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Abstract

Glucose homeostasis is precisely regulated by glucagon and insulin, which are released by pancreatic a- and b-cells, respectively. While

b-cells have been the focus of intense research, less is known about a-cell function and the actions of glucagon. In recent years, the study

of this endocrine cell type has experienced a renewed drive. The present review contains a summary of established concepts as well as

new information about the regulation of a-cells by glucose, amino acids, fatty acids and other nutrients, focusing especially on glucagon

release, glucagon synthesis and a-cell survival. We have also discussed the role of glucagon in glucose homeostasis and in energy and lipid

metabolism as well as its potential as a modulator of food intake and body weight. In addition to the well-established action on the liver,

we discuss the effects of glucagon in other organs, where the glucagon receptor is expressed. These tissues include the heart, kidneys,

adipose tissue, brain, small intestine and the gustatory epithelium. Alterations in a-cell function and abnormal glucagon concentrations

are present in diabetes and are thought to aggravate the hyperglycaemic state of diabetic patients. In this respect, several experimental

approaches in diabetic models have shown important beneficial results in improving hyperglycaemia after the modulation of glucagon

secretion or action. Moreover, glucagon receptor agonism has also been used as a therapeutic strategy to treat obesity.
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Introduction

Glucose homeostasis is mainly controlled by the islets of

Langerhans, which constitute the endocrine portion of

the pancreas. About one million islets are distributed

throughout the exocrine pancreas in an adult human.

The size of these multicellular structures varies from 50

to 500 mm. They are composed of 1000–2000 different

types of cells, which secrete several cell-specific hormones

and peptides in response to nutrients: glucagon is released

from a-cells, insulin from b-cells, somatostatin from d-cells,

pancreatic polypeptide from PP-cells and ghrelin from

1-cells(1,2). a- and b-Cells are the most abundant islet cell

types. In rodents, glucagon- and insulin-releasing cells

constitute about 15–20 % and 60–80 % of the total islet

population, respectively, although the proportion of each

cell type may vary depending on the anatomical portion

of the pancreas(1,2). While b-cells are mostly integrated in

the central core of the islet, a-cells are around the periph-

ery forming a cell mantle. However, the a-cell population

in humans is up to 45 % of the islet and is distributed in

patches throughout the whole islet, frequently juxtaposed

to b-cells. While intercellular communication via gap junc-

tions is frequent in b-cells, leading to synchronised

responses like a syncitium, a-cells work individually with-

out apparent intercellular coupling(3,4). These cytoarchitec-

ture features along with results of microcirculatory flow

studies suggest that there is an important intercellular

communication conduit from b- to a-cells(5), in which

paracrine interactions play a prominent role(6). An exten-

sive capillary network throughout the islet(2) allows for a

rapid sensing of changes in plasma nutrients and signalling

molecules, triggering the subsequent secretory responses.

Additionally, islet cells, particularly a-cells, are subjected

to a precise regulation through a highly innervated sym-

pathetic and parasympathetic system that extends through

the perivascular spaces. This neural network has a critical

function in rapid islet secretory responses, particularly

under hypoglycaemic conditions(7,8). Thus, among the

numerous signalling levels that regulate the secretory

capacity of islet cells, nutrients are a major player.
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Changes in plasma glucose levels are one of the main

control inputs for the release of glucagon and insulin. In

pancreatic b-cells, high glucose levels induce the intra-

cellular uptake of the carbohydrate, triggering the coupling

between intracellular metabolic signals and the insulin

secretory output. Insulin receptors are then activated by

increased plasma insulin levels, leading to the uptake of

glucose and its accumulation as glycogen or fat in

muscle, liver and adipose tissue. This process leads to a

decrease in plasma glucose concentrations until they

reach basal levels. In contrast, pancreatic a-cells release

glucagon more actively in hypoglycaemic conditions.

This hormone binds to its receptors in the liver, the main

target organ of glucagon, and activates hepatic gluconeo-

genesis and glycogenolysis(9,10). As a consequence, hepatic

glucose is released to the bloodstream, allowing for a

restoration of plasma glucose levels. Since insulin and

glucagon share some target organs but have opposite

roles, the final effect of both hormones depends on the

insulin:glucagon ratio. In addition to glucose, plasma

lipids and amino acids also regulate hormonal release

from both cell types and, at the same time, insulin and

glucagon act on fat and protein metabolism(11–14), as will

be discussed later. All these processes are impaired in dia-

betes mellitus. This metabolic disease is not only the result

of insulin secretory abnormalities, the loss of b-cell mass

and peripheral insulin resistance but it is also the outcome

of altered glucagon release as well as a-cell mass

changes(15). Despite the importance of glucagon secretion,

understanding of the function of a-cells in health and

diabetes has remained elusive for a long time. This limited

information was mainly due to the scarcity of a-cells within

the islets of common animal models, the low availability of

glucagon-releasing cell lines, the lack of physiological

patterns for the recognition of this cell type and several

limitations of the available techniques and methodologies.

However, in the last decade, the biology of the pancreatic

a-cell has experienced a renaissance due to technical

advances along with the development of several experi-

mental strategies based on the modulation of glucagon

secretion and/or action that may be helpful in the

treatment of diabetes and other endocrine disorders. In

the present review, all these aspects will be discussed.

Nutrient regulation of pancreatic a-cells

Among the multiple control levels that regulate pancreatic

a-cell function, nutrients exert a primary role (Fig. 1).

Nutrients modulate pancreatic a-cell secretion, glucagon

gene expression, cell proliferation and cell death.

