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Sturm theory is extended to the equation

(-pyt)'+qy=*ry

for 1/p,<j,reL,[0,1] with p,r>0, subject to boundary conditions

and
(-lydjZO where S^a/lj-bf,, ;"=0,l.

Oscillation and comparison results are given, and asymptotic estimates are developed. Interlacing of
eigenvalues with those of a standard Sturm-Liouville problem where the boundary conditions are asy(j) =

( / ) ( ) . 7 = O . 1» forms a key tool.

1991 Mathematics subject classification: 34B24.

1. Introduction

A large body of literature has built up, over the years, on problems of Sturm-
Liouville type but where the boundary conditions depend affinely on A. Both Walter
[12] and Fulton [4] have extensive bibliographies and we also refer to Fulton for
various physical applications. Most of the work these authors cite deals with the case of
one fixed and one variable end condition, say ao=co=0 and <5t>0 in the notation of
the abstract. Such work also deals almost entirely with completeness and expansion
theory in L2[0,1] © C\ where k is the number of A-dependent boundary conditions,
although Fulton also treats asymptotics, to which we return below. Completeness and
expansion theory is also the focus of more recent works, e.g. [6], [8] and their
references, some of which cover general settings and, in particular, dispense with the
'right definiteness' conditions 5l>0, r>0.

Problems with A-dependent end conditions can also be found in the literature on the
calculus of variations: see Reid [10, p, 399] for references treating various topics (but
not Sturm theory). Nevertheless Reid [10, § V.7] shows how focal point analysis can be

'Research support in part by grants from the NSERC of Canada.

57

https://doi.org/10.1017/S0013091500018691 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018691


58 P. A. BINDING, P. J. BROWNE AND K. SEDDIGHI

used to give an oscillation theorem in the case when ( — iy(py/y){j) is non-increasing in
X. This corresponds to the case Cj=0 which we call "exceptional" and which we treat in
Section S. We remark that Reid's methods and ours both permit nonaffine boundary
conditions, but for simplicity we adhere to the well studied formulation above. As Reid
notes in [11, p. 48], the oscillation theorem for the case c,=0 also follows from classical
arguments involving Picone's identity: see also Ince [7, § 10.6]. It is worth pointing out
that the "left definite" fixed end condition problem can be transformed to this case [10,
p. 251]. The corresponding variable end condition problem requires further analysis,
however, and we intend to pursue this subsequently.

We have two basic aims here. One is to show how known properties of the Priifer
transformation, together with simple geometrical arguments, yield a comprehensive
Sturm theory for variable end condition problems with ( —iySj£O. The other is to
establish a framework for subsequent work on the more difficult cases where such
definiteness conditions fail. We operate for the most part under the minimal coefficient
conditions, 1/p, 4, r e l ^ [0,1]. Thus even in the exceptional case Cj=0, our work
generalizes that of, say, Reid [10, § V.7] where p,q,r are assumed to be continuous.

In Section 2 we set up our framework and we apply it to the usual fixed end
condition problem. Section 3 contains the basic results for one variable end condition
with ct 7*0. The eigenvalues Xn interlace those of the "asymptotic" fixed end condition
problem obtained by formally setting A=00 in the A-dependent boundary condition.
This leads to an asymptotic estimate of the form

A modified Prufer transformation gives a better estimate if pr is absolutely continuous,
and this includes Fulton's results for p=r = 1. Comparison principles parallel those for the
usual (fixed end condition) Sturm-Liouville problem, but the oscillation theorem needs
modifying: one oscillation count (which we identify) corresponds to two distinct eigen-
values. In Section 4 these results are generalized to two variable end conditions: this
time either two oscillation counts have two eigenvalues each, or else one count has three.

Section 5 contains the corresponding results for the exceptional cases c,=0 (noted
above) and dj=O. The latter have been dismissed by previous authors as equivalent to
fixed end condition problems, but we shall show that the results are, in fact, parallel to
those for ( —iy<5,<0. We conclude with an Appendix on asymptotics for the fixed end
condition (weighted Sturm-Liouville) problem with preAC[0,1] and qeL^O, 1]. The
literature abounds with asymptotic developments for the eigenvalues of the unweighted
problem under various conditions on q, cf. [1, §12.8], [5, §8.4], [7, §11.4], [9, p. 35].
We were unable to locate such results in the generality we needed and hope, therefore,
that the Appendix may be of interest in its own right.

