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Abstract
This paper proposes a Bayesian alternative to the synthetic control method for comparative case studies

with a single or multiple treated units. We adopt a Bayesian posterior predictive approach to Rubin’s causal

model, which allows researchers tomake inferences about both individual and average treatment effects on

treated observations based on the empirical posterior distributions of their counterfactuals. The prediction

model we develop is a dynamic multilevel model with a latent factor term to correct biases induced by unit-

specific time trends. It also considers heterogeneous and dynamic relationships between covariates and

the outcome, thus improving precision of the causal estimates. To reduce model dependency, we adopt a

Bayesian shrinkage method for model searching and factor selection. Monte Carlo exercises demonstrate

that our method produces more precise causal estimates than existing approaches and achieves correct

frequentist coverage rates even when sample sizes are small and rich heterogeneities are present in data.

We illustrate the method with two empirical examples from political economy.

Keywords: synthetic control, comparative case studies, panel data, TSCS data, causal inference, Bayesian
statistics, stochastic model search, latent factor model.

1 Introduction

With the introduction of the synthetic control method (SCM) (Abadie and Gardeazabal 2003;

Abadie, Diamond, and Hainmueller 2010), comparative case studies using time-series cross-

sectional (TSCS) data, or longpanel data, are becoming increasingly popular in the social sciences.

Compared with other quantitative social science research, comparative case studies have several

unique features: (1) the sample includesa small numberof aggregateentities; (2) ahandfulofunits,

or one, receive an intervention that is not randomly assigned; and (3) the treatment effect often

takes time to present itself (Abadie 2020). As a result, comparative case studies face two main

challenges given limited data: to “provide good predictions of the [counterfactual] trajectory of

the outcome” of the treated unit(s) (Abadie, Diamond, and Hainmueller 2015, p. 499, henceforth,

ADH 2015); and to make credible statistical inferences about the treatment effects.

TheSCMuses a convex combinationof control outcomes topredict the treated counterfactuals.

Inspiredby theSCM, a fast-growing literatureproposes various newmethods to improve theSCM’s

counterfactual predictive performance and robustness, or to extend the SCM to accommodate

multiple treated units. These methods can be broadly put into three categories: (1) matching

or reweighting methods, such as best subset (Hsiao, Ching, and Wan 2012), regularized weights

(Doudchenko and Imbens 2017), and panel matching (Imai, Kim, and Wang 2019); (2) explicit

outcome modeling approaches, such as Bayesian structural time-series models (Brodersen et al.
2014), latent factor models (LFMs) (e.g., Bai 2009; Gobillon and Magnac 2016; Xu 2017), and

matrix completion methods (Athey et al. 2018); and (3) doubly robust methods, such as the
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augmented SCM (Ben-Michael, Feller, and Rothstein 2020) and synthetic difference-in-differences

(DiD) (Arkhangelsky et al. 2020).
However, both inferenceandpredictionchallengesarenot fully addressedbyexistingmethods.

The SCM uses a placebo test as an inferential tool, but users cannot interpret it as a permutation

test since the treatment is not randomly assigned (Hahn and Shi 2017). Hence, researchers cannot

quantify the uncertainty of their estimates in traditional ways. Other frequentist inferential meth-

ods require a repeated sampling interpretation,1 which is oftenat oddswith the fixedpopulationof

units at the heart of many comparative case studies. Additionally, from a prediction perspective,

researchers can use multiple sources of information in TSCS data for counterfactual prediction,

including (1) temporal relationships between the known “past” and the unknown “future” of each

unit, (2) cross-sectional information reflecting the similarity between units based on observed

covariates, and (3) time-series relationships among units based on their outcome trajectories

(Beck and Katz 2007; Pang 2010; Pang 2014). While better predictive performance can translate to

more precise causal estimates, existingmodel-based approachesmake relatively rigid parametric

assumptions and therefore do not take full advantage of the information in data.

The Bayesian approach is an appealing alternative to meet these challenges. First, Bayesian

uncertainty measures are easy to interpret. Bayesian inference provides a solution to the infer-

ential problem bymaking “probability statements conditional on observed data and an assumed

model” (Gelman 2008, 467). Second, Bayesian multilevel modeling is a powerful tool to capture

multiple sources of heterogeneity and dynamics in data (Gelman 2006). It can accommodate

flexible functional forms and use shrinkage priors to select model features, which reduces model

dependency and incorporates modeling uncertainties.

In this paper, we adopt the Bayesian causal inference framework (Rubin 1978; Imbens and

Rubin 1997; Rubin et al. 2010; Ricciardi, Mattei, and Mealli 2020) to estimate treatment effects in
comparative case studies. This framework views causal inference as a missing data problem and

relies on the posterior predictive distribution of treated counterfactuals to draw inferences about

the treatment effects on the treated. Missingness under this assumption falls in the category of

“missing not at random” (MNAR) (Rubin 1976) because the assignment mechanism is allowed

to be correlated to unobserved potential outcomes. The basic idea is to perform a low-rank

approximation of the observed untreated outcomematrix so as to predict treated counterfactuals

in the (T ×N ) rectangular outcomematrix. A key assumptionwe rely on is called latent ignorability
(Ricciardi, Mattei, and Mealli 2020), which states that treatment assignment is ignorable condi-

tional on exogenous covariates and an unobserved latent variable, which is learned from data.

Conceptually, the latent ignorability assumption is an extension of the strict exogeneity

assumption. Existing causal inference methods using TSCS data rely on either of the two types of

assumptions for identification: strict exogeneity, which is behind the conventional two-way fixed

effect approach and implies “parallel trends” in DiD designs, and sequential ignorability, which

has gained popularity recently (e.g., Blackwell 2013; Blackwell and Glynn 2018; Ding and Li 2018;

Hazlett and Xu 2018; Strezhnev 2018; Imai, Kim, and Wang 2019). Strict exogeneity requires that

treatment assignment is independent of the entire time series of potential outcomes conditional

on a set of exogenous covariates and unobserved fixed effects. It rules out potential feedback

effects from past outcomes on current and future treatment assignments (Imai and Kim 2019).

Its main advantage is to allow researchers to adjust for unit-specific heterogeneity and to use

contemporaneous information from a fixed set of control units to predict treated counterfactuals,

a key insight of the SCM. Sequential ignorability, on the other hand, allows the probability of

1 For example, Xu (2017) proposes a bootstrapping procedure for quantifying uncertainties of an LFM; Bai and Ng (2020)
provide a limiting theory for individual treatment effects in a factor model setup when both the number of pre-treatment
periods and the number of control units are large.
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treatment to be affected by past information including realized outcomes. In this paper, we adopt

the strict exogeneity framework because it is consistent with the assumptions behind the SCM.