Glucose

One of the main stimuli that modulate glucagon secretion

is plasma glucose. The ingestion, injection or infusion of

glucose in animal models and human subjects has been

proven to suppress glucagon secretion, while decreased

plasma glucose levels are correlated with enhanced gluca-

gon release(10,16,17). Similarly, in vitro experiments have

shown that glucagon release is stimulated in hypoglycae-

mic conditions, whereas high glucose levels down-regulate

a-cell secretory activity(18,19). Pancreatic a-cells are excit-

able cells able to respond to changes in extracellular glu-

cose concentrations. At low glucose levels, these cells

develop action potentials that trigger intracellular Ca

signals and glucagon secretion in rodent and human

islets(3,4,20–22). In contrast, hyperglycaemic conditions inhi-

bit a-cell functional activity, lowering glucagon release(9).

This glucose modulation may rely on different control

levels: the neural sensing of glucose and the subsequent

neural regulation of a-cells(23,24), the sensing of glucose

by neighbouring b- and d-cells within the islet and the inhi-

bition of pancreatic a-cells by paracrine regulation (see the

following sections) and, lastly, the glucose sensing and

intracellular metabolism directly by pancreatic a-cells(25).

The latter possibility has been the subject of intense

debate. While some studies indicate that ATP-dependent

Kþ (KATP) channels play a central role in coupling glu-

cose-modulated metabolic changes with pancreatic a-cell

electrical activity and secretion(25,26), other reports support

a KATP-independent glucose effect(27–29). Some of these

controversies have emerged from studies of a-cell metab-

olism. The analysis of mitochondrial membrane potential,

NADH autofluorescence or direct measurements of cytoso-

lic ATP levels have shown both measurable and negligible

glucose-induced changes in a-cell metabolism(4,29–31). In

this regard, it has been described that glucose-induced

ATP/ADP changes in a-cells are very low compared with

the ones in b-cells, probably because of the biochemical

Arginine
Alanine
Glutamine
Leucine
Palmitate

Glucagon
secretion

Glucose
Leucine (elevated levels)
Lysine
Fatty acids (long term)
Vitamin A

+

–

Fig. 1. Nutrient regulation of glucagon secretion. The stimulatory (þ) and

inhibitory (–) effects of different nutrients on glucagon release by pancreatic

a-cells are shown. For further information, see the text.
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differences existing between both islet cell types(32). In

experiments with either samples of non-b-cells or purified

a-cells, it has been determined that GLUT-1 is the high-

affinity, low-capacity GLUT present in a-cells, in contrast to

GLUT-2, which is present in b-cells. Despite this difference,

this metabolic step is not a limiting factor in a-cell glucose

utilisation(33,34). Other biochemical differences between

both cell types also suggest that a-cells are less competent

in the use they make of mitochondrial glucose oxi-

dation(4,35). In fact, compared with pancreatic b-cells,

non-b-cells exhibit a higher expression of the lactate/mono-

carboxylate transporter and a lower expression of pyruvate

carboxylase(36,37). Additionally, non-b-cells present higher

rates of lactate dehydrogenase activity, while mitochondrial

glycerol phosphate dehydrogenase activity is low(36). These

characteristics may explain why the coupling between gly-

colysis and mitochondrial glucose oxidation is not high in

a-cells. Recent reports, however, have shown that in

pancreatic a-cells labelled with yellow fluorescent protein,

glucose hyperpolarises the mitochondrial membrane

potential, further indicating that it directly affects

mitochondrialmetabolismandpointing to aKATP-dependent

modulation of glucagon secretion by glucose(38). In contrast,

another recent study demonstrates that glucose acts directly

on a-cells to control glucagon release but through KATP-

independent mechanisms(39). Additionally, the authors

suggest that glucagon output may depend on the balance

between the direct and indirect (paracrine) effects of

glucose. In recent years, several molecules have been

identified that may play a key role in the glucose-sensing

capacity of a-cells and its transduction into glucagon

secretion. These include theper-arnt-sim domain-containing

protein kinase (PASK) and AMP-activated protein kinase

(AMPK), which are well-known energy sensors, as well as

Rev-erb a, a clock gene involved in metabolism(40–42).

Thus, a larger consensus is required regarding the role

of a-cell KATP channels and glucose metabolism in

glucagon release. In addition to the role of glucose in

glucagon secretion, it may also be involved in the regulation

of a-cell survival, although few studies have been made

regarding this. It has been documented that high levels of

glucose (33.3 mM) combined with palmitate to simulate

in vitro glucolipotoxicity conditions induce apoptosis in

pancreatic a-cells(43).

Amino acids

Although amino acids are important modulators of a-cell

secretion, little is known about this process at the molecu-

lar level and the mechanisms involved. Amino acids such

as arginine, alanine and glutamine are potent stimulators

of glucagon release, while leucine or lysine contribute to

a lesser extent to a-cell secretion(16,44–46). It is postulated

that the function of this increase in glucagon release is

to physiologically prevent hypoglycaemia after protein

intake, since amino acids also stimulate insulin secretion.

An increased glucagon secretion is observed if a-cells are

incubated in the presence of a mixture of different amino

acids but not when exposed to each one of the nutrients

separately(29,39,46). In fact, the effect of glucose on intra-

cellular Ca signalling and glucagon release is further

detected in the presence of mediums containing a mixture

of amino acids(39), indicating that these nutrients are critical

for a-cell function. Ostenson & Grebing(47) showed that

glutamine is a positive modulator of glucagon release.

