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A UNIQUENESS RESULT FOR THE FOURIER TRANSFORM
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Abstract

A finite measure supported by the unit sphere Sn−1 in Rn and absolutely continuous with respect to the
natural measure on Sn−1 is entirely determined by the restriction of its Fourier transform to a sphere of
radius r if and only 2πr is not a zero of any Bessel function Jd+(n−2)/2 with d a nonnegative integer.
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1. Introduction

Hedenmalm and Montes-Rodríguez asked in [4] the following: given Γ a smooth curve
in R2 and Λ a subset of R2, when is it possible to recover uniquely a finite measure ν
supported by Γ and absolutely continuous with respect to the arc length measure on Γ

from the restriction to Λ of its Fourier transform F ν on R2? Equivalently, when does
F ν(λ) = 0 for all λ ∈ Λ imply ν = 0? If this is the case, they call (Γ, Λ) a Heisenberg
uniqueness pair.

Then, among other results on Heisenberg uniqueness, Lev and Sjölin established
independently that if Γ is the unit circle S1 and Λ is a circle of radius r, (Γ, Λ) is a
Heisenberg uniqueness pair if and only if r is not a zero of any Bessel function Jn

(n ∈ N≥0) (see [5, Theorem 1(i), p. 135] and [6, Theorem 1(i), p. 126]).
The definition of Heisenberg uniqueness pairs can easily be extended to all Rn

(n ≥ 2):

D 1.1. Let Σ be a C1 submanifold of Rn (n ≥ 2), µΣ the natural measure on Σ

and Λ a subset of Rn. The pair (Σ, Λ) is a Heisenberg uniqueness pair if, for every
finite measure ν on Σ which is absolutely continuous with respect to µΣ, F ν(λ) = 0 for
all λ ∈ Λ implies ν = 0, where F ν is the Fourier transform of ν on Rn:

F ν(x) =

∫
Σ

e−2πix·η dν(η)

for all x ∈ Rn.
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We have obtained the following criterion for the Heisenberg uniqueness of pairs of
spheres.

P 1.2. Let Sn−1 be the sphere with centre 0 and radius 1 in Rn and Λ a
sphere of radius r. The pair (Sn−1, Λ) is a Heisenberg uniqueness pair if and only if
Jd+(n−2)/2(2πr) , 0 for all d ∈ N≥0.

Since we must do without the group structure available on the unit circle, our proof
is not as short as the one in dimension two. So, before giving it in Section 3, we recall
in Section 2 some useful facts.

2. Preliminaries

If (Σ, Λ) is a Heisenberg uniqueness pair in Rn, it follows from elementary
properties of the Fourier transform that (Σ, Λ + b) is also a Heisenberg uniqueness
pair for any b ∈ Rn.

By the theorem of Radon–Nykodým, a measure ν is absolutely continuous with
respect to a measure µ if and only if ν has a density function f with respect to µ, that
is, ν = f · µ. Moreover, if ν is finite, then f is integrable with respect to µ.

We write dσ for the natural measure on Sn−1. A spherical harmonic of degree l
on Sn−1 (l ∈ N≥0) is the restriction to Sn−1 of a polynomial on Rn which is harmonic
and homogeneous of degree l. We write SHl(Sn−1) for the vector space of spherical
harmonics of degree l and dl its dimension. Two spherical harmonics of different
degrees are orthogonal with respect to the usual scalar product on L2(Sn−1, dσ).

Let (El
1, . . . , El

dl
) be an orthonormal basis of SHl(Sn−1). For all ζ, η ∈ Sn−1, we put

Zl(ζ, η) =

dl∑
j=1

El
j(ζ)El

j(η).

The function η 7→ Zl(ζ, η) is the zonal with pole ζ of degree l and is independent of the
choice of the El

j. Given f ∈ L1(Sn−1, dσ), we define Πl f by

Πl f (ζ) =

∫
Sn−1

Zl(ζ, η) f (η) dσ(η)

for all ζ ∈ Sn−1; Πl f is a spherical harmonic of degree l and, in the case f is in
L2(Sn−1, dσ), it is the orthogonal projection of f on SHl(Sn−1). The series

+∞∑
l=0

Πl f

is called the Fourier–Laplace series of f (see [2] for more on spherical harmonics).
It is a classical result [7, p. 45] that the Fourier–Laplace series of an integrable

function f on Sn−1 is (C, δ)-summable in mean to f when δ > (n − 2)/2.
Given δ ≥ 0, a series

∑
m≥0 bm of complex numbers is (C, δ)-summable to B ∈ C if

lim
m→+∞

m∑
l=0

(
m − l + δ

δ

)(
m + δ

δ

)−1

bl = B,
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where (
k + δ

δ

)
=

(δ + 1)(δ + 2) · · · (δ + k)
k!

.

In particular, a series is (C, 0)-summable to B if and only if it converges to B.
Moreover, if it is (C, δ)-summable to B, it is (C, δ′)-summable to B for all δ′ ≥ δ [3,
pp. 96–100].

Finally, with the above notation we have, for any δ ≥ 0 and d ∈ N≥0,

lim
m→+∞

(
m − d + δ

δ

)(
m + δ

δ

)−1

= 1.

Indeed, this means that the series
∑

m≥0 bm, where bd = 1 and bm = 0 if m , d, is (C, δ)-
summable to 1.