Specifically, we propose a dynamic multilevel latent factor model (henceforth DM-LFM) and

develop an estimation strategy using Markov Chain Monte Carlo (MCMC). It incorporates a latent

factor term to correct biases caused by the potential correlation between the timing of the

treatment and the time-varying latent variables that can be represented by a factor structure,

such as diverging trends across different units. It also allows covariate coefficients to vary by unit

or over time. Because the model is parameter-rich, we use Bayesian shrinkage priors to conduct

stochastic variable and factor selection, thus reducing model dependency. The MCMC algorithm

we develop incorporates both model selection and parameter estimation in the same iterative

sampling process.

After estimating a DM-LFM, Bayesian prediction generates the posterior distribution of each

counterfactual outcome by integrating out all model parameters. We then compare the observed

outcomes with the posterior distributions of their predicted counterfactuals to generate the

posterior distribution of a causal effect of interest, conditional on observed data. We can use

the posterior mean as the point estimate and form its uncertainty measure using the Bayesian

95% credibility interval defined by the 2.5% and 97.5% quantiles of the empirical posterior

distribution. Theuncertaintymeasure is easily interpretable: conditional on thedata andassumed

model, the causal effect takes values from the interval with an estimated probability of 0.95. It

captures three sources of uncertainties: (1) the uncertainties from the data generating processes

(DGPs), or fundamental uncertainties (King, Tomz, and Wittenberg 2000); (2) the uncertainties

from parameter estimation; and (3) the uncertainties from choosing the most suitable model,

while existing frequentist methods, such as LFMs, only take into account the first two sources.

Several studies have used Bayesian multilevel modeling for counterfactual prediction. Some

are interested in the time-series aspect of data (Belmonte, Koop, and Korobilis 2014; de Vocht

et al. 2017), in short panels (e.g., two periods) (Ricciardi, Mattei, andMealli 2020), in large datasets
with many treated and control units (Gutman, Intrator, and Lancaster 2018), or in latent factor

models without covariates (Samartsidis 2020). A few others have used the Bayesian approach

to improve inference for comparative case studies. For example, Amjad, Shah, and Shen (2018)

adopt an empirical Bayesian approach to construct error bounds of the treatment effects, but

nevertheless rely on frequentist optimization to obtain weights of the SCM. Kim, Lee, and Gupta

(2020) propose a fully Bayesian version of the SCM, focusing on the single treated unit case and

aiming at estimating a uni-dimensional set of weights on controls.

Ourmethod canbeapplied to comparative case studieswith oneormore treatedunits. Like the

SCM, it requires a large number of pre-treatment periods andmore control units than the treated

to accurately estimate the treatment effect. Our simulation study suggests that the number of pre-

treatment periods for the treated units needs to be greater than 20 for the method to achieve

satisfactory frequentist properties. Compared with the SCM or LFMs, our method is most suitable

whenoneof the following is true: (1) theuncertaintymeasures bear important policy or theoretical

implications; (2) researchers suspect the latent factor structure is complex, the number of factors

is large, or some of the factors are relatively weak; (3) many potential pre-treatment covariates

are available and their relationships with the outcome variable may vary across units or over

time; or (4) researchers have limited knowledge of how to select covariates for counterfactual

prediction. Compared to its frequentist alternatives, this Bayesian method is computationally

intense. We therefore develop an R package bpCausal, whose core functions are written in C++,
for researchers to efficiently implement this method.
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2 Bayesian Causal Inference: Posterior Predictive Distributions

We start by introducing the basic setting and fixing notations. We then define causal quantities of

interest and develop posterior predictive distributions of counterfactuals based on several key

assumptions. When doing so, we will use two empirical examples. The first one is on German

reunification from ADH (2015). It is appealing to illustrate our method for several reasons. First,

only one unit (West Germany) in the dataset was treated, and the treatment—a historical event—

took place only once. Second, the control group consists of 16 Organization for Economic Co-

operation and Development (OECD) member countries, and no single country in this group or

their simple average can serve as an appropriate counterfactual for West Germany. Furthermore,

the impact of reunification may emerge gradually over time. The second example concerns the

effect of election day registration (EDR) on voter turnout in the United States. Xu (2017) uses this

example to demonstrate a frequentist LFM (a.k.a. the generalized synthetic control method, or

Gsynth). Compared to the first example, it represents a more general setting of comparative case

studies in which there are multiple treated units and the treatment starts at different points in

time.

2.1 Setup and Estimands
We denote i = 1,2, . . . ,N and t = 1,2, . . . ,T as the unit and time for which and when the outcome

of interest is observed. Although ourmethod can accommodate imbalanced panels, we assume a

balanced panel instead for notational convenience. We consider a binary treatmentwi t that, once

it takes a value of 1, cannot reverse back to 0 (staggered adoption). Following Athey and Imbens

(2018), we define the timing of adoption for each unit i as a random variable ai that takes its values

in� = {1,2, . . . ,T ,c}, in which ai = c >T means that unit i falls in the residual category and does
not get treated in the observed timewindow.We call unit i a treated unit if it adopts the treatment
at any of the observed time periods (ai = 1,2, . . . ,T ); we call it a control unit if it never adopts the

treatment by period T (ai = c). The number of pre-treatment periods for a treated unit is T0,i =

ai − 1. Suppose there are Nco control units and Ntr treated units; Nco +Ntr = N . In comparative

case studies, Ntr = 1 or a small integer.

For instance, in theGerman reunification example, i = 1, . . . ,17,T = 1,2, . . . ,44.WestGermany’s

ai is 31 (the calendar year 1990); and ai > 44 for the other 16 OECD countries serving as controls.

The EDR example uses the data of 47 states (i = 1, . . . ,47) in 24 presidential election years from

1920 to 2012 (t = 1, . . . ,24). Among the 47 states, 9 states adopted EDR before 2012, whose ai ∈

{15,20,23,24}; they are considered the treated units. The other 38 states did not adopt EDR by

2012 (ai > 24) and are considered the control units.

Denote wi = (wi1, . . . ,wiT )
′ as the treatment assignment vector for unit i. Staggered adoption

implies that the adoption time ai uniquely determines vectorwi :wi (ai ), in whichwi t = 0 if t < ai

andwi t = 1 if t � ai , for t = 1,2, . . . ,T . We further define an (N ×T ) treatment assignment matrix,

W = {w1, . . . ,wN }; similarly,W is fully determined byA = {a1, . . . , ai , . . . , aN }, the adoption time

vector. Following Athey and Imbens (2018), we make the following two assumptions to rule out

cross-sectional spillover and the anticipation effect.

Assumption 1 (Cross-sectional stable unit treatment value assumption (SUTVA)). Potential out-
comes of unit i are only functions of the treatment status of unit i: yi t (W) = yi t (wi ),�i , t .