2. Preliminaries

We study the differential equation
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STURM-LIOUVILLE PROBLEMS 59

-WY+qy=*ry, '=£ (2-1)

on the interval [0,1], assuming \/p,q,reLx\Q, 1] with p,r>0. Until Section 4, we
impose an initial condition of the form

), (bo, do) ± (o, o). (2.2)

This enables us to define a Prufer angle 6(k, x) by means of the differential equation

q)sin2e (2.3)

with initial condition

d(X,0)=cor \bo/do) (2.4)

which we assume to be in the interval [0, n[. Standard results on differential inequalities
then show that 0(k, 1) is a continuous strictly increasing function of A and Atkinson [1,
§ 8.4] establishes the limits

0(A,1)->O as A-»-oo,0(A,l)->oo as A-KJO. (2.5)

We define the right-hand Dirichlet problem (RDP) associated with (2.1,2.2) by
appending the boundary condition y(l)=0. The corresponding eigenvalues are denoted
by Af, n=0,1,2,.... The above results can be translated as follows into facts about the
graphof/(A):=cot0(A,l).

Theorem 2.1. The graph \i = /(A) consists of countably many continuous branches Bn,
n=0,1,2 Interpreting A"j as —oo, we have for n^0:

(1) 0(A,l)e]mt,(n + lM/or Ae^^ .AfC and 0(A?,1)

(2) Bn is defined for ke~\k°-uk%[ and f decreases over this interval with
l im* l A°. , fW = + oo, lim^ T Xn /(A) = - oo.

(3) k = k% are the vertical asymptotes of the graph of f.

The following result, which states (roughly) that abscissae A from Bn correspond to
eigenfunctions with n internal zeros, illustrates the appropriateness of using cot0(A,l)
rather than the customary tan 8(k, 1).

Lemma 2.2. If n^O and ke^-^k^ then all solutions o/(2.1), (2.2) possess exactly
n zeros in ]0,1[.

Proof. The solutions of (2.1), (2.2) form a vector space of dimension 1. The
arguments of Atkinson [1, p. 209] show that 0(A, -) increases through any value x0 at
which 6(k,x0) is an integer multiple of n. Since 0(A,l)e]n7r,(n + l)7i], there is no
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xe]0, l [ such that 0(X,x)=(n+l)n. Since 0(A,O)e[O,7t[, the result follows directly for
n=0, while for n > 0 we have 0(A, x) = nn for some x e ]0,1 [. D

We are now ready to discuss general right hand boundary conditions. The simplest
case is the fixed end condition (Sturm-Liouville) problem.

Corollary 23. / / the solutions of (2.1), (2.2) are also required to satisfy 0(1,1) =
/?(mod7i),/?e]0,;i], then for each n^O there is a unique eigenvalue k=kn whose
corresponding eigenfunction y has n zeros in ]0,1[. The AB interlace the RDP eigenvalues
Af, in the sense that

Proof. If /?#7t then the horizontal line /i=cot/? cuts Bn at (An,/?) say, and if /J=TI we
set An = AB

>. In both cases Lemma 2.2 applies. •

This includes the usual Sturm oscillation theorem, and we turn now to the analogous
procedure for the variable end condition

(2.6)

Until Section 5 we assume Cj#0, 81: = a1d1 -blc1>0. Evidently (2.6) may be written as

cot0(A,l)=g(A)
where

(2.7)

Lemma 2.4. The graph fi=g(A) is a hyperbola with horizontal asymptote fi=al/cl and
vertical asymptote A= —djcx, and g increases along both branches.

Indeed we have the expression

g(A) = (a1/c1)-<51cr2(A+d1/c1)-1. (2.8)

We now define o^e^Tr] by

ajct. (2.9)

Definition 2-5. The right hand asymptotic problem (RAP) associated with (2.1), (2.6) is
defined by the equation (2.1), the condition (2.2) and the condition

(2.10)

The corresponding eigenvalues are denoted by X*.
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This standard Sturm-Liouville problem is one of our main tools in the next section.
We set

0-=0-a 1 ;

g-(X)=cotO-(X,l)

using (2.7) and cot0(A, l)=(py')(l)/y(l). Then a simple calculation yields

1 l t f b1+cldll (2.11)

This translation of 0 to 9~ converts the graph of g to a straight line (the graph of g"),
which is what we would have obtained from (2.7) were c t=0. The graph of / is also
changed by this translation and the following is the analogue of Theorem 2.1 for
/~(A)=cot0~(A, 1) defined this time by means of (2.3), (2.4).