This effect involves the oxidation of this amino acid and

is likely to be related to actions on glucose metabolism

and ATP levels in the pancreatic a-cell(47). Moreover, a

recent study performed in human islets from healthy and

type 2 diabetic individuals showed that glycine, acting

via an a-cell-specific glycine receptor, was the predomi-

nant amino acid stimulating glucagon release via an intra-

cellular Ca influx(48). Similarly, ingested glycine increases

plasma glucagon in human subjects(49). Amino acids like

arginine may be involved in the release of glucagon by

direct plasma membrane depolarisation and Ca influx in

the pancreatic a-cell. However, other amino acids act as

negative modulators. For instance, isoleucine can inhibit

a-cell secretion while leucine has a dual effect: it is a posi-

tive stimulus at physiological concentrations but becomes

inhibitory at elevated levels(50). In In-R1-G9 glucagonoma

cells, concentrations of alanine and glutamine in the micro-

molar range contribute to the triggering of intracellular Ca

oscillations, whereas these signals are inhibited with milli-

molar levels of these amino acids(51). This effect has been

attributed to amino acid-induced hyperpolarisation of the

plasma membrane by the modulation of the Na–K

pump, and involves the intracellular metabolism of these

nutrients. Therefore, divergent effects may take place

depending on the type and concentration of amino acids.

Fatty acids

Even though lipotoxicity in pancreatic b-cells is one of the

main factors related to obesity-induced diabetes, less is

known about the role and potential toxic effect of fatty

acids in the a-cell. It has been shown that the modulation

of glucagon release by fatty acids depends on the chain

length, spatial configuration and degree of saturation of

the fatty acid as well as the incubation time, which may

lead to different acute or chronic effects(52–54). The majority

of studies show that short-term exposure to fatty acids stimu-

lates glucagon release in isolated islets and clonal a-cell

lines(54,55). Palmitate increases glucagon secretion by enhan-

cing a-cell intracellular Ca entry and also, by relieving the

inhibitory paracrine action of somatostatin, which is secreted

from d-cells(54). Linoleic acid increases glucagon secretion in

isolated mouse and rat islets as well as in In-R1-G9 glucago-

noma cells(56,57). This effect depends on the activation of the

NEFA receptor G-protein coupled receptor 40 (GPR40) and

the intracellular release of InsP3. Similar findings have

been reported in rat islets with oleic acid(58). The long-term

L. Marroquı́ et al.50
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effects of fatty acids have been examined alone or in the pre-

sence of high concentrations of glucose. When aTC1-6

clonal a-cells were cultured with palmitate and oleate for

up to 3 d, glucagon secretion was enhanced by means of

fatty acid oxidation and TAG accumulation in a time- and

dose-dependent manner but cell proliferation was

decreased(59). Accordingly, the long-term culture of this

clonal a-cell line with palmitate augmented glucagon

release and enhanced glucagon expression and protein con-

tent, probably by activating the mitogenic mitogen-activated

protein kinase (MAPK) pathway(60). In contrast, it was

observed that the inhibitory action of insulin on glucagon

release was impaired in a long-term incubation with fatty

acids. This was attributed to palmitate-induced insulin resist-

ance due to defects in the insulin receptor substrate-1

(IRS-1)/phosphatidylinositol kinase (PI3K)/serine-threonine

protein kinase (Akt) pathway(60). In mouse isolated islets,

long-term exposure to oleate and palmitate results in an

over-secretion of glucagon at both low and high glucose

concentrations but diminished glucagon protein content(52).

Similar results were observed in rat islets: the chronic effects

of fatty acids produced a marked increase in glucagon

release, but decreased glucagon content and did not

change glucagon gene expression(44,61). It has been recently

reported that the survival of a-cells, like of b-cells, is also

sensitive to glucolipotoxic conditions: palmitate (0.5 mM)

combined with high glucose levels are able to induce

apoptosis in rodent a-cells(43). In general, all these data

support the hypothesis that chronic elevation of fatty acids

might contribute to a-cell deregulation in type 2 diabetes.

Other nutrients

a-Cell function is also sensitive to vitamins. For instance,

plasma glucagon levels and glucagon release have been

found to be augmented in rats with a diet deficiency of

vitamin D3
(62) while no major effects have been reported

in non-insulin-dependent diabetic patients supplemented

with vitamin D(63). Glucagon secretion is markedly impaired

in rats subjected to vitamin A dietary deficiencies(64).

Additionally, retinol- and retinoic acid-binding proteins

have been detected in glucagon-secreting a-cell lines

while retinol and retinoic acid have been demonstrated to

inhibit glucagon secretion in cultured rat islets(64,65). Import-

ant increases in plasma glucagon levels are also related to

biotin deficiencies due to fasting(66).

Other levels of regulation

In addition to nutrients, pancreatic a-cells are subjected to

other control levels. These include neural regulation

as well as autocrine, paracrine and endocrine signalling

pathways that interact with the different steps involved

in glucagon release or synthesis(9). Although numerous

neurotransmitters released by nerve endings situated

within the islet are associated with a stimulatory effect on

glucagon secretion, the molecular and cellular mechanisms

are still not well understood(7). Parasympathetic neurotrans-

mitters such as vasoactive intestinal polypeptide, gastrin-

releasing peptide, pituitary adenylate cyclase-activating

polypeptide and acetylcholine have a stimulatory effect on

pancreatic a-cells(67,68). Similarly, sympathetic nerves

within the islet have a glucagonotropic effect via neurotrans-

mitters such as noradrenaline, galanin and neuropeptide

Y(7,69). Sympathetic activation can also induce adrenaline

release, which is a potent stimulator of pancreatic a-cell

exocytosis(70). Sensory nerves containing calcitonin gene-

related protein and substance P may also trigger glucagon

release from the pancreatic islet(7). It has been also shown

that a-cells can secrete neural factors such as acetylcholine

or glutamate(71,72). Neural regulation of islet function has

been related to the control of the pulsatile release of islet hor-

mones and the synchronisation of individual cell responses

within the islet(9). Additionally, neural regulation allows for a

further control of the glucagon secretory response to hypo-

glycaemia as well as the suppression of glucagon secretion

in conditions of hyperglycaemia(9,15). This neural control is

mediated by glucose-sensing neurons located in the ventro-

medial hypothalamus(73).

