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Abstract
We prove that certain differential operators of the form DLD with L hypergeometric and D¼ z ∂

dz are of
Picard–Fuchs type.We give closed hypergeometric expressions forminors of the biextension periodmatrices
that arise from certain rank 4 weight 3 Calabi–Yau motives presumed to be of analytic rank 1. We compare
their values numerically to the first derivative of the L-functions of the respective motives at s¼ 2.
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Introduction

The goal of this note is to explain, favoring expedience over detail, how one can systematically obtain
explicit numerical evidence in support of a B-SD-type conjecture for hypergeometric Calabi–Yau
motives. For a Calabi–Yau threefold X=Q with Hodge numbers h3,0 ¼ h0,3 ¼ 1,h2,1 ¼ h1,2 ¼ a, Poincaré
duality defines a non-degenerate alternating form on the third cohomology H3 Xð Þ for any Weil
cohomology theory. We view the collection of such cohomological realizations as arising from a
so-called symplectic motive of rank 2þ2a. We will focus on the case a¼ 1 here; these motives, now
colloquially called “(1,1,1,1)-motives,” are expected to exist in 1-parameter families (Golyshev & van
Straten, 2023). Their typical Euler factors can be obtained as characteristic polynomials of the geometric
p-Frobenius acting in the l-adic cohomology of X over the algebraic closure. They take the form
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is entire and satisfies Λ sð Þ= ±Λ 4� sð Þ, where N is the conductor. The known meromorphicity and
existence of a functional equation (Patrikis & Taylor, 2015) enable one in principle to study the leading
coefficient of the Taylor series of L sð Þ along the lines suggested by the conjectures of Deligne (1977) and
Birch–Swinnerton–Dyer and Beĭlinson (1987), Bloch (1980; 1983), Gillet and Soulé (1984). More
broadly, if one is to think of these 1,1,1,1ð Þ-motives as analogues of elliptic curves overℚ two dimensions
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higher, a question arises of what standardmotivic conjectures known to be true or confirmed numerically
for elliptic curves survive in this new setup. The key and probably indispensable ingredient here will be a
suitable automorphy theorem. Many believe, for instance, that a weight 3-paramodular newform
(a Hecke-eigen (3,0)-regular form on the Siegel threefold parametrizing 1,Nð Þ-polarized abelian sur-
faces) f M could be associated with such a motive M of conductor N so that L f M , s

� �
= L M, sð Þ. With

automorphy proven––in general, or for any given motive M––one could try to proceed by relating the
central L-value (or the leading coefficient) at s= 2 obtained from an integral representation for the
L-function to a certain Hodge-theoretic volume arising in a biextension ofM, an idea that can be traced
back to Bloch’s early work (Bloch, 1980); see also (Bloch &Kato, 1990; Kontsevich & Zagier, 2001; Scholl,
1991).

In analytic rank 1, one would seek a GSp 4ð Þ-analog of the Gross–Zagier formula (Gross & Zagier,
1986) that might express L0ðM,2Þ in terms of the height pairing between certain curves on the Siegel
threefold parametrizing special abelian surfaces. Its proof, however, is expected to be very difficult and
not to be found soon, so a numerical study is desirable as a second-best. Once the Dirichlet series ofM
and the shape of the functional equation are known, the technology described in Dokchitser(2004) and
implemented inMagma (Bosma et al., 1997), enables one (in principle) to compute the Taylor expansion
of L M, sð Þ to an arbitrary precision.

The paper (Roberts & Villegas, 2022) is an excellent introduction to hypergeometric motives and
explains how to compute hypergeometric L-functions. The present note can be viewed by the reader as
a companion paper. We show how a combination of two ideas specific to hypergeometric pencils
enables one to write down closed formulas for the (archimedean) extension volumes and obtain
evidence in support of B-SD. One is the principle that gamma structures (Golyshev &Mellit, 2014) give
rise to Betti structures. The other says that the motive of the total space of a hypergeometric pencil can
be used to provide every fiber with a biextension Hodge structure (Bloch et al., 2023). The relevant
biextension can be viewed as joining together two Katz’s extensions [20, 8.4.7, 8.4.9] going the opposite
directions.