Corollary 2.6. The graph o//i = /~(A) is qualitatively similar to that of f except that
UmA__00/~(A)= —Ox/ci and the vertical asymptotes are X = k*, n=0,1,. . . .

3. One variable end condition

In this section we study the problem (2.1), (2.2), (2.6) assuming cx#0, ^!>0. For the
oscillation theorem, we suppose that the vertical asymptote for g, (Lemma 2.4),
intersects the Nth branch BN of / or is its right hand asymptote, (Theorem 2.1); i.e. we
select N so that

XS-iK-dJc^Xj} (3.1)

Theorem 3.1. The eigenvalues X = kn can be ordered X0<ki< ... where for n^N the
corresponding eigenfunction y has n zeros in ]0,1[, and for n>N, y has n—\ such zeros.

Proof. The kn correspond to the intersection points of the graphs of / and g.
Evidently, the left branch of the graph of g intersects each Bn precisely once for
O^n^N, and Lemma 2.2 gives the corresponding oscillation counts. A similar
argument holds for n>N using the right branch for g, unless — d1/c1=X%. In this latter
case, XN+1=X% and again the eigenfunction has N zeros by Lemma 2.2. •

We turn next to the comparison theorem and suppose that the coefficients in (2.1),
(2.6) depend on a parameter t.

Theorem 3.2. (i) / / ajci and l/p are non increasing, bo/do and q are non decreasing
and r, Slt c, and dt are constant in t, then each Xn is nondecreasing in t.
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(ii) If the assumptions of(i) hold except that r and 8t are nondecreasing in t then so is
X^for all n such that AB>max{0, —djci).

Proof, (i) By differential inequality theory, /(A) is nondecreasing in t for fixed A. By
(2.8), g{X) is nonincreasing, so the conclusion follows from the piecewise monotonicity of
/(A) and g(X) in A given in Theorem 2.1 and Lemma 2.4.

(ii) The same argument holds for A>max {0, — ̂ / c j } . •

Remark. In a similar way we see that if the coefficients are continuous in t, then so
are the AR.

Theorem 3.1 leads to a partial interlacing of An and X°, but complete interlacing is
obtained if we use the X* of Definition 2.5 instead, or if we consider only n>N.

Theorem 3.3. (i) A^_y<Xn<X^ for all n.
(ii) A?_! <XA

K <Xn<XD
n for all n>N.

Proof, (i) The AR also correspond to the intersection points of the graphs of / " and
g~, and it is evident that the latter, being a straight line of positive slope by (2.11),
intersects each branch of the former precisely once. The result thus follows from
Corollary 2.6.

(ii) This follows by considering the graphs of / (Theorem 2.1) and g (Lemma 2.4) for
X>-d1/c1. •

Corollary 3.4. Xn=(nn/o)2 + o(n2) as n->oo, where a=jos <**& s=(r/p)il2-

Proof. This follows from Theorem 3.3 and the corresponding estimate for X*, [2].
Note that p~1/2,r1/2eL2[0,1] guarantee seL^O, 1]. •

The graphs of/~ and g~ suggest that Xn—X^-l | 0 as n-*co, which under appropriate
conditions will improve the asymptotic estimates. We shall now examine the relation
between AB and X*- j more carefully. We introduce a modified Priifer angle by

cot <p=(Xs) ~ ll2)//y=(pr A)"1/2 cot 6. (3.2)

For related, but slightly different, transformations see [2, p. 385], [3, §4.1], [5, §8.4].

Theorem 35. IfpreAC[0,1] then Xn-X*-t=0(n~2), as n-»oo.