Additionally, islet hormones such as insulin, glucagon

and somatostatin or b-cell-secretory products such as

ATP, g-aminobutyric acid, amylin or Zn also act as

paracrine and autocrine signals that affect a-cell physi-

ology(9,74,75). Extrapancreatic hormones such as leptin

and gastrointestinal incretins can also modulate a-cell func-

tion(22,76). In this latter group of hormones, glucagon-like

peptide-1 (GLP-1) is one of the most important bioactive

peptides with numerous islet effects. GLP-1 is produced

by intestinal ileum L-cells by post-translational processing

of proglucagon and is secreted after a meal in response

to nutrients(22,76). Given that GLP-1 has a potent glucose-

induced insulinotropic action but reduces glucagon

release, some pharmacological approaches in diabetes

have led to the design of GLP-1 derivatives of improved

duration and resistance to degradation compared with

the natural hormone(22,76). In contrast to the suppressive

effect on glucagon release observed in animal models

and human subjects(77), initial experiments at the cellular

level reported an enhanced protein kinase A (PKA)-

dependent exocytosis in rat pancreatic a-cells, which was

associated with increased glucagon secretion(78). In light

of these findings, it was proposed that the GLP-1 inhibitory

effect on pancreatic a-cells may rely on paracrine mechan-

isms(78,79). However, recent studies in mice have shown

that GLP-1 can indeed reduce glucagon secretion in a-

cells by PKA-dependent inhibition of a specific subset of

Ca channels via a small increase in intracellular cyclic

AMP (cAMP) concentrations(70). These last observations

support a molecular basis for the studies showing an

inhibitory GLP-1 action on glucagon release. Unlike

GLP-1, a stimulatory effect has been reported for the gas-

trointestinal hormone glucose-dependent insulinotropic
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polypeptide (GIP), which is produced by intestinal K-cells.

Studies with perifused mouse pancreatic islets showed that

GIP was able to reverse the suppressive effect of high

glucose levels on glucagon release(80). In primary rat

a-cells and perfused rat pancreas, GIP stimulated glucagon

release at low glucose concentrations(79).

Actions of glucagon on nutrient metabolism

Glucagon synthesis

The preproglucagon gene is mainly expressed in pancrea-

tic a-cells, in intestinal L-cells and in the central nervous

system and is closely regulated by nutritional status. The

preproglucagon promoter contains up to six regulatory

sequences called G1–5 and CRE (cAMP response element),

which confers responsiveness to cAMP. The promoter con-

sists of a region comprising the regulatory sequences G1

and G4 while the remaining sequences are part of the

enhancer regions. Numerous transcription factors are

involved in the control of glucagon expression such as

LIM-homeobox transcription factor islet-1 (Isl1), paired

box gene 6 (Pax6), musculoaponeurotic fibrosarcoma

oncogene homolog (Mafs), forkhead box protein A1

(Foxa1) and forkhead box protein A2 (Foxa2) among

others(81,82). The transcription of the preproglucagon

gene results in a peptide of 160 amino acids. The

processing of this peptide into glucagon, GLP-1 and GLP-

2 hormones depends on the post-translational cleavage

mediated by different prohormone convertase (PC) sub-

types. The differential cell-specific expression of PC gener-

ates different peptides in each tissue(83). PC2 is responsible

in a-cells for the production of glucagon in addition to

other products such as glicentin, glicentin-related pancrea-

tic polypeptide, intervening peptide 1 and the major pro-

glucagon fragment(84–86). The importance of PC2 for the

correct processing of glucagon has been proven in exper-

iments using PC2 knockout (KO) mice(87). In contrast to

the results in some clonal a-cell lines(88,89), studies in iso-

lated rat islets indicate that the effect of glucose on gluca-

gon gene expression is not direct but occurs via paracrine

mechanisms that stimulate the inhibitory insulin signal(44).

This hormone decreases glucagon gene expression in pan-

creatic a-cells by activating phosphatidylinositol kinase

(PI3K) and PKB pathways(90–92). In line with these find-

ings, the enhanced glucagon expression found in rats

with insulinopenic diabetes was corrected by administrat-

ing insulin(88). As mentioned earlier, it has been reported

that lipids are able to modulate glucagon gene expression

both in a paracrine way through their effects on b-cells(60)

and by direct mechanisms(55). In the latter case, while

short-term experiments indicate a down-regulation of the

glucagon gene after being treated with palmitate(55), no

effect has been observed in long-term studies(44,61).

Amino acids may also play a role in glucagon gene

regulation, although much further investigation is still

necessary: while arginine has been shown in some studies

to increase glucagon expression and protein synthesis via

protein kinase C activation(93), other researchers have

failed to observe these changes(44). In clonal aTC1-6

cells, the removal of histidine from the culture leads to a

decrease in preproglucagon gene expression similar to

what is observed in an amino acid-free medium(94).