3. Proof

By the first remark in Section 2, we see that it will suffice to establish the proposition
with Λ a sphere of radius r centred in 0: Λ = S (0, r).

We begin by assuming that Jd+(n−2)/2(2πr) , 0 for all d ∈ N≥0. We take a function f
integrable on Sn−1 such that ∫

Sn−1
e−2πix·η f (η) dσ(η) = 0

for all x ∈ S (0, r). We must show that f = 0 almost everywhere on Sn−1. We choose
δ > (n − 2)/2 and calculate for x ∈ S (0, r):∣∣∣∣∣∣ m∑

l=0

((
m − l + δ

δ

)(
m + δ

δ

)−1 ∫
Sn−1

e−2πix·ηΠl f (η) dσ(η)
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
∫
Sn−1

e−2πix·η

( m∑
l=0

(
m − l + δ

δ

)(
m + δ

δ

)−1

Πl f (η)
)

dσ(η)

−

∫
Sn−1

e−2πix·η f (η) dσ(η)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
Sn−1

e−2πix·η

( m∑
l=0

(
m − l + δ

δ

)(
m + δ

δ

)−1

Πl f (η) − f (η)
)

dσ(η)

∣∣∣∣∣∣
≤

∫
Sn−1
|e−2πix·η| ·

∣∣∣∣∣∣ m∑
l=0

(
m − l + δ

δ

)(
m + δ

δ

)−1

Πl f (η) − f (η)

∣∣∣∣∣∣ dσ(η)

=

∫
Sn−1

∣∣∣∣∣∣ m∑
l=0

(
m − l + δ

δ

)(
m + δ

δ

)−1

Πl f (η) − f (η)

∣∣∣∣∣∣ dσ(η)

and this last integral tends to 0 for m→ +∞ by our choice of δ. Hence,

lim
m→+∞

m∑
l=0

(
m − l + δ

δ

)(
m + δ

δ

)−1 ∫
Sn−1

e−2πix·ηΠl f (η) dσ(η) = 0 (3.1)
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uniformly in x ∈ S (0, r). Now, by [1, Lemma 9.10.2, p. 464], for any spherical
harmonic Yk of degree k,∫

Sn−1
e−2πitζ·ηYk(η) dσ(η) = 2πikt−(n−2)/2Jk+(n−2)/2(2πt)Yk(ζ),

where t ≥ 0 and ζ ∈ Sn−1. Writing x = rξ with ξ ∈ Sn−1 in (3.1), we get

lim
m→+∞

m∑
l=0

(
m − l + δ

δ

)(
m + δ

δ

)−1

2πilr−(n−2)/2Jl+(n−2)/2(2πr)Πl f (ξ) = 0

uniformly in ξ ∈ Sn−1. Therefore, fixing d ∈ N≥0,

lim
m→+∞

∫
Sn−1

( m∑
l=0

(
m − l + δ

δ

)(
m + δ

δ

)−1 2πilJl+(n−2)/2(2πr)

r(n−2)/2
Πl f (ξ)

)
Πd f (ξ) dσ(ξ) = 0

or

lim
m→+∞

m∑
l=0

(
m − l + δ

δ

)(
m + δ

δ

)−1 2πilJl+(n−2)/2(2πr)

r(n−2)/2

(∫
Sn−1

Πl f (ξ)Πd f (ξ) dσ(ξ)
)

= 0.

(3.2)
But ∫

Sn−1
Πl f (ξ)Πd f (ξ) dσ(ξ) = 0

if l , d. So, (3.2) reduces to

lim
m→+∞

(
m − d + δ

δ

)(
m + δ

δ

)−1

2πidr−(n−2)/2Jd+(n−2)/2(2πr)‖Πd f ‖22 = 0

or, in view of the last remark in Section 2, to

2πidr−(n−2)/2Jd+(n−2)/2(2πr)‖Πd f ‖22 = 0.

From our choice of r, we deduce that ‖Πd f ‖22 = 0, hence Πd f = 0, and this is true for
any d ∈ N≥0. The Fourier–Laplace series of f is therefore identically zero, so (C, δ)-
summable in mean to zero: ‖ f ‖1 = 0, that is, f = 0 almost everywhere on Sn−1.

Assume now that there exists d ∈ N≥0 such that Jd+(n−2)/2(2πr) = 0. Choose as f
integrable on Sn−1 a nonzero spherical harmonic of degree d. Then∫

Sn−1
e−2πix·η f (η) dσ(η) = 2πidr−(n−2)/2Jd+(n−2)/2(2πr) f (ξ), (3.3)

that is, ∫
Sn−1

e−2πix·η f (η) dσ(η) = 0

for all x = rξ ∈ S (0, r). �
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R 3.1. The proposition is the exact generalization to n ≥ 2 of the mentioned
result of Lev and Sjölin, the supplementary 2π in our statement coming solely from a
different normalization of the Fourier transform.

R 3.2. Equality (3.3) shows that if Λ is the zero set of a homogeneous harmonic
polynomial on Rn, then (Sn−1, Λ) is not a Heisenberg uniqueness pair. This is the case,
for example, in Rn with the union of the hyperplanes x1 = 0, x2 = 0, . . . , xn = 0, and in
R3 with the cone

x2

a2
+

y2

b2
=

z2

a2
+

z2

b2
.
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