Thisassumption rulesout cross-sectional spillovereffectsandsignificantly reduces thenumber

of potential outcome trajectories. For each unit i, because now there are only (T +1) possibilities

for wi , there are (T +1) potential outcome trajectories, denoted by yi t (wi ), t = 1,2, . . . ,T . In the

German reunification example, this assumption rules out thepossibility thatGerman reunification

affects economic growth in the other 16 countries, which may, in fact, be a strong assumption. In

the EDR example, this assumption implies that the adoption of EDR laws in State B does not affect
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State A’s turnout with or without EDR laws. Becausewi is fully determined by ai , we simply write

yi t (wi (ai )) as yi t (ai ).

Assumption 2 (No anticipation). For all unit i, for all time periods before adoption t < ai :

yi t (ai ) = yi t (c), for t < ai ,�i

in which yi t (c) is the potential outcome under the “pure control” condition, that is, the treatment
vectorwi includes all zeros. This assumption says that the current untreated potential outcomedoes
not depend on whether the unit gets the treatment in the future. The assumption is violated when
anticipating that a unitwill adopt the treatment in the future affects its outcome today. For example,
if people anticipated German reunification to take place in 1990 and West Germany’s economy
adjusted to that expectation before 1990, the assumption would be violated.

Estimands.Under Assumptions 1 and 2, for treated unit i whose adoption time ai � T , we define
its treatment effect at t � ai as

δi t = yi t (ai )− yi t (c), for ai � t �T .

In other words, we focus on the difference between the observed post-treatment outcome of

treated unit i and the counterfactual outcome of the same unit that had never received the
treatment by period T . In the German reunification example, the causal effect of interest is the

difference between the observed gross domestic product (GDP) per capita of West Germany in

reunified Germany since 1990 and that of the counterfactual West Germany had it remained

separated from East Germany.

Because yi t (ai ) of treated unit i is fully observed for t � ai , the Bayesian framework regards

it as data. The counterfactual outcomeyi t (c) of treated unit i for t � ai , on the other hand, is an

unknownquantity;we regard it asa randomvariable.Wealsodefine thesampleaverage treatment

effect on the treated (ATT) for units that have been under the treatment for a duration of pperiods:
δp =

1
Ntr ,p

∑
i :T −p+1�ai �T δi ,ai+p−1, whereNtr ,p is the number of treated units that have been treated

for p periods in the sample.
Given that yi t (ai ) is observed in the post-treatment period, estimating δi t is equivalent to

constructing the counterfactual outcome yi t (c). Under Assumptions 1 and 2,we can denote Y(0), a

(N ×T ) matrix, as the potential outcomematrix underW = 0 (i.e., ai = c,�i ). Given any realization

of W, we can partition the indices for Y(0) into two sets: S0 ≡ {(i t )|wi t = 0}, with which yi t (c)

is observed; and S1 ≡ {(i t )|wi t = 1}, with which yi t (c) is missing. Additionally, S = S0 ∪ S1. We

denote the observed and missing parts of Y(0) as Y(0)obs and Y(0)mi s , respectively, and Yi (0)
obs

and Yi (0)
mi s as the row vectors in Y(0)obs and Y(0)mi s corresponding to unit i, respectively. Xi t is

a (p1 ×1) vector of exogenous covariates. Xi = (Xi1, . . . ,XiT )
′ is a (T ×p1) covariate matrix, and we

define X = {X1,X2, · · · ,XN }.

2.2 The Assignment Mechanism
Rubin et al. (2010) lay down the fundamentals of Bayesian causal inference, which views “causal
inference entirely as a missing data problem” (p. 685). In general, using the observed outcomes

and covariates, as well as the assignment mechanism, we can stochastically impute counterfac-

tuals from their posterior predictive distribution Pr(Y(W)mi s |X,Y(W)obs ,W). Since in this research

the main causal quantity of interest is the (average) treatment effect on the treated, our primary

goal is to predict counterfactuals Y(0)mi s , the untreated outcomes of the treated units. Because

staggered adoption implies that W is fully determined by A, the adoption time vector, we write
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the posterior predictive distribution of Y(0)mi s as

Pr(Y(0)mi s |X,Y(0)obs ,A) =
Pr(X,Y(0)mi s ,Y(0)obs )Pr(A|X,Y(0)mi s ,Y(0)obs )

Pr(X,Y(0)obs ,A)

∝Pr(X,Y(0)mi s ,Y(0)obs )Pr(A|X,Y(0)mi s ,Y(0)obs )

∝Pr(X,Y(0))Pr(A|X,Y(0)). (1)

TheBayes rulegives theequality inEquation (1), andweobtain theproportionalitybydropping the

denominator as a normalizing constant since it contains nomissing data. Hence, two component

probabilities, the underlying “science” Pr(X,Y(0)) and the treatment assignment mechanism

Pr(A|X,Y(0)), help predict the counterfactuals.

Assumption3 (Individualistic assignmentandpositivity). Pr(A|X,Y(0))=
∏n

i=1Pr(ai |Xi ,Yi (0))and
0 < Pr(ai |Xi ,Yi (0)) < 1 for all unit i.

Weassume that the treatment assignment is “individualistic” (Imbens and Rubin 2015, 31), that

is, the adoption time of unit i does not depend on the covariates or potential outcomes of other
units or their time of adoption, given Xi and Yi (0). We also require that each i has some nonzero
chances of getting treated. The first part of this assumption is violated if policy diffusion takes

place—for example, State A adopts EDR following State B’s policy shift—and such an emulation

effect cannot be captured by a unit’s pre-treatment covariates and untreated potential outcomes.

The positivity assumption means that all units in the sample have some probability of getting

treated, thus justifying using control information to predict treated counterfactuals.

The fact that Pr(ai |Xi ,Yi (0))= Pr(ai |Xi ,Yi (0)
obs ,Yi (0)

mi s ) implies that the treatment assignment

mechanismmay be correlated with Yi (0)
mi s . To rule out potential confounding, one possibility is

to impose further restrictions andmake an ignorability assignment assumption Pr(ai |Xi ,Yi (0)
obs )

(Rubin 1978). However, in the more general setting of MNAR, this restriction is unlikely to be true.

For instance, the timing of a state’s adopting an EDR law could be driven by legislators’ concern

about future voter turnout in the absenceof such laws. Therefore,we rely on the latent ignorability

assumption to break the link between treatment assignment and control outcomes.

Assumption4 (Latent ignorability). Conditional on the observedpre-treatment covariatesXi anda
vector of latent variablesUi = (ui1,ui2, · · · ,uiT ), the assignmentmechanism is free fromdependence
on anymissing or observed untreated outcomes for each unit i, that is,

Pr(ai |Xi ,Yi (0),Ui ) = Pr(ai |Xi ,Yi (0)
mi s ,Yi (0)

obs ,Ui ) = Pr(ai |Xi ,Ui ). (2)

Note that Xi can include both time-varying and time-invariant pre-treatment covariates. Ui

captures both unit-level heterogeneity, such as unit fixed effects, and unit-specific time trends

(e.g., ui t = γi · g (t ), in which g (·) is a function of time). We expect Ui to be correlated with Yi (0);

in fact, we will extract it from Yi (0)
obs . Therefore, once we condition on Xi and Ui , the entire time

series of Yi (0) is assumed to be independent of ai . Thus, we can understand Assumption 4 as an

extension of the strict exogeneity assumption often assumed in fixed effects models. Like strict

exogeneity, it rules out dynamic feedback from thepast outcomesoncurrent and future treatment

assignments, conditional on Ui .