Glucagon receptor and intracellular signalling

The glucagon receptor is a protein belonging to the

secretin–glucagon receptor II class family of the G pro-

tein-coupled receptors and consists of 477 amino acids in

humans and 485 amino acids in rodents with a primary

sequence homology of more than 80 % between

them(95). This receptor is characterised by seven transmem-

brane-spanning domains connected by three intracellular

and extracellular loops. Its activation is coupled to GTP-

binding heterotrimeric G proteins of the Gas type that

stimulate adenylate cyclase and PKA(96). Although gluca-

gon-induced PKA signalling is the most important bio-

chemical cascade, this hormone can also activate the

phospholipase C/inositol phosphate pathway via Gq pro-

teins, resulting in the release of Ca2þ from intracellular

stores(95). In addition, glucagon has also been implicated

in signalling via 50-AMPK(13,97), p38 MAPK and c-Jun

N-terminal kinase (JNK)(13,98) (Fig. 2). Although the gluca-

gon receptor is mainly expressed in the liver, its expression

is also observed in multiple tissues including the pancreas,

heart, kidney, brain, smooth muscle, adipocytes, lympho-

blast, spleen, retina, adrenal gland and gastrointestinal

tract(99). Although a preferential expression of the glucagon

receptor is found in pancreatic b-cells, it is also expressed,

to a lesser degree, in non-b-cells, including glucagon-

secreting a-cells(100,101). Mice lacking the glucagon

receptor exhibit several phenotypic alterations such as

pancreatic a-cell hyperplasia, hyperglucagonaemia, mild

hypoglycaemia, increased number of islets per pancreas

and increased GLP-1 plasma levels(102). Additionally,

these mice show resistance to high-fat diet-induced hyper-

insulinaemia and streptozotocin-induced diabetes, while

exhibit improved insulin sensitivity compared with wild-

type controls(103–106). However, a specific over-expression

of the glucagon receptor in pancreatic b-cells also

improves glucose tolerance in mice exposed to high-fat

diets, suggesting an improvement in b-cell function(107).

Effects of glucagon on hepatic nutrient metabolism

The primary target organ of glucagon is the liver where the

insulin:glucagon ratio controls multiple key steps of hepa-

tic metabolism (Fig. 2). The action of glucagon on the liver

plays a key role in glucose homeostasis, particularly in

adaptive and counter-regulatory responses to hypoglycae-

mic conditions, fasting and starvation(13) as well as in

situations of increased fuel demand such as vigorous
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exercise(108) or states of metabolic stress such as trauma,

inflammation or sepsis(109). Given that the brain relies on

a continuous glucose supply, several lines of defence

against hypoglycaemia take place to counterbalance this

situation. These include glucose-sensitive neural responses,

an increased release of hyperglycaemic hormones such

as adrenaline and an enhanced glucagon secretion.

Additionally, glucagon opposes numerous insulin actions.

Glucagon has a dual effect on the liver: on the one hand,

it stimulates gluconeogenesis and glycogenolysis increasing

hepatic glucose output and, on the other hand, it decreases

glycogenesis and glycolysis(9,110). These effects along with

decreased plasma insulin levels allow for the restoration of

normoglycaemia by favouring hepatic glucose release.

Although the glucagon receptor is highly selective for

glucagon, it can also bind to other glucagon-related pep-

tides(111). One of the main effects of glucagon to modulate

gluconeogenesis is the up-regulation of key enzymes

involved in this process such as glucose-6-phosphatase

and phosphoenolpyruvate carboxykinase through the

activation of the cAMP response element-binding protein

and PPARg-coactivator-1(110,112). The modulatory effect

of glucagon on pyruvate kinase accounts for the

down-regulation of glycolysis(9). Glucagon also regulates

glycogen synthesis and lysis by modulating the activity of

glycogen synthase and glycogen phosphorylase via the

phosphorylation of these enzymes(113).

Glucagon is not only implicated in glucose homeostasis

but in hepatic lipid metabolism as well. Several reports

indicate that TAG production is decreased in perfused

livers treated with glucagon(114,115). The potential hypolipi-

daemic actions of glucagon after its administration also

include a reduction in plasma and hepatic TAG, decreased

VLDL and cholesterol levels, as well as increased fatty acid

oxidation(13,14,116,117). Moreover, reduced glucagon signal-

ling has been related to the development of fatty

liver(118). Experiments using KO and wild-type mice for

the glucagon receptor showed that administering glucagon
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not only reduces the synthesis and secretion of TAG and

their plasma levels but also stimulates fatty acid oxi-

dation(13). These effects depend on the activation of

PPARa and are necessary for the adaptive metabolic

response to fasting. In line with these results, these KO

mice rapidly develop hepatosteatosis compared with wild-

type controls when exposed to a high-fat diet(13). This

finding in glucagon receptor KO mice contrasts with the

resistance to hepatosteatosis found in this model by

others(103). In diet-induced hepatic steatosis, glucagon

signalling may be impaired as a consequence of a reduced

number of hepatic plasma membrane glucagon recep-

tors(119). Recently, it has been demonstrated in db/db mice

that the inhibition of hepatic glucagon signalling leads to

an increase in LDL due to an over-expression of hepatic

lipogenic genes and elevated de novo lipid synthesis(120).

In addition to lipid metabolism, glucagon can also stimulate

the hepatic uptake of amino acids. Accordingly, hypergluca-

gonaemia may be related to plasma hypoaminoacidaemia,

particularly with those amino acids involved in gluconeo-

genesis, such as alanine, glycine and proline(121).

Effects of glucagon on food intake, body weight and
body energy

Glucagon is able to exert several actions on food intake

behaviour as well as on the regulation of weight and

body energy (Fig. 2). However, the precise signalling

mechanisms that allow this hormone to perform these

actions are still unclear. It has been shown that glucagon

receptors are present in the rat brain, including the hypo-

thalamus(122), and that glucagon is able to bind to mouse

astrocyte suspensions and induce cAMP production(123).