Proof. From (3.2), a simple calculation gives

1 (3.3)
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where the right side obeys a Caratheodory condition in (<f>,x) and is smooth in <f> and
A(>0). The initial condition may be taken from (2.4) and (3.2) in the form

cot 4>(k, 0)=((pr)(O)A)" ll2b0/d0. (3.4)

Denoting d-/dk by {-)x we may therefore apply [10, §11.4] to yield

2 ^ = A - 1 ' 2 [ S + O l ( l ) ] + ^[(pr)'(pr)-1cos2^ + O l ( l ) ] (3.5)

where o1(l)->0 in Lt[0,1] as A-KX>. The integrating factor

h(x)=exp ft } ((pr)'(pr) -lcos2<f> + O l ( l ) ) | (3.6)

for (3.5) thus satisfies y^Hx)^'1 for some positive constant y, so

^&k~U2<r for A large enough. (3.7)

Now

<f>x(0) = -(cosec2 4>(k, 0))- '(cot <£(A, 0))x

=-(H-0(A-1))- 10(A-3 / 2 )=0(A"3 / 2 )

by (3.4), so (3.7) gives

<£A( 1) ^ dk ~1/2 for some constant 5 > 0. (3.8)

The variational equation for (2.3) shows that 0(A,1) is C1 in A (>0), so by Theorem
3.3(ii), / is C1 on /n: = [A^-!,AJ. Thus by the mean value theorem

for some keln. From (2.8) the left side is 0(An"1)=0(n"2) by Corollary 3.4, so it is
enough to show that, for some e>0,

) ^ — e for all Ae/B and n large.

We claim

/(A) =0(1) (3.9)
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for such A. Indeed, (2.8) gives /(AB)=O(1), (2.10) gives /(#_!)=0(1) and so Theorems
2.1 and 3.3(ii) show that / decreases continuously over /„. Now with p2=(pr)(l) we
obtain from (3.2) the required estimate

/A(A)=(pA*'2 co

= -<5p+0(A-1/2)

by (3.8) and (3.9), since cosec2<£(A,l) = l+cot20(A>l) = l+p-2A-1/(A)2=O(l), again by
(3.9). •

Corollary 3.6. (i) If preAC\0,\], then Xn=((n + v)n/a)2 + o{n) where v = - | if do=0,

(ii) If in addition (pr)'eAC[0,1] then o(n) may be replaced by 0(1).
(iii) If pr is a constant (p2) then 0(1) may be estimated by

(3.10)

where cot* 0=cot 9 if 0*0, cot*0 = 0, and d{k, j) are determined by (2.4), (2.10).

This follows immediately from Theorem A3 in the Appendix. We remark that in the
case p = r=l (so p = a = 1), we recover Fulton's formulae [4, §4, Cases 1 and 2].

4. Two variable end conditions

In this section we consider the variable end condition problem (VEP) defined by the
equation (2.1) subject to the boundary conditions

(a}k + bj)y(j)={cj*+d})(py')U), j=0,l, (4.1)

with c,#0 and (-1)45; <0. We define aoe[0,7i[ by

and 0(A,O)e]ao,ao + 7r[ by

cote(X,0)=(a0X+b0)(coX+d0)-
1. (4.3)

We now define A?,/tf, /(A) and /"(A) as in Section 2 but using (4.3) in place of (2.4). In
particular, A? and A;? are eigenvalues for problems with variable left end conditions, and
Section 3 applies to these problems provided we replace x by 1 — x.
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Theorem 4.1. Theorem 2.1 carries over the present case, where the initial conditions
are given by (4.3).

Proof. On each of its branches, cot"1 is decreasing as is the right side of (4.3) on
both of its branches. Further

Km cot0(A,O)=-oo, lim cot0(A,O) = +oo,

so recalling that 0(A,O)e]ao,ao + rc[, we see that 0(1,0) increases through n as A
increases through —do/co. It follows that 0(A,O) increases for all real A.

Differential inequality theory applied to (2.3) now shows that 0(1,1) increases for all
real A. Similarly, ao<0(A,O) and (2.5) yield 0(A,1)-KX> as A-»oo. Finally, 0(A,O)->oto as
X-* — oo, so 0(A,1)-»O by (2.5) and continuous dependence theory for (2.3). Thus 6 has
all the properties needed for the proof of Theorem 2.1. •

In order to state the oscillation theorem, we define the double Dirichlet problem to be
the equation (2.1) subject to Dirichlet conditions y(j)=O,j=O,l. The eigenvalues of this
problem are denoted by DX%. We now define indices N(j) by

^ ^ ^ , ;=0 , l , . (4.4)

cf. (3.1): as before we take Dk1l = — oo. Finally we write

m= min N(j),M= max N(j).
7 = 0,1 7=0.1

Theorem 4.2. The eigenvalues of the VEP may be ordered A0<A1<... where the
corresponding eigenfunction has n zeroes in ]0,1[ for n^m, n— 1 zeros for m<n^M + l
and n—2 for n>M + \.

