ON THE SQUARE OF A HOMOLOGICAL MONOID
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Homological monoids, as first defined by Hilton and
Ledermann [1], are a generalization of abelian cateaorlea.
It is known that if ( is an abelian category, so is CZ
here we prove the more general theorem that if &/ is a
homological monoid, so is QZ. Our definition differs from
that originally given by Hilton and Ledermann by the additicn
of a uniqueness condition in Axiom 1.

If (7 is any category, a map m of  is called mono
if moax=moy implies x=y; a map e is called epi if
xoe=yoe implies x=y. A map with an inverse is called

an isomorphism.

A category (J is called a homological monoid if it
satisfies the following axioms:

(A0) Q has a zero object; i.e., there exists an object 0 of &
such that for each object A of ( there exists a unique map

0 -A and a unique map A - 0.

(A1) Every map f of (] can be written f=mo e, where

m is mono and e is epi, and such a representation is unique

up to isomorphism; i.e., if f=mo e and also f=m'o e’
then there exists an isomorphism i such that e’ =ioce and

m=m'o i.
I
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(A2) Every map f of &/ has a kernel and a cokernel; i.e.,
if f is any map of (¢, there exists a mono k, called a
kernel of f, suchthat fok=0, and fox=0 implies
x=koy for some vy; dually we have a cokernel ¢ of f for

any f.

(A3) If e is a normal epi (i.e., e =cok ker e) and m is a
normal mono (i.e., m =ker cokm) then eom 1is normal;
i.e., eom=m'ec e' where m’' 1is a normal mono and e’

is a normal epi.

Given a category &/, we define a new category A
whose objects are the maps of ( and whose maps are com-
mutative squares; i.e., a map from an object a of C?Z to
an object b of Qz‘ is a pair (f,g) of maps of £/ such that
the square commutes: bof=goa

It can be seen that the composition of two commutative
squares yields another commutative square, and in fact & 2
is a category.

We now prove that if { is a homological monoid, so is dz.

(A0) We claim that 10 :0 -0 is a zero object of 42.

2
If f: A —>DB is any other object of &, we know that there
are unique maps 0 - A and 0 - B and the following square
commutes, by the uniqueness of the map 0 - B.

0 — 5 A

0O eoou—> B
2

Thus we have a unique map from 1 _ to any object f of &
and similarly a unique map from any { to 10. Hence 1

is a zero object of QZ. 0
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(A1) In order to prove that this axiom holds in ad 2, we must
first investigate which maps of a?. are mono and which are
epi. We claim that (f,g) :a =b in 4% is mono if and only if
both f and g are monoin (.

For, let f and g be monoin &, and let
(f,g)o(x,y) =(f,g)o(x',y'). Then (fox, goy)=(fex', goy');
i.e., fox = fox' and goy =goy'. Therefore x=x' and
y =y', hence (x,y)=(x',y'). Therefore (f,g) is mono
in Q2.

. . 2

Conversely, suppose (f,g) is mono in & , and let
fox =fox'. Thenin &2, (x, aox) isa map 1 -a and
(x', aox') isamap 1 -a .

xl
X
a b
v aox'
g

~
o
Here (f,g)o(x, aox) =(fox, goaox) =(fox, bofox) =
(fox', bofox') =(fox', goaox') =(f,g)e(x', aox'). Since
(f,g) is mono, we conclude (x, aox)=(x', aox'); i.e.,
x =x'. Therefore f is mono.

To see that g is mono, suppose goy =goy'. Then

(0,y): 0 —=~a and (0, y'): 0 —-a, with (f,g)o(0,y)=(fo0, goy) =
(00, goy') =(f,g)o(0, y') .

/7
Yy
Hence (0,y) =(0,y') and y =y'. Therefore g is mono.

Dually, (f,g) is epiin aZ if and only if both f and g

=)
are e%i in . 1Itis easily seen that (f, g) is an isomorphism

of 4“ if and only if both f and g are isomorphisms of (/.
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Returning now to the proof of (At), let (f,g):a =b be

2

f W ite f=f f, = ,
any map of & e can write i g=g g,
aza oa, b=b ob in &. Moreover we can write
m e m e
= e d bof =moe_, say. Then becf = a
g0a rnio , 20 K 2° e, y n be go

"
A\ 4

can be factored in two ways as (gmo mi)o (e1o ae) and

(b om_)o(e_of ). By uniqueness of such factorization,
m 2 2 e

there exists an isomorphism u suchthat g em ou=b om
m 1 m 2

and uoe,o fe=eioae. Now g,.° miouoezzbmo m,oe, =
b eb of =bef and m ouce_of =m oe oa =g oa oa =
m e m m 1 2 e 1 e e m e
go2, SO (fm, gm) tmouce, -+ b and (fe, ge) ‘a >mouoce
in dz. Moreover, (f ,g ) ismonoand (f ,g ) is epi,

m ~m e e

according to what was proved before. Thus we have factored
(f,g) as (f ,g )o(f ,g ) in 2.
m “m e e