The latent ignorability assumption is key to our approach. It is easy to see that the “parallel

trends” assumption is implied by this assumption when Ui is a unit-specific constant ui1 = ui2 =

· · · = uiT = ui . What does this assumption mean substantively? In the EDR example, suppose

there is an unmeasured downward trend in voter turnout in all states since the 1970s, driven by

unknown socioeconomic forces. Its impact may be different across states due to differences in
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geography, demography, party organizations, ideological orientation, and soon. At the same time,

the adoption of EDR in a state is correlated with how much such a trend would affect the state’s

turnout in the absence of any policy changes. In this case, the “parallel time trends” assumption is

invalid because ui t is a time-varying confounder; however, we can correct for the biases if we can

estimate, then condition on, the state-specific impact of this common trend. Hence, we further

make a feasibility assumption.

Assumption 5 (Feasible data extraction). Assume that, for each unit i, there exists an unobserved
covariate vector Ui for each unit i, such that the stacked (N ×T ) matrix U = (U1, . . . ,UN ) can be
approximated by two lower-rankmatrices (r �min{N ,T }), that is,U = Γ ′F in which F = (f1, . . . , fT )
is a (r ×T )matrix of factors andΓ = (γ1, . . . ,γN ) is a (r ×N )matrix of the factor loadings.

This assumption is explicitly or implicitly made with the factor-augmented approach in the

existing literature (Xu 2017; Athey et al. 2018; Bai and Ng 2020). It says that we can decompose the
unit-specific time trends into multiple common trends with heterogeneous impacts. Assumption

5 is violated whenU1, . . . ,Un have no common components; for example, when unit-specific time

trends are idiosyncratic.

2.3 Posterior Predictive Inference
Under Assumption 4, we temporarily consider U as part of the covariates and write X and U

together as X′. Then we have the posterior predictive distribution of Y(0)mi s as

Pr(Y(0)mi s |X′,Y(0)obs ,A) ∝ Pr(X′,Y(0)mi s ,Y(0)obs )Pr(A|X′,Y(0)mi s ,Y(0)obs )

∝ Pr(X′,Y(0)mi s ,Y(0)obs )Pr(A|X′)

∝ Pr(X′,Y(0)). (3)

The first line is simply to re-write Equation (1) by replacing X with X′; we reach the second step

using the latent ignorability assumption; the last stepdrops the treatment assignmentmechanism

Pr(A|X′) as a normalizing constant since it does not contain Y(0)mi s .

Equation (3) says that the latent ignorability assumption makes the treatment assignment

mechanism ignorable in counterfactual prediction; as a result, we can ignore it as long as we

condition on X′. In other words, under these assumptions, the task of developing the posterior

predictive distributions of counterfactuals is reduced to model Pr(X′,Y(0)). We need this trick

because in comparative case studies, the number of treated units is small; as a result, we lack

sufficient variation of the timing of adoption in data to model Pr(A|X′). To model the underlying

“science,” we further make the assumption of exchangeability:

Assumption 6 (Exchangeability). WhenU is known, {(X′i t , yi t (c))}i=1,...,N ;t=1,...,T is an exchangeable
sequence of random variables; that is, the joint distribution of {(X′i t , yi t (c))} is invariant to permuta-
tions in the index i t .

By de Finetti’s theorem (de Finetti 1963), {(X′i t , yi t (c))} can be written as i.i.d, given some
parameters and their prior distributions. Note that Pr(X′,Y(0)) is equivalent to Pr({(X′i t , yi t (c))}),

and we now can write the posterior predictive distribution of Y(0)mi s in Equation (3) as

Pr(Y(0)mi s |X′,Y(0)obs ,A) ∝ Pr({(X′i t , yi t (c))})

∝

∫ ( ∏
i t ∈S1

f (yi t (c)
mi s |Xi t ,θ

′)

)
︸���������������������������︷︷���������������������������︸

posterior predictive distribution

( ∏
i t ∈S0

f (yi t (c)
obs |Xi t ,θ

′)

)
︸���������������������������︷︷���������������������������︸

likelihood

π(θ)dθ, (4)
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where θ are the parameters that govern the DGP of yi t (c) given X
′
i t , and θ′ = (θ,U) when we

regard the latent covariates U as parameters. Note that in Equation (4), the likelihood is based

on observed outcomes while the posterior predictive distribution is for predicting the missing

potential outcomes. The second proportionality is reached by de Finetti’s theorem and under the

assumption that the set of parameters that govern the DGP of the covariates X are independent of

θ. See SupplementaryMaterial for a formalmathematical development of the posterior predictive

distribution.

Recall that our objective is to impute the untreated potential outcomes for treated obser-

vations. If we assume that the DGPs of the outcomes in S0 and S1 follow the same functional

form f (·), we can build a parametric model and estimate parameters based on the likelihood and

then predict yi t (c)
mi s for i � Nco at t � ai using the posterior predictive distribution. If we can

correctly estimate π(U|X,Y(0)obs ), the posterior distributions of U, using a factor analysis, we can

draw samples of treated counterfactuals yi t (c)
mi s from its posterior predictive distribution as in

Equation (1) by integrating out the model parameters.

3 Modeling and Implementation

In this section, we discuss the modeling strategy for the likelihood function and the posterior

predictive distribution. We explain the proposed DM-LFM and discuss Bayesian shrinkagemethod

for factor selection andmodel searching to reduce model dependency.

3.1 A Multilevel Model with Dynamic Factors
Assumption 7 (Functional form). The untreated potential outcomes for unit i = 1, . . . ,N at t =
1, . . . ,T are specified as follows:

yi t (c) = X
′
i tβi t +γ ′

i ft +εi t , (5)

βi t = β+αi +ξt , (6)

ξt = Φξξt−1 +et , ft = Φf ft−1 +νt . (7)

Equation (5) is the individual-level regression, in which yi t (c) is explained by three components.

The first one, Xi tβi t , captures the relationships between observed covariates and the outcome.