Proof. Suppose m=JV(l). As in Theorem 3.1, the An correspond to the intersection
points of the graphs of / and g (2.8), and each branch Bn has exactly one such point
except for BN, say, which has two. Here JV is specified by

A j J . ^ - ^ / c ^ A j ? , (4.5)

cf. (3.1).
Replacing x by 1 — x we now view the RDP (with eigenvalues A") as one of the type

considered in Section 3. As in Theorem 3.1 the Aj* are the intersections of the graph of
an / generated by a problem with an initial Dirichlet condition and a g generated by
the condition

(aoX+bo)y(l)=-p(0)y'(l)(coX+do).
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Thus for wgN(O), (respectively, n>N(0)), the eigenfunction corresponding to A? has n,
(respectively, n -1 ) zeroes in ]0,1[: see (4.4). Moreover N=N(l) by (4.5) so for n^JV(l),
the eigenfunctions of the VEP and RDP have the same number of internal zeros, and
for «>JV(1), the RDP eigenfunction has one more zero than that of the VEP. The
argument for the case m = JV(0) is analogous. •

The comparison theorem is similar to Theorem 3.2 except that variations in a0 and c0

are now possible. Again we suppose that our coefficient functions depend on a
parameter t.

Theorem 43. (i) Ifajci and l/p are nonincreasing, ao/co and q are nondecreasing and
r, Sj, Cj and dj 0 = 0,1) are constant in t, then each Xn is nondecreasing in t.

(ii) / / the assumptions of (i) hold except that r and (— lYSj are nonincreasing in t, then
so are all positive kn for n>M.

For the interlacing theorem we introduce one more related problem. The Sturm-
Liouville double asymptotic problem, with eigenvalues AkA, is defined by the equation
(2.1) and the end conditions

ajy(j)=cj(p/)(j), 7=0,1. (4.6)

Theorem 4.4. AXA-2<kn<
AkA, n = 0,l

Proof. From the proof of Theorem 4.1, we claim Corollary 2.6 and hence Theorem
3.3(i) as stated (but now for variable initial condition). Replacing x by 1— x we have
AkA- t<XA< AkA from Theorem 3.3(i) and the conclusion is now immediate.

For large, n, Theorem 4.4 can be improved: in fact we have the following immediate
consequence of Theorem 3.5 and the reasoning of Theorem 4.2.

Corollary 4£. //pr e AC[0,1] then

0(~2) os n-KX>.

Thus the asymptotic estimates of Corollary 3.6 carry over to the present situation,
except that v= — 2 in all cases (since c ,#0 ensures that (4.6) are not of Dirichlet type)
and 6(X, j) are now determined by (4.6).

5. Exceptional cases

We now consider the possibility CJ5J=0 starting with one variable end condition. We
note that Corollary 2.3 shows that the usual (Sturm) oscillation theorem is valid in the
case a1=c1=0. The following shows that in other cases where Sl=0 and (2.6) is a
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genuine boundary condition, the oscillation theorem generally takes the form of
Theorem 3.1 instead. Recall the definition of the RAP and RDP from Section 2.

Theorem 5.1. For the Problem (2.1), (2.2), (2.6) suppose 5t =0, but that (a^Cj) #(0,0).
Then (i) Theorem 3.1 holds for an appropriate index N, unless there is a repeated
eigenvalue in the sense that —djcx is a RAP eigenvalue i / c ^ O or —bja^ is a RDP
eigenvalue if c1=0. (ii) If there is a repeated eigenvalue then Sturm's oscillation theorem
holds.