Hypergeometric (1,1,1,1)-families

The arithmetic of some of these hypergeometric families was studied by, for example, Dwork (1969) and
Schoen (1986). The interest in families of Q-Calabi–Yau motives with points of maximally unipotent
monodromy surged in the wake of the discovery ofmirror symmetry (Candelas et al., 1991). The simplest
are the 14 hypergeometric families, which directly generalize the famousDworkpencil (Doran&Morgan,
2006; Hofmann & van Straten, 2015). These (and certain “quadratic twists” of these, as we will see) are
probably the most amenable to direct computation with the l-adic and Betti-de Rham realizations.

N. Katz introduced implicitly the concept of a hypergeometric motivic sheaf in 1990 by analyzing in
detail hypergeometric differential equations, that is, scalar differential equations of the form

Lα,βS zð Þ= 0 (∗)

with

Lα,β =
Yn
i = 1

D�αið Þ� λz
Yn
j= 1

D�βj
� �

, D= z
d
dz

,

and proving a theorem that states that an irreducible regular singular hypergeometric differential
equation with rational indices (and λ∈Q) is motivic, i.e., arises in a piece of relative cohomology in a
pencil of algebraic varieties defined over a number field. An analog of Katz’s theorem holds for tame
hypergeometric l-adic sheaves overGm=Q whose local inertiae act quasiunipotently. If one furthermore

requires that the sets exp 2πiαið Þ’s and exp 2πiβj
� �

’s are each Gal Q=Q
� �

-stable and λ∈Q, a motivic

construction can be defined over Q, cf. (Beukers et al., 2015).
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Gamma structures give rise to Betti structures

In order to refine hypergeometric D-modules to Hodge modules one needs to identify the Q-bases of
the spaces of local solutions that represent the periods of relative Q-de Rham forms along Q-Betti
cycles. Following Dwork, one can think of hypergeometric families as deformations of Fermat
hypersurfaces (with their relatively simple motivic structures) obtained by introducing an extra
monomial to the defining equation. From this perspective, it is clear that the leading expansion
coefficients of Q-Betti solutions of hypergeometric Hodge modules should be proportional to products
of the values of the gamma function at rational arguments corresponding to the hypergeometric indices.
A theorem on hypergeometric monodromy in Golyshev and Mellit (2014) says, in particular, the
following. Assume that (A1):

• the sets exp 2πiαið Þ’s and exp 2πiβj
� �

’s are each Gal Q=Q
� �

-stable and λ∈Q
• αi ≠ βi0  mod Z for all i, i0

and, merely to make our statement simpler, that
• αi ≠ αi0  mod Z for all i≠ i0 either.
Put

Γ sð Þ=Γα,β sð Þ=
Yn
i = 1

Γ s�αiþ1ð Þ�1
Yn
i = 1

Γ �sþβiþ1ð Þ�1 s∈Cð Þ,

and Ai = e2πiαi ,Bj = e
2πiβj

. To simplify notation, assume until the end of this paragraph that λ= �1ð Þn. In
general, ∗ð Þ comes with a gamma structure that is defined to be the set γ =

P
s∈ s0þZΓ sð Þzs j s0 ∈C

n o
of

formal solutions to ∗ð Þ and ismeant to specialize to a Betti structure when the hypergeometric indices are
rational. In particular, consider the basis of local solutions of ∗ð Þ at 0 given by

SAj zð Þ=
X∞
l = 0

Γ lþαj
� �

zlþαj ∈ γ:

Then the monodromy of ∗ð Þ around 0 is given by

M0 SA1 zð Þ,…,SAn zð Þð Þt = A1SA1 zð Þ,…,AnSAn zð Þð Þt:
Denote by VA the respective Vandermonde matrix

VA =

1 A1 ⋯ An�1
1

1 A2 ⋯ An�1
2

⋮ ⋮ ⋮

0
B@

1
CA:

The globalmonodromy of ∗ð Þ in the basisVt
A SA1 zð Þ,…,SAn zð Þð Þt is shown inGolyshev andMellit (2014)

to be in GLn Qð Þ, and in fact defines a Q-local system that underlies a Hodge module.
To identify the Hodge filtration, we proceed as follows. For simplicity, let us further assume, as is the

case with our hypergeometric 1,1,1,1ð Þ-motives, that (A2):
• n is divisible by 4;
• the setsA’s and B’s aremaximally non-interlaced on the unit circle in the sense that it can be broken

into two complementary sectors containing all A’s resp. B’s;
• αif g⊂ 0,1½ Þ,fβjg⊂ �1,0ð �:

To fix a scaling, set λ= exp
P

i ψ αið Þ�ψ βi
� �� �

, where ψ xð Þ= Γ0 xð Þ
Γ xð Þ and y denotes the unique represen-

tative of the class y mod Z in 0,1ð �: y = 1� �yf g. It follows from the multiplication formula for the
gamma function that λ∈Q. Let univ :U! Gm∖ λ�1	 
� �an

denote the universal cover. Let U be the
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weight 1�2nVHS whose underlying local system is constant with the fiberQn, and the Hodge filtration
is given as follows: consider thematrixΠA zð Þwhose jth column is z d

dz

� �j
Vt

A SA1 λzð Þ,…,SAn λzð Þð Þt , and let
Fil�n=2�jU be the span of rows 0,…, j in Qn ⊗C.

It is convenient to follow Deligne’s and Bloch’s convention and twist U by Q 1�nð Þ: there exists a
unique weight �1 hypergeometric VHS V on Gm∖ λ�1	 
� �an

such that U⊗Q 1�nð Þ= univ∗V. Katz’s
weight convention is the opposite of ours for U . For each z0 ≠ λ�1 in Gm Qð Þ, his theory of l-adic
hypergeometric sheaves enables one to construct naturally a weight 2n�1ð Þ hypergeometric Galois
representation Rz0 . Finally, Magma’s convention on hypergeometric motives is yet something different:
there should exist a hypergeometricmotiveMz0 of weight n�1 such thatRz0 =He0t Mz0 ⊗Q �n=2ð Þ,Qlð Þ
andVz0 = HdR Mz0 ⊗Q n=2ð Þð Þ. Conceptually, these are all minor details that affect the computations in a
trivial way.

Deligne’s conjecture

Evidence for Deligne’s conjecture for Calabi–Yaumotives has been obtained in the last decade ((Roberts,
n.d.; Yang, 2021), and unpublished computations by Candelas–de la Ossa–van Straten). With the
assumptions made in the previous paragraph, it says that the value L Mz0 ,n=2ð Þ is proportional with a
rational factor to a certain minor arising from the Betti to de Rham identification for Vz0 , or equivalently,
from the period matrix for the Hodge structure Vz0 ⊗Q �1ð Þ. Concretely, one expects

L Mz0 ,n=2ð Þ
det 2πið ÞnRe ΠA z0ð Þ 0,…,n=2�1f g, 0,…,n=2�1f g

∈Q,

where the subscript indicates the top-left quarter of the period matrix. Experimenting with the
L-functions (as implemented in Magma) for the case n= 4 corresponding to weight 3 Calabi–Yau
motives, one checks the identity numerically for various different values of z0 for the 7 out of the
14 MUM families that are non-resonant at z = 0 (a hypergeometric differential equation is non-resonant
at 0 resp.∞ if the eigenvaluesA’s resp.B’s of the local monodromy operator are distinct). Concretely, the
α’s and β’s in the seven families are as in the left table below.

The quadratic twist and the Birch–Swinnerton–Dyer period

Following a suggestion by Fernando Rodriguez Villegas, we twist the α’s and β’s by shifting all the indices
by �1

2: ~α,
~β are, respectively, in the right table; ~λ is now obtained from ~α,~β by the same rule as above.

1
1
12

;
5
12

;
7
12

;
11
12

� �
0;0;0;0½ �

2
1
10

;
3
10

;
7
10

;
9
10

� �
0;0;0;0½ �

3
1
8
;
3
8
;
5
8
;
7
8

� �
0;0;0;0½ �

4
1
6
;
1
4
;
3
4
;
5
6

� �
0;0;0;0½ �

5
1
6
;
1
3
;
2
3
;
5
6

� �
0;0;0;0½ �

6
1
5
;
2
5
;
3
5
;
4
5

� �
0;0;0;0½ �

7
1
4
;
1
3
;
2
3
;
3
4

� �
0;0;0;0½ �:

e1 � 5
12

, � 1
12

;
1
12

;
5
12

� �
� 1
2
, � 1

2
, � 1

2
, � 1

2

� �

e2 � 2
5
, � 1

5
;
1
5
;
2
5

� �
� 1
2
, � 1

2
, � 1

2
, � 1

2

� �

e3 � 3
8
, � 1

8
;
1
8
;
3
8

� �
� 1
2
, � 1

2
, � 1

2
, � 1

2

� �

e4 � 1
3
, � 1

4
;
1
4
;
1
3

� �
� 1
2
, � 1

2
, � 1

2
, � 1

2

� �

e5 � 1
3
, � 1

6
;
1
6
;
1
3

� �
� 1
2
, � 1

2
, � 1

2
, � 1

2

� �

e6 � 3
10

, � 1
10

;
1
10

;
3
10

� �
� 1
2
, � 1

2
, � 1

2
, � 1

2

� �

e7 � 1
4
, � 1

6
;
1
6
;
1
4

� �
� 1
2
, � 1

2
, � 1

2
, � 1

2

� �
:
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Put ~Γ~α,~β sð Þ=~λ1=2Γ~α,~β sð Þ. One has ~Γ~α,~β sð Þ=~λ1=2Γα,β sþ1=2ð Þ: All that has been said up to now about
hypergeometric Hodge structures works identically for the seven families and the seven twists. However,
we expect the twist to raise the “average” analytic rank in the family. Starting with an L~α,~β as above, we will
construct a “biextension” variation of mixed Hodge structure formally in hypergeometric terms.
Although it is not true in general that the product of two differential operators of motivic origin is again
motivic, there are situations when one can construct mixed motivic variations formally.

Theorem

With the assumptions (A1) and (A2) made in 2 and 3, the differential equation DL~α,~β DS zð Þ= 0 is
motivic, that is, underlies a VMHS of geometric origin.

Proof
The idea is that under certain conditions that hold in our case we can pass from the D-module
corresponding to a differential operator L to the one corresponding toDLD by successively convoluting
it with the star resp. the shriek extension of the “constant object”O onGm� 1f g toGm. The background
is Katz (1990); all references in the proof are to this book. Denote ∂ = d

dz ,D= z∂ as above,
D=DGm =C z,z�1,∂½ �,DA11 =C z,∂½ �: Let j be the open immersion Gm↪A11, and let inv denote the
inversion map on Gm. We denote the Fourier transform functor by FT.

1. Katz’s lemma on indicial polynomials. [2.9.5] Write L as a polynomial in z whose coefficients are in

turn polynomials in D: L=
Pd

k = 0z
kPk Dð Þ. Then: P0 yð Þ has no zeroes in Z < 0 iff

DA11=DA11Lffi j! D=DLð Þ;
P0 yð Þ has no zeroes in Z≥ 0 iff

DA11=DA11Lffi j∗ D=DLð Þ:
2. The D-modulesFk =DA11=DA11 D�kð Þwithk∈Z. The lemma says that for k≥ 0, theD-module Fk is

isomorphic to j!O; for k < 0, the D-module Fk is isomorphic to j∗O.
Wewill need a version of this: putEk =D=D D� z D�kð Þð Þwith k∈Z. Denote by j0 the open immersion

Gm� 1f g↪Gm. We claim that for k≥ 0, the D-module Ek is j0!OGm� 1f g. For k < 0, the D-module Ek is
j0∗OGm� 1f g. Indeed, put z = 1þu, then D� z D�kð Þ= 1þuð Þ∂� 1þuð Þ 1þuð Þ∂þ 1þuð Þk= � 1þuð Þ
u∂�kð Þ.
3. Katz’s “key lemma.” [5.2.3] Let the convolution sign stand for convolution with no supports onGm.

For any holonomic module M on Gm we have

j∗FT j∗inv∗ Mð Þ� �ffiM∗ D=D D� zð Þð Þ (1)

and [5.2.3.1]

inv∗j∗FT j∗M
� �ffiM∗ D=D 1þ zDð Þð Þ: (2)

4. We define the star (resp. the shriek) Ur-object to be

D=D 1� zDð Þð Þ∗ D=D D� zð Þð Þ

resp.