Thedouble subscripts ofβi t indicate thatweallow these relationships tobeheterogeneous across

units and over time. Equation (6) decomposes βi t into three parts: β is the mean of βi t and

shared by all observations, andαi and ξt are zero-mean unit- and time-specific “residuals” ofβi t ,

respectively. The second component, γ ′
i ft , is the multifactor term, in which ft and γi are (r × 1)

vectors of factors and factor loadings, respectively. Consistent with Assumption 5, we use ft and

γi to approximate Ui . The last component, εi t , represents i .i .d . idiosyncratic errors. We further

model the dynamics in ξt and ft by specifying autoregressive processes as shown in Equation

(7). We assume both transition matrices Φξ and Φf are diagonal: Φξ = Diag(φξ1 , . . . ,φξp3
) and

Φf = Diag(φf1 , . . . ,φfr ).
2 Finally, we assume the individual- and group-level errors, εi t , et , and νt ,

to be i.i.d. normal.
TheDM-LFMallows the slope coefficient of each covariate to vary by unit, time, both, or neither.

To illustrate this flexibility, we rewrite the individual-level model in a reduced and matrix format

as

2 Depending on the values of the transition matrices (determined by data), time-varying parameters may take one of the
following three processes: (1) a stationary autoregressive process with order one if Φξ and Φf are diagonal matrices and
each element on the diagonal is nonzero and falls in the open interval (−1,1); (2) a local smoothing model if Φξ when Φf

are identity matrices; or (3) a static multi-level structure if Φξ and Φf are null matrices.
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Figure 1. A graphic representation of dynamic multilevel latent factor model (DM-LFM). The shaded nodes
represent observed data, including untreated outcomes and covariates; the unshaded nodes represent
“missing” data (treated counterfactuals) and parameters. Only one (treated) unit i is shown. T0i = ai − 1 is
the last period before the treatment starts to affect unit i. The focus of the graph is Period t. Covariates in
periods other than t, as well as relationships between parameters and yi1(c), yiT0i (c), and yiT (c), are omitted
for simplicity.

yi (c) =Xiβ+Ziαi +Ai ξ+Fγi +εi , (8)

in which F = (f1, . . . , fT )
′ is a (T × r ) factor matrix. Zi of dimension (T × p2) are covariates that

have unit-specific slopes (β+αi ).Ai of dimension (T ×p3) are covariates that have time-specific

slopes (β + ξt ). BothAi and Zi are subsets ofXi . When the kth covariate is inAi ∩Zi , it has a

slope coefficient that varies across units andover time, that is, β (k )
i t

= β (k )+α (k )
i

+ξ(k )t . Accordingly,

β is a (p1 × 1) coefficients vector, αi is a (p2 × 1) vector, ξ = (ξ′1, . . . ,ξ
′
T )

′ is a (p3 × 1) vector, and

p1 � p2,p3. Becauseαi ,ξt , ft are centered at zero, the systemic part of themodel is�[yi (c)] = Xiβ.

The rest of the components define the variance of the composite errors asΩyi (c)−Xiβ = (Ziαi +

Ai ξ+Fγi )
′(Ziαi +Ai ξ+Fγi )+σ

2
ε I, which contains nonzero off-diagonal elements because of the

components Zi and Ai . Note that we allowZiαi ,Ai ξ, and Fγi to be arbitrarily correlated.

Figure 1 presents the model graphically, and the shrinkage parameters λ’s in the figure will be

discussed later. Note that this outcome model governs yi t (c) only. Without loss of generality, we

can add δi twi t in the model in which δi t is the causal effect for unit i at time t. This model is a
dynamic andmultilevel extension to several existing causal inferencemethodswithTSCSdata. For

example, if we set Zi = Ai = (1,1, . . . ,1)
′, and r = 0, Equation (8) becomes a parametric linear DiD

model with covariates and two-way fixed effects: yi t = δi twi t +X
′
i tβ+αi +ξt +εi t . This is what Liu,

Wang, and Xu (2020) call the fixed effects counterfactual model. When we put restrictions Zi t = ∅

andXi = Ai is time-invariant, ourmodel is reduced to a factormodel that justifies the SCM (Abadie,

Diamond, and Hainmueller 2010): yi t = δi twi t + ξt +X
′
iβt +γ ′

i ft +εi t . Gsynth is also a special case

of the model when we force the coefficients not to vary; that is, Zi t = ∅ and Ai t = ∅ and yi t =

δi twi t +X
′
i tβ+γ ′

i ft +εi t (Xu 2017).
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3.2 Bayesian Stochastic Model Specification Search
Oneadvantageof theDM-LFM is that it is highly flexible.However, the largenumberof specification

options poses a challenge to model selection. Bayesian stochastic model searching reduces

the risks of model mis-specification and simultaneously incorporates model uncertainty. We

use shrinkage priors to choose the number of latent factors and decide whether and how to

include a covariate. Specifically, we adopt the Bayesian Lasso and Lasso-like hierarchical shrink-

age methods based on recent research.3 We apply the Bayesian Lasso shrinkage on β using the

followinghierarchical setting ofmixture of a normal-exponential prior,βk |τ
2
βk

∼N (0,τ2βk ), τ
2
βk
|λβ ∼

Exp(
λ2
β

2 ), λ
2
β ∼ G(a1, a2), k = 1, . . . ,p1. The tuning parameter λ controls the sparsity and degree

of shrinkage and can be understood as the Bayesian equivalent to the regulation penalty in a

frequentist Lasso regression. Instead of fixing λ at a single value, we take advantage of Bayesian

hierarchical modeling and give it a Gamma distribution with hyper-parameters a1 and a2.4

To select the other components of the model, we impose shrinkage on αi , ξt , or γi to

determine whether to include a Zj ( j = 1,2, . . . ,p2), Aj ( j = 1,2, . . . ,p3), or fj ( j = 1,2, . . . , r ) in

the model. We consider the Lasso-like hierarchical shrinkage approach with re-parameterization.

Assumeαi , γi , and ξt have diagonal variance–covariancematrices,H0 = Diag(ω
2
α1 , . . . ,ω

2
αp2
), Γ0 =

Diag(ω2
γ1 , . . . ,ω

2
γr ), Σe = Diag(ω2

ξ1
, . . . ,ω2

ξp3
), respectively. To have a shrinkage effect, we should

allow the variance parameters ω2 to have a positive probability to take the value zero.

Therefore, we re-parameterize αi , ξt , and γi as αi = ωα · α̃i , ξt = ωξ · ξ̃t , γi = ωγ · γ̃i , where

ωα = (ωα1 , . . . ,ωαp2
)′, ωξ = (ωξ1 , . . . ,ωξp3

)′, and ωγ = (ωγ1 , . . . ,ωγr )
′ are column vectors. After re-

parameterization, the variancesω2 appear in the model as coefficientsω that can take values on

the entire real line, and the new variance–covariance matrices become identity matrices.