Additionally, this hormone is able to suppress the electrical

activity of glucose-sensitive hypothalamic neurons(124).

Intraventricular infusion of glucagon leads to hyperglycae-

mia(125) but it also decreases food intake, an effect that is

less potent when glucagon is administered peripher-

ally(124). In addition to a potential direct action on central

regions, it has been reported that glucagon may be

sensed by peripheral vagal nerves that communicate the

signal to satiety control areas of the hypothalamus to

exert an anorexigenic action. This is supported by exper-

iments in which a glucagon-induced decrease in food

intake was suppressed when animals were subjected to

hepatic vagotomy(126). This reduced food intake when glu-

cagon is infused has been observed not only in rodents but

in human subjects as well(127–129). The anorectic action of

glucagon has been related to its ability to reduce meal

size(130), an effect that can be abolished with the infusion

of neutralising glucagon antibodies(131). Severe anorexia

is also found in rats when transplanted with glucagonomas,

further supporting the satiating role of this hormone(132).

In contrast with these findings, glucagon receptor KO

mice fed with high-fat diets exhibit lower food intake

and body-weight increase than wild-type controls(103).

In addition to the central actions mentioned above, it has

been suggested that the satiety effect of glucagon may

involve the suppression of the orexigenic hormone ghrelin

via the hypothalamic–pituitary axis(133). It has recently

been reported that hypothalamic glucagon signalling

inhibits hepatic glucose production and that the central

resistance to this hormone might be involved in the hyper-

glycaemia that characterises diabetes(134).

Considerable evidence supports the role of glucagon as

a thermogenic agent, thereby favouring the body’s energy

expenditure. In rats, an energy-increasing effect of gluca-

gon was reported some time ago(135). In healthy volun-

teers, RMR increases after glucagon infusion in conditions

of insulin deficiency(136). The presence of insulin seems

to counterbalance this glucagon action(137). Recently,

indirect calorimetry measurements in obese, non-diabetic

individuals showed that glucagon infusion alone or in

combination with GLP-1 is able to increase resting energy

expenditure(138). These thermogenic effects have been

associated with direct actions on brown adipose tissue

due to increased oxygen consumption, metabolism and

heat production in both in vitro and in vivo exper-

iments(139–141). Additionally, chronic glucagon adminis-

tration in rats increases the mass of brown adipose tissue

as well as its thermogenic capacity and fatty acid

uptake(142). Several reports suggest that these effects are

mediated by the sympathetic nervous system via catechol-

amines(143). This is supported by experiments in which the

glucagon effect is prevented or reduced in conditions of

brown adipose tissue denervation or pharmacological

b-adrenergic inhibition with propranolol(142,144). It has

also been shown that glucagon reduces body weight in

both humans and normal rats(139,145) as well as in obese

Zucker rats(146), a model of genetic obesity. These effects

may probably be due to the above-mentioned glucagon

action on food intake and energy expenditure. Recent

results in mice confirm that glucagon not only induces a

loss of body weight and fat mass but also lowers plasma

cholesterol levels(147). All these processes are attributed

to the enhanced secretion of fibroblast growth factor

21 (FGF21) in plasma, whose levels are increased when

glucagon is infused in mice and human subjects. Thus,

glucagon may have potential therapeutic implications not

only for diabetes but also for obesity.

Other effects of glucagon

Although the effect of glucagon on the liver is the best

known, this hormone also affects other extra-hepatic

organs and tissues (Fig. 2). Glucagon-receptor KO mice

exhibit a-cell hyperplasia(102), which is consistent with

in vitro experiments showing that glucagon down-

regulates a-cell proliferation in an autocrine manner(148).

The secretion of this hormone also increases in mouse

and rat pancreatic a-cells via cAMP production(76). The

over-expression of the glucagon receptor in pancreatic
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b-cells improves glucagon- and glucose-stimulated insulin

secretion, and enhances b-cell mass as well as glucose

tolerance(107). The direct effect of glucagon on b-cells is

further supported by experiments showing that this

hormone increases insulin release in perfused pancreas

and isolated b-cells(101,149). Additionally, glucagon pro-

duces cardiac ionotropic and chronotropic actions, partly

by stimulating Ca currents via cAMP production and the

inhibition of phosphodiestarases(150), thus leading to

increased contractility(151). It has also been indicated that

this hormone regulates cardiac metabolism at the level of

glucose utilisation(152). The role of glucagon in adipose

tissue has been controversial for a long time. Glucagon

has been reported to augment lipolysis in isolated rodent

and human adipocytes(153,154). The physiological meaning

of these results has been disputed based on findings that

show no effect of glucagon on the abdominal fat tissue

of healthy individuals submitted to microdialysis(155). How-

ever, new studies have reported glucagon-induced lipolysis

in healthy volunteers, diabetic patients, diabetic animal

models and isolated adipocytes from these animals(11).

All these effects were attributed to a glucagon-induced

release of FGF21, which has lipolytic activity. Actually,

recent reports demonstrate that FGF21 also mediates

other different glucagon actions, as we previously com-

mented(147). Given that the lipolytic action of glucagon is

blunted in denervated rats, its effect on adipose tissue

has also been associated with sympathetic signals(156).

Kidneys are also a target site for glucagon, since its

intravenous infusion is related to changes produced in

urea synthesis and excretion as well as in water

conservation(157). In in vitro perfused inner medullary

collecting ducts, glucagon induces cAMP production and

changes in aquaporin 2 expression that affect water

excretion(158). Glucagon is also used as an anti-peristaltic

agent because of its effects on small intestine

motility(159,160). Moreover, it has recently been reported

that glucagon also enhances sweet taste responses by

acting directly on the mouse gustatory epithelium(161).