2
To show that such factorization in ¢/ is unique, suppose
that we have also (f,g) ={m,m')o(e,e'), where (m,m'):y —=b

is mono and (e,e'):a -y is epi. Let m ouoe2 =x, So
(f,g):a—=xand (f ,g ):x—-b. Then (f,g) =(m,m')o(e,e') =
e “e m m

(moe, m'oe') implies f=moe and g=m'oeoe'; hence there
exist isomorphisms u and v such that f =uoce, g =voe',
e e

f cu=m, g ov=m'. Now xouce =xo0f =g oa=voe'oa-=
m m e e

voyoe, hence xou=voy since e is epi. Moreover u and v
are isomorphisms in ¢/, hence (u,v):y — x is an isomorphism

3 2 - 1 -
in &, suchthat (f_,g )o(u,v)=(m,m') and (f_,g )=

(u,v)o(e,e").
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Remark. The following observation is due to Professor
P. Hilton. We have seen that the uniqueness of factoring
f=moe in ¢/ was necessary to obtain the isomorphism u
and hence the map x =mio ume2 of & required for Axiom 1.

In fact, we have seen that if we have the following situation

e N m \
4 4

e' « m'
T4

7

with m,m' mono and e,e' epi, then there exists a map x
with bom =m'o x and xee =e'oa. Conversely, if such a
map x always exists in such a situation, then factoring

f=f of in ( is unique; for if also f=f' o f', taking a =1
m e m e

and b =1, we have the following:

7 l f 7
fe P Y m
i x| ly 1
|
£ 1 I £
e v | m

Hence by assumption there exist maps x and y such that
xof =f', f' ox=f , yoft =f, f oy=f". Thus
e e m m e e m m
f = f' =f , and yox=1; also f' oxoy={f o fro,
Yorer TV T Y m Y m ve m

and xoy =1. Therefore x is an isomorphism.
: 2 . . .
Returning to the proof that & is a homological monoid,

to prove (A2), we want to show that (ker f, ker g) is a kernel
of (f,g) in (%, where (f,g):a —b say.
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Now goac(ker f) =bofe(ker f) =0, hence there exists a map ¢
such that ac(ker f) = (ker gloc. Thus (ker f, ker g) is a map
from c to a in dz. It is mono, since ker f and ker g
are mono, and (f, g)o(ker f, ker g) =(foker f, goker g) =(0, 0).
Suppose now that (f, g)e(x,y) =0 where (x,y):d —+a; i.e.
fex =0 and goy=0. Then there exist maps u and v such .
that x =(ker f)lou and y =(ker glov. Now (ker glocou =
ao(ker flou =aeox =yod =(ker glovod, hence cou=vod since
ker g is mono. Thus (u,v) isa mapd -c in 42 such that
(x,v) =(ker £, ker g)o(u,v). Therefore (ker f, ker g) is a
kernel of (f,g) in QZ.

Dually, (cok f, cok g) is a cokernel of (f,g) in az,
and hence every map (f,g) of & 2 has a kernel and a cokernel.
. . . . 2
(A3) First we claim that (m, m') is a normal mono in &
if and only if m and m' are normal monos in . For,
(m, m') is normal in aZ <= (m, m') =ker cok (m,m') <=
(m,m') = (ker cok m, ker cokm') <= m =ker cokm and
m' =ker cokm' <=>m and m' are normal in .
Similarly, (e,e') is a normal epi in &2 if and only if e and
e' are normal episin &, and in general (f,g) is normalin
a 2 if and only if f and g are normal in & .

Now suppose (e,e') is a normal epib —+-c and (m,m')
is a normal mono a -b in &4 2. Then eom and e'om'
are normal in &/, so we can write eom = mio e and

e'om' =m'10 e'1 where m1 and l'n'1 are normal monos and
e, and e'1 are normal epis. From (A1) we know there
exists a map x of a such that (ei, e‘i) :a - x and

(mi, m'i) :x—>b. Thus (e, e')o(m, m')=(eom, e'om') =
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:(mioei' m'ioe’i):(mi‘,rn'i)o(ei,e't) where (mi,m'i) is a

normal mono and (ei, e’i) is a normal epi, so (e,e')o(m,m')
2
is normal in & .

X

b cib

2
Therefore (] is also a homological monoid.

-

Remark. By very similar methods one may show that if
is a homological monoid and «7 is a partially ordered set,
g P Yy

4
then < ~ is a homological monoid, a partially ordered set
being regarded as a small category whose ob 2cts are the ele-

ments of the set and whose maps are pairs (i,j) where i< j.
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