Proof, (i) If Cj #0, then bx =a1dl/c1 and (2.6) reads

(5.1)

from which either aly(l)=cl{py)(l) or clX+dl=O. An eigenvalue An thus either comes
from the (Sturm-Liouville) RAP, or else equals —dj/cj. Hence N is defined by

If ct =dx = 0 # a i , then

0 (5.2)

from which an eigenvalue Aa either comes from the (Sturm-Liouville) RDP or else
equals — bja^. Hence N is specified by A^_x < — bjax <AjJ.

(ii) In this case we have coalescence of either —djcx with Aj$ or — bi/ai with A]J. The
correspopnding eigenfunctions satisfy (2.1) and (2.2) and hence are unique up to scalar
multiplication, so there is no "extra" eigenfunction in this case. •

Remark. The discrepancy between (i) and (ii) appears because Sturm's theorem
includes only eigenfunctions. A result like (i) is always available of one includes a
"generalized" eigenfunction z satisfying — (pz')'+(q — h)z=ryN with z(0)=(pz')(0)=0,
where span (yN,z) plays the role of the algebraic eigenspace at kN in case (ii).

In the situation of Theorem 5.1, the remaining theorems of Section 3 require simple
modifications which will be left to the reader. We turn now to the case 51^0,cl=Q.

Corollary 52. Ifc1=0<51 then Sturm's oscillation theorem holds.

Proof. In this case, the graph of g (2.7) is a straight line of positive slope, so the
proof of Corollary 2.3 remains valid. •

As noted in the Introduction, this result can be found for continuous coefficients in
various sources; cf[ll, p. 48]. Indeed it suffices for g to be a nondecreasing function.
The comparison Theorem 3.2 requires obvious modification, the interlacing Theorem 3.3
remains valid since the RAP and the RDP coincide, and hence Corollary 3.4 is also
unchanged. The asymptotic Theorem 3.5 now needs modification, however, since it is no
longer true in general that kn—A^_j-»O as n->oo.
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Theorem S3. If c1=0<51 and preAC[0,1], then An-A^_1=O(l) and if pr is a
constant (p2), then

where a comes from Corollary 3.4.

Proof. We detail the changes needed to the proof of Theorem 3.5. The end condition
(2.6) now gives tan0(A,l)=O(/l-1)) so tan<£(A,l) = pA1/2tan0(A,l)=O(A-1/2) where p2 =

(tan0(A, 1))A = -(2pA3'2)-1tan</.(A, l J + f o A 1 ' 2 ) " 1 ^ l)sec24>(A, 1)

3 ' 2 ) , (5.3)

by virtue of (3.8). We now estimate AB by using tan#(A, 1) instead of cot0(A, 1), noting
that tan0(A^_t, l) = 0. By the mean value theorem,

tan0(4,, l J - t a n ^ A ^ i , l) = (AB-A^_1)(tan0(A, 1)), (5.4)

for some XB{_X^UX^\. Since the left side is 0(An"
1) = 0(«"2) (by the analogue of

Corollary 3.4), the first conclusion follows from (5.3).
If pr=p2 then (3.5) becomes

where F is 0(A~1/2) in Lt[0,1]. Thus the integrating factor h of (3.6) is now l+0(A~1/2)
and so

=iA"1/2a+o(A-1/2).

Then (5.3) can be estimated more explicitly by

(tan 0(A, 1))A=(PA1/2)-HiA-1/2a) sec2 <̂ .(A, 1)+0(A-2)

= (7(2pA)-1+0(A-2),

so (2.6) and (5.4) yield the required result, since An=0(n2). •

Corollary 5A Ifcl=0<5l then Corollary 3.6 carries over with the following modifica-
tions: v=0 ifdo=0, v= - \ i /d o #0 , and 2pd1(«ra1)"

1 must be added to R of (3.10).
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Proof. This follows from Theorem 5.3 and the fact that the RAP now has a right-
hand Dirichlet condition. The case p = r = l , (hence p = o = l) is discussed by Fulton [4,
§4, Cases 3 and 4].

We conclude with a brief look at the two variable end condition problem. Roughly,
this is a combination of the two possibilities corresponding to Theorem 5.1 and
Corollary 5.2. The following result is representative and illustrates a rather unusual sub-
case where (2.1) has no boundary condition at all.

Corollary 55. Suppose 50=81=0, then neither end condition is of Sturm-Liouville
type, and that there are no repeated eigenvalues (see the Remark below). Then Theorem
4.2 holds for appropriate m and M.