Involvement of glucagon in diabetes pathophysiology

Role of glucagon in the control of glycaemia during
diabetes mellitus

Type 1 diabetes is characterised by an autoimmune specific

b-cell loss that results in insulin deficiency, leading to

hyperglycaemia. These high plasma glucose levels are

filtered by kidneys, which may result in glycosuria and,

eventually, osmolar alterations that can produce a non-

ketotic hyperosmolar coma. Since glucose utilisation as

an energy substrate is limited as a consequence of insulin

deficiency, increased levels of fatty acids are oxidised to

acetyl CoA, increasing the production of ketonic bodies

and ketonuria with the concomitant risk of ketoacidosis.

Other symptoms that develop in poorly controlled diabetes

are polyuria, polydipsia and polyphagia. Since the basic

treatment for diabetes is insulin administration, another

major complication may be hypoglycaemia (iatrogenic

hypoglycaemia), which results from an excess of insulin

in a condition of impaired homeostatic responses against

the decline in plasma glucose levels(15). In the case of

type 2 diabetes, hyperglycaemia is due to a combination

of increased peripheral resistance to the action of insulin

along with inappropriate insulin secretion. This situation

can eventually progress to b-cell death(9), thus leading to

a greater deterioration of glucose homeostasis and a wor-

sening of hyperglycaemia. This type of diabetes is often

associated with obesity. In both types of diabetes, poorly

controlled glycaemia can lead to micro- and macrovascular,

neural, retinal and renal complications as well as skin

ulcers and, eventually, amputation.

In addition to the central role of insulin and pancreatic

b-cells in the pathophysiology of diabetes, abundant evi-

dence demonstrates that glucagon is also involved in this

metabolic disorder. Absolute or relative (to insulin) hyper-

glucagonaemia is frequently found in diabetes during fast-

ing and postprandial periods(162–164). Hyperglucagonaemia

in the context of insufficient insulin secretion and/or insu-

lin resistance is associated with increased hepatic glucose

output, which contributes to hyperglycaemia(48,165).

Additionally, a-cell function in response to changes in

glucose is impaired in diabetes(166). For instance, hyper-

glycaemia fails to suppress glucagon secretion in diabetic

patients, which further exacerbates their high glucose

levels during postprandial periods(167,168). Although the

mechanism for this failure is not clearly known, it has

been suggested that the a-cell might be refractory to the

insulin paracrine signal or insensitive to high glucose

levels(9,15). Patients with a glucagonoma develop hyper-

glucagonaemia and the characteristic hyperglycaemia of

diabetes, which disappears when the tumour is removed,

further suggesting that high levels of glucagon are involved

in this disease(169). Another problem of diabetes is that

pancreatic a-cells do not respond adequately to hypo-

glycaemia, which is particularly important in insulin-treated

patients, and leads to increased morbidity and mortality

rates in this disease(8,23). This life-threatening situation

seems to be the result of several altered processes:

impaired a-cell sensing of falling glucose levels, an ineffi-

cient effect of the withdrawal of the insulin inhibitory

signal during hypoglycaemia as well as a defective function

of the autonomous nervous system and of the different

defence mechanisms against hypoglycaemia(8,170–172). In

addition to an altered a-cell function, diabetes has been

also associated with increases in either absolute or

relative (to b-cells) a-cell mass in animal models and

humans(173–175), which may explain the higher plasma

glucagon levels in these patients.

Glucagon is also involved in protein and fat metabolic

alterations in diabetes. This hormone plays a catabolic

role during a protein load(176) and hyperglucagonaemia
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induces phenylalanine oxidation in healthy humans(177).

Individuals with a glucagonoma exhibit higher levels of

free amino acids in muscles and the liver(178). In type 1 dia-

betic patients, hyperglucagonaemia has been related to

different catabolic effects including an increased RMR

and increased leucine oxidation, effects that were indepen-

dent of insulin deficiency(179). Because of the effect of this

hormone on amino acid hepatic uptake and the stimulation

of gluconeogenesis, hyperglucagonaemia can lead to

marked hypoaminoacidaemia, particularly from those

amino acids that participate in gluconeogenesis(121,180).

Glucagon has also been involved in lipid metabolism.

Although the role of glucagon in adipose tissue lipolysis

has remained controversial for a long time, new evidence

in animal models and human subjects, including diabetic

patients, demonstrates this effect(11). These actions may

be the result of the activation of hormone-sensitive

lipase(181) and probably involve the participation of

FGF21(11). In animal models, chronic administration of glu-

cagon induces hypolipidaemic effects(182,183). Furthermore,

it has been recently shown that hyperglucagonaemia

modulates hepatic lipoprotein particle metabolism in

humans both by decreasing hepatic lipoprotein particle

production and by inhibiting particle clearance(14). In the

context of insulin deficiency and high levels of fatty

acids, glucagon can accelerate the formation of ketonic

bodies from the liver(184–186). Consistent with this, it has

been observed that diabetic ketoacidosis is associated

with hyperglucagonaemia combined with hypoinsulinae-

mia(187,188). Thus, in view of the role that glucagon plays

in the pathophysiology of diabetes, it would be advisable

to develop therapeutic strategies to limit either glucagon

secretion or action.

Therapeutic potential of modulating glucagon secretion
and action in diabetes

Numerous studies have shown that restrained glucagon

action is beneficial for the control of hyperglycaemia

and/or diabetes management. For instance, glucagon-

receptor KO mice exhibit reduced fasting hypoglycaemia

and improved glucose tolerance(102). Additionally, these

mice are resistant to diet-induced obesity, as well as strep-

tozotocin-induced b-cell loss and hyperglycaemia(103).

