let \mathfrak{N} be a set of integers contained in the interval $\{1, \ldots, z\}$ and for any prime $p \leq x$, let $\Omega_{p}=\{h(\bmod p) \mid \forall n \in \mathcal{N}, n \not \equiv h(\bmod p)\}$ and

$$
L=\sum_{q \leq x} \mu^{2}(q) \prod_{p \mid q} \frac{\left|\Omega_{p}\right|}{p-\left|\Omega_{p}\right|},
$$

then

$$
|\mathcal{N}| \leq \frac{z+3 x^{2}}{L}
$$

In our case, let $\mathcal{N}=\left\{n \leq z|\forall q| n, q<p_{r}\right\}$ and note that if $p \in \mathcal{H}_{m, r}(x)$, then

$$
\Omega_{p} \supset\{h(\bmod p) \mid h \text { is not an } m \text {-th power }(\bmod p)\}
$$

therefore, for such p 's, $\left|\Omega_{p}\right| \geq p-1-(p-1) / m$ and

$$
L \geq \sum_{p \in \mathcal{H}_{m, r}(x)} \frac{\left|\Omega_{p}\right|}{p-\left|\Omega_{p}\right|} \geq \frac{m-1}{2}\left|\mathcal{H}_{m, r}(x)\right|
$$

If we let $\Psi(s, t)$ denote the number of integers $n \leq s$ free of prime factors exceeding t, then

$$
\mathcal{H}_{m, r}(x) \leq \frac{8 x^{2}}{(m-1) \Psi\left(x^{2}, p_{r}\right)}
$$

Estimating the function $\Psi(z, y)$ is a classical problem in Number Theory. In 1983, R. Canfield, P. Erdős and C. Pomerance (see [4]) proved the following:

Lemma 3. Let $u=\frac{\log z}{\log y}$. There exists an absolute constant c_{1} such that

$$
\Psi(z, y) \geq z \exp \left\{-u\left(\log u+\log \log u-1+\frac{(\log \log u)-1}{\log u}+c_{1} \frac{(\log \log u)^{2}}{\log ^{2} u}\right)\right\}
$$

for all $z \geq 1$ and $u \geq e^{e}$.
Applying Lemma 3 with $z=x^{2}$ and $y=p_{r}$, we get the following:
Lemma 4. Let $u=2 \log x / \log p_{r}$. There exists an absolute constant c_{1} such that

$$
\mathcal{H}_{m . r}(x) \leq \frac{8}{m} \exp \left\{u\left(\log u+\log \log u-1+\frac{(\log \log u)-1}{\log u}+c_{1} \frac{(\log \log u)^{2}}{\log ^{2} u}\right)\right\}
$$

for all $x \geq 1$ and $u \geq e^{e}$.
Proof of Theorem 1. Let us take p_{r} is the range

$$
\begin{equation*}
\log ^{2} x \geq p_{r} \geq \frac{\log ^{2} x}{e^{2}} \exp \left\{\frac{(\log \log \log x)^{3}}{(\log \log x)^{2}}\right\} \tag{1}
\end{equation*}
$$

If we set $\log _{2} x=\log \log x, \log _{3} x=\log \log \log x$ and $u=2 \frac{\log x}{\log p_{r}}$, then we can write the estimates:

$$
\begin{gathered}
\frac{\log x}{\log _{2} x} \leq u \leq \frac{\log x}{\log _{2} x-1+\log _{3}^{3} x / 2 \log _{2}^{2} x} ; \\
\log _{2} x-\log _{3} x \leq \log u \leq \log _{2} x-\log _{3} x+\frac{1}{\log _{2} x} ; \\
\log _{2} u \leq \log _{3} x-\frac{\log _{3} x}{\log _{2} x}+c_{2} \frac{\log _{3}^{2} x}{\log _{2}^{2} x} ; \\
\frac{1}{\log _{2} x}-\frac{2}{\log _{2}^{3} x} \leq \frac{1}{\log u} \leq \frac{1}{\log _{2} x}+c_{3} \frac{\log _{3} x}{\log _{2}^{2} x}
\end{gathered}
$$

where c_{2} and c_{3} are absolute constants.
Now let us apply Lemma 4 and deduce that

$$
\left.\begin{array}{rl}
m \mathcal{H}_{m, r}(x) & \ll \exp \left\{\log x \frac{\log _{2} x-1+c_{4} \log _{3}^{2} x}{\log _{2}^{2} x}\right. \\
\log _{2} x-1+\log _{3}^{3} x / 2 \log _{2}^{2} x \tag{2}
\end{array}\right\}
$$

where c_{4} and c_{5} are absolute constants.
Now we are ready to estimate

$$
\#\left\{p \leq x \mid\left[\mathbb{F}_{p}^{*}: \Gamma_{r}\right]>1\right\}
$$

We note that the index $\left[\mathbb{F}_{p}^{*}: \Gamma_{r}\right]$ is at most x as it is a divisor of $p-1$.

Since for all but $\mathrm{O}\left(x / \exp \frac{\log x}{\log \log x}\right)$ primes p, we may assume that

$$
p>x / \exp (2 \log x / \log \log x),
$$

if we set $p_{r} \geq \frac{\log ^{2} p}{e^{2}} \exp \left(2 \log _{3}^{3} p / \log _{2}^{2} p\right)$ then p_{r} is in the range of (1) and by (2) the number of such primes p for which $\left[\mathbb{F}_{p}^{*}: \Gamma_{r}\right]>1$ is
$\ll \sum_{m=2}^{x} \mathcal{H}_{m, r}(x) \leq\left(\sum_{m=2}^{x} \frac{1}{m}\right) \exp \left\{\log x\left(1-\frac{\log _{3}^{3} x}{2 \log _{2}^{3} x}+c_{5}\left(\frac{\log _{3}^{2} x}{\log _{2}^{3} x}\right)\right)\right\}=\mathrm{O}\left(\frac{x}{\exp \left\{\frac{\log _{x} \log _{3}^{3} x}{4 \log _{2}^{3} x}\right\}}\right)$
and this completes the proof.
ACKNOWLEDGMENTS. A version of Lemma 4 has been proven recently also by S. Konyagin and C. Pomerance in [5].

I would like to thank Professor Ram Murty for his suggestions and for a number of interesting observations.

References

1. E. Bombieri, Le grande crible dans la théorie analytique des nombres, Astérisque 18(1974).
2. H. Brown and H. Zassenhaus, Some empirical observation on primitive roots, J. Number Theory 3(1971) 306-309.
3. D. A. Burgess and P. D. T. A. Elliott, The average of the least primitive root, Mathematika 15(1968), 39-50.
4. E. R. Canfield, P. Erdős and C. Pomerance, On a problem of Oppenheim concerning "Factorization Numerorum", J. Number Theory 17(1983), 1-28.
5. S. Konyagin and C. Pomerance, On primes recognizable in deterministic polynomial time, preprint.
[^1]
[^0]: Supported in part by C.N.R.
 Received by the editors June 23, 1994; revised October 24, 1994.
 AMS subject classification: Primary: 11N56; secondary: 11A07.
 Key words and phrases: sieve theory, primitive roots, Riemann hypothesis.
 (c) Canadian Mathematical Society, 1995.

[^1]: Dipartimento di Matematica
 Terza Università degli Studi di Roma
 Via Corrado Segre, 4
 Roma
 00146-Italia
 e-mail: pappa@mat.uniroma3.it