Proof. Arguing as for (5.1), (5.2), we have

~ CjO»y)(/)](A+y,) = 0 j=0,1, (5.3)

for appropriate yj. The first factors provide Sturm-Liouville eigenvalues and the second
provide the two "extra" oscillation counts m and M provided yo^yi- If yo=yi> however,
both conditions (5.3) are met, so the "extra" oscillation counts come from the two
dimensional nullspace of (2.1) with A= — y0, but without any boundary conditions. •

Remark. Repeated eigenvalues for j = 1 in (5.3) are as for Theorem 5.2, and those for
; = 0 refer to the left hand asymptotic/Dirichlet problem, unless yo = ')'i m which case
repeated eigenvalues refer to the double asymptotic/Dirichlet problem.

Appendix

We establish three asymptotic formulae for the eigenvalues Xn of the (weighted
Sturm-Liouville) problem (2.1) subject to boundary conditions of the form

bJy{j)=dJW)(j),(bj,dJ)^(0,0), j=0,l. (A.1)

We assume as before that l /p^reL^O, 1] with p,r>0 and, by scaling (2.1) if necessary,
we assume (without loss of generality) that Jo VP= !• Our treatment is related to that of
Eastham [3, §4.2] for the periodic problem, but our use of (3.2) seems to produce
stronger results.

Using the variable

and denoting d/dt by -, we see that (2.1) becomes

-y+pqy=lpry,

https://doi.org/10.1017/S0013091500018691 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018691


70 P. A. BINDING, P. J. BROWNE AND K. SEDDIGHI

where p,q,r and y are viewed as functions of te[0,1]. The boundary conditions (A.1)
then take the form

, 7=0,1.

The transformation (3.2) becomes

so we may take (A.1) in the form

co
where

(A.2)

(A.3)

for some integer fc^O. Assume now that preAC[0,1] (as a function of x). It is easily
seen that preAC[0,1] (as a function of t) and (3.3) then becomes

)=((pr)(M) jj

e [0,7t[ and <f>(X, 1) - kn e ]0, it]

(A.4)

We need two lemmas.

Lemma A.1. Suppose pr, feAC[0,1]. Then for some constant C depending on f,

1

for A>1.

Proof.

=0(A"1/2).

The argument for |J / sin2 </> is analogous.

Lemma A2. (i) / / dj=0 then </>(AB, 7) = j(n + l)7r.
(ii) lfd^O then

•

) , as

Proof, (i) Since the eigenfunction for kn has n zeros in ]0,1[ (cf. Corollary 2.3) the
result follows from (A.3).
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(ii) By (A.2), (A.3), <f>(X, j) = jnn+cor \(pr)(j)X)-il2bj/dj

(£\ l2). D
We are now ready for the asymptotic estimates.

Theorem A3. (i) / / preAC[0,1] then Al'2 = o~1(n + v)n + o(l) as n-*co, where v is
half the number of Dirichlet conditions specified by (A.I), and

(ii) //, in addition, (pr)'eAC[0,1] then o(l) may be replaced by 0(n-1).
(iii) Ifpr is a constant (p2) then 0(n~1) may be estimated by

where
= bj/dj if dj*O, E(j)=0 if dj=O.

Proof. In each case we integrate (A.4) from 0 to 1 (dt).

(i) From Lemma A.2, the left side is (n + v)n+A where |y4|=o(l) as A-»oo. Given
£>0, choose /e/lCCO.l] so that ||/-(4pr)~1(pr)||1<e. By Lemma A.2, the right side of
(A.4) (integrated) becomes

Al/2a+B+D

where |£>|<e, |fl|<yA~1/2, and y depends on / (and hence on e). We now choose Xc large
enough to ensure |-4|<£ and \B\<s whenever X>Xt.

(ii) Choosing /=(4pr)~1(pr)', we now obtain from Lemmas A.I and A.2

l/2). (A.5)

Setting

(A.6)

we have n=o(l) from (i), so 0(A~1/2)=0(n"1) and the conclusion follows from (A.5).
(iii) Refining (A.S), we have from Lemmas A.1 and A.2
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so using (A.6) again, we obtain

•
Remark. It is possible to use bounded variation instead of absolute continuity at

various points, cf. [1, § 12.8], [5, § 8.4].
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