Now we assign Lasso priors to each ωα , ωξ , and ωγj to shrink varying parameters grouped

by unit or time. Together with the shrinkage on β, the algorithm will decide de facto whether a
certain covariate is included, whether its coefficient varies by time or across units, and howmany

latent factors are considered. Because the shrinkage priors do not have a point mass component

at zero, parameters of less important covariates are not zeroed out completely. Instead, they

stay in the model but with shrunk impacts and can be regarded as virtually excluded from the

model. The posterior distribution of ω may be of different shapes. If it is clearly bimodal, it

means that the associated parameter is included in the model; if it is close to unimodal and

centered at zero, it means that the parameter is virtually excluded from the model; if, however,

the posterior distribution of ω has three or more modes, it indicates that the data do not provide

decisive information on whether the corresponding covariate or factor is sufficiently important—

in some iterations, the parameter escapes the shrinkage while in others, it is trapped in a narrow

neighborhood around zero. In each MCMC iteration, the algorithm samples a model consisting of

the parameters that successfully escape the shrinkage, and posterior distributions of parameters

generated by the stochastic search algorithm are based on a mixture of models in a continuous

model space. In other words, this variable selection process is also amodel-searching andmodel-

averaging process.5

3 See, for example, Park and Casella (2008), Kyung et al. (2010), Belmonte, Koop, and Korobilis (2014), and Bitto and
Frühwirth-Schnatter (2019).

4 Here, a1 is the shape parameter and a2 is the rate parameter, so the Gamma distribution has mean a1/a2 and variance
a1/a

2
2 . We tune the model indirectly by choosing different values of the hyper-parameters. In general, when λ takes

large values with higher probability, the shrinkage is more aggressive. The default values for the hyper-parameters are
(0.001, 0.001) following the literature (Belmonte, Koop, and Korobilis 2014). In our simulated and empirical applications,
such choices achieve sparsity while allowing important parameters to escape the shrinkage.

5 The above re-parameterization makes ω’s and associated parameters unidentifiable, but this does not pose an issue for
identifying the causal effects as long as the original parameters of γi , ξt , and αi are identified. We apply a permutation
method to ensure the posterior distributions ofω to be symmetric around zero.
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Table 1. Total number of parameters.

(a) Effective Parameters

Mean Variance

Parameters β τ2α τ2ξ τ2γ σ2
ε

Number p1 p2 p3 r 1

Total: p1 +p2 +p3 + r +1.

(b) Parameters to be Integrated out

Parameter Expansion Hyper-Parameters

Parameters αi ξt γi ft ω λ φ τβ
Number p2N p3T rN rT (p2 +p3 + r ) 4 (p3 + r ) p1
Total: (p2 + r )N + (p3 + r )T + (p1 +p2 +2p3 +2r +4).

The variance parameters for ν, e, ft donot appear in the table becausewe assume they have standard normal
priors.

The DF-LFM hasmany parameters, butmost of them, listed in Table 1(b), are included as part of

Bayesian parameter expansion for computational convenience or as hyper-parameters to adjust

for parameter uncertainties. They do not appear in the likelihood or can be integrated out of the

likelihood given the effective parameters. The effective parameters, including β and the variance

parameters, are reported in Table 1(a). Their number is usually much smaller than the number of

observations.

3.3 Implementing a DM-LFM
We develop an MCMC algorithm to estimate a DM-LFM. The core functions of the algorithm is

written inC++. Due to space limitations,wepresent thedetails of choicesof priors and the iterative
steps of MCMC updating in Section A.2 in online Supplementary Material. Broadly speaking,

implementing a DM-LFM takes the following three steps:

Step 1. Model searching and parameter estimation. We specify and estimate the DM-FLM

model with Bayesian shrinkage to sample G draws (excluding draws in the burn-in stage) of the
parameters from their posterior distributions, θ

(g )
i t

∼ π(θi t |D), whereD = {(Xi t , yi t (c)
obs ) : i t ∈ S0}

is the set of untreated observations. Because of Bayesian shrinkage, π(θi t |D) is in effect amixture

of distributions.

Step 2. Prediction and integration. We conduct Bayesian prediction by generating draws of

counterfactual yi t (c)
mi s for each treatedunit at ai � t �T from itsposteriorpredictivedistribution:

f (yi t (c)
mi s |X,Y(0)obs ) ∝

∫
f (yi t (c)

mi s |Xi t ,θi t )π(θi t |D)dθi t . Bayesian prediction is an empirical

integration: a sample of the predicted counterfactual is generatedbyplugging eachdrawθ
(g )
i t
from

π(θi t |D) into f (yi t (c)
mi s |Xi t ,θi t ) to obtain y

(g )
i t
(c) for g = 1, . . . ,G . The sample of counterfactuals is

drawn from f (yi t (c)
mi s |Xi t ,D) = f (yi t (c)

mi s |X,Yobs (0)) without any unknown quantities.

Step 3. Inference and diagnostics. We make inference about the causal effect δi t at ai �
t � T for each treated unit i, by summarizing the empirical posterior distribution δi t formed

by δ
(g )
i t

= yi t (ai ) − y
(g )
i t
(c), g = 1, . . .G . To summarize the results, we can obtain its posterior

mean, variance, and the Bayesian 95% credibility interval. We can make inferences about other

estimands, such as the ATT, by pooling the posterior draws of δi t and summarizing their posterior

distributions accordingly. We conduct Bayesian diagnostic tests on the convergence and mixing

onmain parameters’ posterior distributions and find that the MCMC algorithm converges fast and

mixes well in our simulation and empirical studies.
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(a) DiD (b) DM-LFM

Figure 2. Estimated average treatment effect on the treated (ATT): difference-in-differences (DiD) versus
dynamic multilevel latent factor model (DM-LFM). The above figures show the ATT estimates and their 95%
credibility intervals from the DiD and DM-LFM estimators, both implemented with Bayesian Markov Chain
Monte Carlo (MCMC) algorithms. The red dashed lines represent the true ATT of the five treated units.

4 Simulation Studies

In this section, we first illustrate how the Bayesian DM-LFM works using a simulated example. We

then study itspropertiesbyvarying sample sizes andmodel specificationsandcompare its relative

performance against existing methods, including SCM and Gsynth, in the case of a single treated

unit. We report more findings fromMonte Carlo exercises in Supplementary Material.

4.1 A Simulated Example
We simulate a panel dataset of 50 units and 30 time periods based on the following DGP:

yi t = δi twi t +X
′
i tβi t +γ ′

i ft +εi t = δi twi t +X
′
i t (β+αi +ξt )+γ ′

i ft +εi t (9)

inwhichwi t is the treatment indicator and δi t is the treatment effect.Xi t is a vector of 10 covariates

including an intercept and nine time-varying variables, but only the intercept and the first three

covariates have nonzero, unit- and time-varying coefficients. We re-parameterize Equation (9) as

yi t = δi twi t + X
′
i tβ + X′i t (ωα · α̃i )+ X

′
i t (ωx · ξ̃t )+ (ωγ · γ̃i )

′ft + εi t such that α̃i , ξ̃t , and γ̃i all have

univariances. Seven units receive the treatment starting from Period 21 and remain treated till

Period 30. The remaining 23 units are never treated. The heterogeneous treatment effects are

governed by δi t ,t>20 = t − 20+τi t , in which τi t
i .i .d .
∼ N (0,1). This means the expected value of the

treatment effect gradually increases as the treatmentdurationgrows, for example, from1 inPeriod

21 to 10 in Period 30. The factor vector ft is two-dimensional and both factors follow an AR(1)

process. The probability of getting treated is positively correlated with the sum of a unit’s factor

loadings γ̃i , which are also i.i.d.N (0,1). The selection on the factor loadingswill cause biases in the
causal estimates if a model does not account for the factor term or the covariates. We provide the

details of the DGP in Supplementary Material.