Similarly, lower hepatic glucose production and improved

glucose tolerance are observed in mice that are deficient in

the a-cell transcription factor ARX (aristaless-related

homeobox), leading to the loss of glucagon-producing

a-cells(189). More recently, it has been shown that the meta-

bolic and clinical alterations caused by type 1 diabetes are

absent in glucagon receptor KO mice treated with strepto-

zotocin and that the restoration of the hepatic glucagon

receptor in this model leads to the reappearance of hyper-

glycaemia(104,190). However, a limited glucagon action

could interfere with the role of glucagon in hepatic lipid

metabolism and lead to an increased susceptibility to

hepatosteatosis after a high-fat diet(13), or it could also inter-

fere with the hepatic survival function of glucagon(191).

Additionally, in this kind of KO mice the exocrine and

endocrine cell masses are augmented, increasing the risk

of developing tumours(102). Thus, all these aspects require

further examination in human subjects. Consistent with

these findings in KO mice, other strategies such as gluca-

gon antibodies, glucagon receptor antisense oligonucleo-

tides and glucagon receptor antagonists revealed similar

findings in hepatic glucose production and showed an

antihyperglycaemic effect in diabetic animal models as

well as in a few human studies(9,192–195). The antagonism

of glucagon action on the liver also partly mediates the glu-

cose-lowering effect of biguanides(196). It has been recently

demonstrated that the design of peptides with dual agon-

ism for both the glucagon and the GLP-1 receptors is

useful to fight against obesity in mice without any apparent

adverse effects(197,198). This is mainly the result of the anti-

hyperglycaemic, lipolytic, satiating and energy expenditure

actions of this combined treatment. In human subjects,

the co-administration of GLP-1 during glucagon infusion

leads to increased resting energy expenditure and lower

hyperglycaemia(138). In the present study, the augmented

energy expenditure was attributed to glucagon alone.

Similarly, chronic glucagon receptor agonism in diet-

induced obese mice lowered food intake, body weight,

fat mass and cholesterolaemia while increasing energy

expenditure(147). The actions of glucagon were mediated

by FGF21. This growth factor has also been involved in the

lipolytic action of glucagon in diabetic and non-diabetic

animals and humans(11). Additionally, peripherally adminis-

tered glucagon inhibits food intake, presumably by the

neural activation of appetite-regulating brain centres(199).

Thus, the combined activation of glucagon and GLP-1

receptors has been proved to be useful for the design of

strategies against obesity and diabetes.

The modulation of glucagon secretion with a therapeutic

potential has also been explored. Exogenous GLP-1 admin-

istration is known to stimulate insulin release while inhibit-

ing glucagon secretion in isolated rodent islets, in perfused

rat pancreas and in human subjects, which allows for the

improvement of hyperglycaemia(9,200). The effect on gluca-

gon is mediated by the direct action on pancreatic

a-cells(70). Accordingly, GLP-1 agonists widely used in dia-

betes treatment such as exenatide or liraglutide also exert

hypoglycaemic effects by lowering plasma glucagon

levels(201). Similar actions have been reported for inhibitors

of the GLP-1-degrading enzyme dipeptidyl peptidase 4

(DPP-4)(202). DPP-4 inhibitors commonly used in diabetes

such as vildagliptin or sitagliptin suppress hepatic glucose

production by augmenting insulin release and lowering

glucagon secretion(203). Other drugs such as pramlintide,

a synthetic analogue of islet amyloid polypeptide, also

decreases glucagon secretion after a meal in diabetic indi-

viduals and may act on reducing hepatic glucose output to

improve hyperglycaemia(202,204).
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Conclusions and future directions

The hyperglycaemic hormone glucagon has a key role in

the control of glucose homeostasis by acting on the liver

to stimulate gluconeogenesis and glycogenolysis and indu-

cing hepatic glucose release. This hormone opposes the

actions of insulin and is one of the main lines of defence

against hypoglycaemic episodes, fasting and starvation,

maintaining normoglycaemia. Less information is available

about the function of glucagon during exercising or situ-

ations of metabolic stress. Although the main signalling

pathway related to glucagon is mediated primarily by

the activation of adenylate cyclase/PKA and, secondarily

by phospholipase C/inositol 1,4,5-trisphosphate, recent

studies have shown that AMPK, p38 MAPK and c-Jun

N-terminal kinase (JNK) are also signalling conduits for

glucagon. It would, therefore, be interesting to explore

other potential signalling routes. In addition to the well-

known effect of glucagon on hepatic glucose, this

hormone also contributes to the regulation of lipid metab-

olism in the liver. Moreover, although glucagon receptors

are present in numerous tissues including the heart, adi-

pose tissue, kidneys and the brain among others, the

effects and molecular pathways involved still require

further examination, particularly those that glucagon

produces at the central level. Despite the importance of

pancreatic a-cells in the secretion of glucagon, the under-

standing of their regulation at molecular and cellular levels

has been scarce for a long time. However, research on

these cells and their role in nutrient metabolism and

body energy has experienced a renewed impetus in

recent years. It has been demonstrated that alterations in

pancreatic a-cell function and glucagon actions are part

of the pathophysiological events related to the develop-

ment of diabetes. In this regard, several experimental

approaches to improve diabetic symptoms include the

modulation of glucagon release or its actions. Additionally,

glucagon alone or in combination with other hormones

may be relevant in the control of appetite, body weight

and the treatment of obesity. Accordingly, this renewed

interest in the pancreatic a-cell and glucagon may reveal

new therapeutic strategies for metabolic disorders such as

obesity and diabetes.
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