D=D 1� zDð Þð Þ∗ ! D=D D� zð Þð Þ:
Claim. The star Ur-object is E0. Proof (cf. [6.3.5]): use the key lemma with M =D=D 1� zDð Þ. The

LHS becomes
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j∗FT DA11=DA11 Dþ1ð Þþ zð Þð Þffi j∗ DA11=DA11FT Dþ1ð Þþ zð Þð Þffi
j∗ DA11=DA11 �Dþ∂ð Þð ÞffiD=D D� zDð Þ:

5. LetH = P0 Dð Þ� zP1 Dð Þ be an irreducible hypergeometric operator, so that the sets of rootsmodZ
of P0 and P1 are disjoint. Assume further that P1 has no integer roots and P0 has no integer roots inZ≥ 0.
We claim that

D=DH∗E0 ffiD=D DP0 D�1ð Þ� zDP1 D�1ð Þð Þ:
Indeed, in order to convolute with E0 one convolutes first with D=D D� zð Þ then with

D=D 1� zDð Þffi z↦� z½ �∗ D=D 1þ zDð Þð Þ. The result of the first convolution is simply
D=D Dþ1ð ÞP0 Dð Þ� zP1 Dð Þð Þ as P1 has no integer roots, [5.3.1]. In order to convolute with
D=D 1þ zDð Þ one now uses the second statement of the key lemma, obtaining

inv∗ D=D �DP0 �D�1ð Þ�∂P1 �D�1ð Þð Þð Þ ffi inv∗ D=D �zDP0 �D�1ð Þ�DP1 �D�1ð Þð Þð Þ
ffiD=D DP0 D�1ð Þþ zDP1 D�1ð Þð Þ:

Finally, the effect of z↦� z½ �∗ is in simply changing the sign of z.
6. Let ∨ denote the “passing to adjoints” anti-automorphism sending t to t and ∂ to �∂, so that the

formal adjoint of P0 D�1ð Þ� zP1 D�1ð Þð ÞD is �D�1ð Þ P0 �D�2ð Þ�P1 �D�2ð Þzð Þ: Assume now
that P0 has no integer roots. The previous consideration applies so convoluting with E0 we get the D-
module corresponding to the operator

� D�1ð Þ�1ð Þ P0 � D�1ð Þ�2ð Þ�P1 � D�1ð Þ�2ð Þzð Þð ÞD= �D P0 �D�1ð Þ�P1 �D�1ð Þzð ÞD:
Passing to adjoints again,

�D P0 �D�1ð Þ�P1 �D�1ð Þzð ÞD½ �∨ = � �D�1ð Þ P0 Dð Þ� zP1 Dð Þð Þ �D�1ð Þ

we arrive at the D-module

D=D Dþ1ð ÞH Dþ1ð Þð ÞffiD=D D P0 D�1ð Þ� zP1 D�1ð Þð ÞDð Þ:
7. To finish the proof, take H to be the hypergeometric operator whose indices are ~α’s and ~β’s shifted

by �1, and the position of the singularities are the same. By Katz, H is motivic. By the argument above,

one can pass from the D-module D=DH to the D-module D=D DL~α,~βD
� �

by successively applying the

motivic operations of convolution with the motivic object E�1 and passage to duals. Hence,

D=D DL~α,~βD
� �

is itself motivic, namely D=D DL~α,~βD
� �

≃ D=DL~α,~β

� �
∗j!O

� �
∗ !j∗O.

■

We remark that all these considerations translate immediately into the l-adic setting. We stick with
Hodge modules, but what we need here is a concrete description suitable for computation. The
significance of the twist is that the variation of mixed Hodge structure in question is a biextension
VHS (Hain, 1990), that is, sits in aQ 1ð Þ↪V↠Q; this would not be the case without the twist. Think of the
fiber V at z0 ∈Q as realized inH3 Xz0 ,Q 2ð Þð Þ for a threefold Xz0 . By specializing this VMHSwe construct
a non-trivial (in general) biextension ofH3 Xz0 ,Q 2ð Þð Þ, and by relaxing the structure to a once-extension,
a class in absolute Hodge cohomology H4

Hodge Xz0 ,ℝ 2ð Þð Þ. According to the Beilinson rank conjecture,
this class signals the presence of a non-trivial class cz0 in CH 2ð Þ