Figure 2 shows the estimated ATT (posterior means) with their 95% credibility intervals using

a Bayesian DiD model (a) and a DM-LFM model (b). The DiD model assumes ωα = ωξ = ωγ = 0;

in other words, the coefficients for the covariates are assumed to be constant, and no factors are

included in the model. Figure 2(a) shows that with the DiD estimator, multiple estimates in the

pre-treatment periods are away from zero and significant biases exist for the ATT estimates in

the post-treatment periods. On the contrary, the DM-LFM performs significantly better: we do not

observe any pre-trend and the ATT estimates are close to the true values, which are covered by the

corresponding 95% credibility intervals.
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Figure 3. Posterior distributions of coefficients. (a) and (b) show the posterior mean and 95% credibility
intervalsof the invariant componentand time-varyingcomponentofβi t , respectively. (c) shows theposterior
distribution of eachωγ , which captures the extent to which a factor influences the outcome.

Figure 3(a) and Figure 3(b) show the invariant and time-varying components of the covariate

coefficients, respectively. Whileβ and ξt for the intercept and the first three covariates are clearly

nonzero, the coefficients for the other six covariates are close to zero, which is consistent with

the DGP. The algorithm also correctly selects the non-zero αi , the unit-varying components of

coefficients (reported in Supplementary Material). Figure 3c shows the posterior distributions of

ωγ , whichmeasures the relative importance of each of the 10 factors subject to selection. It shows

that two factors (Factors 1 and 2) have a ω with clear bimodal posteriors, and the others all have

spike-shapedunimodal ones. Thismeans that themodel correctly identifies the number of factors

to be two.

This simulated example demonstrates that the DM-LFM performs well even when the sample

size is relatively small and when researchers have limited knowledge about which covariates to

put in, whether the covariates’ relationships with the outcome change over time or across units,

or howmany latent factors to include in the model.

4.2 Additional Monte Carlo Evidence
In addition, we conduct several sets of Monte Carlo exercises to study the properties of the

proposed method and compare its relative performance against existing methods. Due to space

limitations, we provide the details of these exercises in Supplementary Material and only briefly

summarize two exercises and the major findings below.

In the first exercise,we study the roleof eachof themain componentsof aDM-LFM inestimation

and investigate how the sample size affects the model performance. We simulate samples using
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(a) Root Mean Square Errors (b) Coverage

Figure 4. Comparison of model performance: root mean square errors (RMSE) and coverage. The above
figures show theRMSE (a) and the coverage rateof 95%credibility intervals (b) of theaverage treatment effect
on the treated (ATT) estimates using three sets ofmodels: (1)models that do not include factors or covariates;
(2) models that include 10 factors but no covariates; (3) models that include 10 factors and covariates with
fixed coefficients; and (4) models that include 10 factors and covariates with varying coefficients.

the DGP as in Equation (9) while varying the sample size (both the total number of units N and
the number of pre-treatment periodsT0). We estimate and compare the full DM-LFM model with

its three simpler variants: a model with covariates but without factors, analogous to a DiD model

including covariates with fixed coefficients; a model without covariates but with 10 latent factors,

analogous to Gsynth without time-varying covariates; and a model with factors and covariates

with fixed coefficients. Figure 4 shows the comparisonwhen the number of units is relatively small

(N = 40), and the full results are reported in Supplementary Material. In general, we find that DM-

LFM outperforms the other three models in terms of bias, standard deviation, root mean squared

errors (RMSE), and coverage. This exercise demonstrates that each of the key components of the

model contributes to improving performance in causal effect estimation. The factor term seems

to have the most impact, but covariates with varying coefficients also notably improve precision

and coverage.

The second exercise compares the performance of the DM-LFM with SCM and Gsynth in the

case of a single treated unit. Tables A5–A7 in Supplementary Material show that, compared with

the SCM, the DM-LFM has a much smaller RMSE. The DM-LFM outperforms Gsynth in the realistic

scenario when the true number of factors is unknown, and when the number of factors is large

and each of them produces relatively weak signals. Note that our Bayesian approach becomes

significantly more computationally demanding as the sample size grows. For example, in one

simulation in which N = 50 and T0 = 60, it takes about 30 seconds to run a DM-LFM on a 2019

6-core MacBook Pro while Gsynth takes less than a second.

5 Empirical Applications

Weapply theBayesianDM-LFM to the two runningexamples introducedearlier. Togain confidence

that the DM-LFM is appropriate for an application, we recommend users conduct the following

diagnostic tests after running themodel: (1) conductBayesiandiagnostic tests onconvergenceand

mixing of the MCMC output of key parameters, for example, by plotting of the traces of estimates;

(2) examine whether the model fits the pre-treatment outcome trajectories of the treated units
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Figure 5. Actual and estimated counterfactuals for West Germany. This figure shows the per capita gross
domestic product (GDP) of actual West Germany and the posterior means (with 95% credibility intervals) of
its untreated outcome from 1960 to 2003. Thewithin-sample prediction is very precise and the interval is too
narrow to be seen in the figure between 1960 and 1989.

reasonablywell; and (3) conduct a placebo test using pre-treatment data of the treated unitswhen

there is a sufficient number of pre-treatment periods for the treated units.

5.1 Economic Impact of German Reunification
First, we build a DM-LFM incorporating all pre-treatment time-invariant covariates considered in

ADH (2015), including pre-treatment averages of trade openness, inflation rate, industry share,

schooling, and investment rate. The initial model we consider is yi t (c) = Xi (β + ξt )+ ftγi + εi t ,

in which Xi represents the time-invariant covariates. We do not include unit fixed effects or unit-

varying coefficients to be consistent with the SCM, but time-varying coefficients are included.

Figure A3 in Supplementary Material shows that the intercept has a strong time trend, but all the

covariate coefficients are almost constant over time. Our result suggests four to six factors, with

their ω’s clearly having bimodal posteriors while several other factors exhibit mixed posteriors

(Figure A4 in Supplementary Material).

We then produce an empirical posterior distribution of GDP per capita for counterfactual West

Germany hadGerman reunification not happened. To check the goodness-of-fit, we also calculate

the model prediction of its GDP per capita in pre-treatment years. In Figure 5, we compare the

counterfactual predictions of the SCM (a) with that of the DM-LFM (b), in which we shade the 95%

Bayesian credibility intervals in gray. The dashed vertical line indicates the year 1989, 1 year before

the adoption time. The twomethods yield similar results: the GDPper capita of the counterfactual

WestGermany is higher than thatof theactualWestGermanyduringmostof thepost-reunification

period except for the first few years after reunification.

Finally, we draw inferences about the treatment effects. Figure 6(a) and Figure 6(b) report the

estimated effects of reunification on West Germany using the SCM and Bayesian DM-LFM, respec-

tively. The corresponding 95% credibility intervals are added in (b). To lend further credibility to

our causal estimates, we conduct a placebo test by setting 1987–1989, 3 years before reunification,

as the placebo period. Figure 6(c) shows that the estimated effects at each time point during the

placebo period are close to 0, buttressing our confidence in the identification assumptions.

5.2 Election Day Registration and Voter Turnout
For this example, we specify a full DM-LFM model including the same time-varying covariates

used in Xu (2017) (universal mail-in registration andmotor voter registration) as well as 10 factors.

Because there are only two covariates, we do not impose shrinkage on their β, but assign
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(a) SCM (b) DM-LFM (c) DM-LFM (placebo)

Figure6.Estimatedeffect of reunificationonWestGermany. This figure shows theestimated treatment effect
of reunification on West Germany’s per capita gross domestic product (GDP) using the synthetic control
method (SCM) (a) and dynamic multilevel latent factor model (DM-LFM) (b), as well as the result from a
placebo test using DM-LFM in which the 1987–1989 period (before reunification) is taken as “treated” (c).

(a) Gsynth (b) DM-LFM

Figure 7. The effect of election day registration (EDR) on voter turnout. This figure shows the estimated
average treatment effect of EDR on voter turnout in the United States using Gsynth (Xu 2017) (a) and dynamic
multilevel latent factor model (DM-LFM) (b), respectively. On the x-axis, the positive integers indicate the
duration of treatment while the pre-treatment years are labeled as nonpositive integers. Period 1 is the
first presidential election year in which a state implements EDR. Because the treated states adopted EDR
at different points in time, the number of treated units decreases as p increases.

shrinkage priors to αi , ξt , and γi . Our result suggests that at least six factors affect outcome

prediction (Figure A9 in Supplementary Material). In contrast, Gsynth only includes two factors

usinga leave-one-out cross-validationprocedure. As forαi andξt , the intercept varies inboth time

and space dimensions, but the varying parts of the slopes of the covariates are virtually shrunk to

zero. We estimate the parameters using MCMC. Consistent with Xu (2017), we find that the two

covariates do not explain much of the variation in turnout.

We then generate the posterior distributions of counterfactual outcomes for the nine treated

states in their post-treatment years, basedonwhichweestimate theeffectof EDRonvoter turnout.

In Figure 7, we report the ATT for the same duration of adoption. To do so, we pool the posterior

draws of the individual treatment effects of all treated states in pth year after adoption for p =

1,2, . . . ,6. Using the posterior distributions of δ̂p , we obtain their posterior means and Bayesian

95% credibility intervals.

Comparing the point and uncertainty estimates up to the sixth post-adoption presidential

elections from Gsynth and the DM-LFM, the most notable difference between them is that the

Bayesian 95% credibility intervals are considerably narrower than the 95% confidence intervals

from Gsynth. We suspect that this is because our Bayesian approach has better predictive per-

formance of individual counterfactuals than Gsynth as evidenced in Figure A11 in Supplementary

Material, where we report the individual treatment effects on six treated states that have at least
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Table 2. Comparing TSCSmethods for comparative case studies.

DiD SCM Gsynth DM-LFM

Transparent designs x x

Directly interpretable weights x x

Addresses failure of “parallel trends” x x x

Accommodates multiple treated units x x x

Allows intercept shift x x x

Accepts time-invariant covariates x x

Accepts time-varying covariates x x x

Allows unit- and time-specific coefficients x

Automatedmodel or covariate selection x x x

Model averaging x

Inference on average treatment effects x x x

Inference on individual treatment effects x x

Easily interpretable uncertainty measures x

Low computational cost x x

three post-treatment measures of the outcome using both Gsynth and the DM-LFM—our new

method fits the trajectory of each treated unit in the pre-treatment period noticeably better than

Gsynth.

6 Discussion

When is theDM-LFMapplicable? Andwhen is itmore advantageous thanexistingmethods?Table 2

summarizes its features in comparison to those of DiD, SCM, and Gsynth. The most important

differences among themethods, we acknowledge, is that DiD and SCMadopt a clear design-based

perspective and rely onmore transparent identification assumptions—these assumptions are not

necessarily weak, but they are widely understood and accepted by researchers. Moreover, the

weights they impose on control units—uniform weights in DiD designs and non-negative weights

with the SCM—are directly interpretable. Gsynth (a frequentist LFM) and Bayesian DM-LFM, on the

other hand, use a model-based approach. Together with the SCM, they address potential failures

of the “parallel trends” assumption by assuming a linear factor model. Unlike the SCM, they can

easily accommodate comparative case studies with multiple treated units.

On modeling choices, DiD, Gsynth, and the DM-LFM allow intercept shift by assuming unit

fixed effects, while the SCM does not (Doudchenko and Imbens 2017). The SCM can accept only

time-invariant covariates while DiD and Gsynth can accept only time-varying ones. The DM-LFM,

however, can accommodate both types of covariates and allow their coefficients to vary by unit

and time. In terms of model selection, the SCM uses held-out pre-treatment periods to tweak

the weighting matrix; Gsynth uses a cross-validation scheme to select the number of factors; and

the DM-LFM conducts model selection scholastically in a larger model space and averages model

predictions simultaneously.

All in all, the Bayesian DM-LFM is especially well suited for comparative case study, particularly

when researchers suspect the conventional “parallel trends” assumption is unlikely to hold;

when there are multiple treated units; when researchers would like to have easily interpretable

uncertainty estimates on average or individual treatment effects; when many pre-treatment

covariates are available and their relationships with the outcome are complex; or when time-

varying confounders are complex and/or subtle enough that they need a relatively large number
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of factors to represent or some of the factors are relatively weak. The biggest disadvantage of the

Bayesian approach is that it is computationally more expensive than frequentist methods such as

Gsynth when the sample size is large. We also find that the frequentist properties of our method

are unsatisfactory when there are too few control units or the number of pre-treatment periods is

too small, for example,T0 < 20 (see Table A4 in Supplementary Material).

Because of the strengths and weaknesses of different methods, we recommend researchers

use multiple methods at the same time whenever possible to triangulate their findings. Future

research should consider extending themethod beyond the setting of staggered adoption, jointly

modeling the treatment assignmentmechanismand the response surface, and addressing poten-

tial SUTVA violations, such as policy diffusion and spillover effects.
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