0 Xz0ð Þ⊗Q.
In the language of period matrices, in addition to the 4 pure periods

Φ1 zð Þ,Φ2 zð Þ,Φ3 zð Þ,Φ4 zð Þð Þ= S~A1
~λz
� �

,…,S~A4
~λz
� �� �

V ~A

6 V. Golyshev
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one introduces an extension solution S1 zð Þ=P∞
n= 0

~Γ~α,~β nð Þzn so that DL~α,~βS1
~λz
� �

= 0 and the (trans-
posed) biextension period matrix

Πbiext
~A ðzÞ¼ 1,

d
dz

…,
d
dz

� �5� �t Z
S1ðλzÞdzz ,

Z
Φ1ðzÞdzz ,

Z
Φ2ðzÞdzz ,

Z
Φ3ðzÞdzz ,

Z
Φ4ðzÞdzz ,const

� �

with the choice of the constant terms in the 0th row being

1=~α1þ1=~α2ð Þ~Γ~α,~β 0ð Þ,0,0,0,0, 2πið Þ~Γ~α,~β 0ð Þ
� �

:

A version of the Birch–Swinnerton–Dyer-type conjecture (Bloch, 1980; Kontsevich & Zagier, 2001;
Scholl, 1991) translates into the following statement. By analogy with the elliptic curve cases two
dimensions lower, one expects that the archimedean component of the height of cz0 is essentially the
ratio of two minors of Re Πbiext

~A
z0ð Þ:

harch cz0ð Þ= ~Γ~α,~β 0ð Þ�1 � detReΠ
biext
~A

z0ð Þ 0,1,2f g, 0,1,2f g
det ReΠbiext

~A
z0ð Þ 1,2f g, 1,2f g

:

Assume, in addition, that the modulus z0 ∈Q is chosen so that there are no non-archimedean
components of the height. Since the minor detReΠbiext

~A
z0ð Þ 1,2f g, 1,2f g occurring in the denominator is

nothing else but the ~Γ~α,~β 0ð Þ�2-scaled Deligne period of Mz0 , a version of B-SD for an analytic rank
1 motive Mz0 in a hypergeometric family as above would predict that

r z0ð Þ≔ L0 Mz0 ,2ð Þ
~Γ~α,~β 0ð Þ�3det ReΠbiext

~A
z0ð Þ 0,1,2f g, 0,1,2f g

∈Q∗:

Examples

Consider the hypergeometric family ~2 in the second table in 5. (so that ~Γ~α,~βð0Þ= 32ð2πiÞ�4). One
finds numerically

r 1=2ð Þ =
?
5�2 and r 1ð Þ =

?
23 �5�2:

More:

α‘s t r tð Þ Conj. Value of
t�6 r tð Þ

�5=12,�1=12,1=12,5=12½ � 1/8 0.0000065104167 128/75

�2=5,�1=5,1=5,2=5½ � 1/8 0.00031250000 2048/25

�2=5,�1=5,1=5,2=5½ � 1/3 0.0070233196 128/25

�3=8,�1=8,1=8,3=8½ � 1/8 0.000027126736 64/9

�3=8,�1=8,1=8,3=8½ � 1/6 0.00060966316 256/9

�3=8,�1=8,1=8,3=8½ � 1/2 0.0069444444 4/9

�1=3,�1=4,1=4,1=3½ � 1/6 0.014631916 2048/3

�1=3,�1=4,1=4,1=3½ � 1/3 0.058527664 128/3

�1=3,�1=4,1=4,1=3½ � 1/3 0.058527664 128/3

�1=3,�1=4,1=4,1=3½ � 1/2 0.33333333 64/3
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Much of this can be generalized to higher-rank hypergeometrics or extended to cases involving certain
higher regulators. The method can be extended to cases involving certain higher regulators as will be
shown in a forthcoming paper with Matt Kerr. I thank Kilian Boenisch for checking the computations.

I thank the members of the International Groupe de Travail on differential equations in Paris for
many helpful discussions, and Neil Dummigan and Emre Sertöz for comments and corrections. I thank
the Max Planck Institute for Mathematics for its hospitality during my stay there in 2021.
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