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Abstract. Starting from results of Dubé and Mingarelli, Wahlén, and Ehrström,
who give conditions that ensure the existence and uniqueness of nonnegative
nondecreasing solutions asymptotically constant of the equation

y′′(x) = −F(x, y(x), y′(x)), x ≥ 0,

we have been able to reduce their hypotheses in order to obtain the same existence
results, at the expense of losing the uniqueness part. The main tool they used is the
Banach Fixed Point Theorem, while ours has been the Schauder Fixed Point Theorem
together with one version of the Arzelà-Ascoli Theorem.

2000 Mathematics Subject Classification. 34A12, 34A34, 34C10.

1. Introduction. In the present paper we consider the following differential
equation in its general form

y′′(x) + F(x, y(x), y′(x)) = 0, x ≥ 0, (1)

where F is a continuous function in its three variables (though the first result will assume
that F depends only on the first two variables). Our main interest is in giving sufficient
conditions, ‘simple enough’, to ensure the existence of nonnegative nondecreasing,
thus non oscillatory, solutions to equation (1).

Starting from results of Dubé and Mingarelli [2], Wahlén [6], and Ehrström [3], who
give conditions that ensure the existence and uniqueness of nonnegative nondecreasing
solutions asymptotically constant, we have been able to reduce their hypotheses in order
to obtain the same existence results, at the expense of losing the uniqueness part. The
main tool they used is the Banach Fixed Point Theorem, while ours, as other authors
(see, e.g., [1, 4, 5, 7]), has been the Schauder Fixed Point Theorem together with one
version of the Arzelà-Ascoli Theorem.

The notation that we use throughout the paper is as follows: �+ = [0,∞). C(�+)
is the space of bounded continuous real valued functions defined on �+. It is a Banach
space when endowed with the sup norm ‖·‖∞. We may also write C(�+, J), J ⊆ �, for
the subset of those u ∈ C(�+) with values in J. Finally, C1(�+) (or C1(�+, J)) is the
space of bounded continuously differentiable real valued functions defined on �+ with
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bounded derivative. Again, it is a Banach space when endowed with the extended sup
norm: ‖u‖∞,1 ≡ ‖u‖∞ + ‖u′‖∞.

2. The results. Without further preliminaries, we present our first statement.

THEOREM 1. Consider the second order differential equation

y′′(x) + F(x, y(x)) = 0, x ∈ �+, (2)

together with the following assumptions:
(H1) F ∈ C(�+ × �+, �+).
(H2) There exist M > 0 and g : �+ → [0, M] with g(x) → 0 as x → ∞ such that∫ ∞

x
(t − x)F(t, u(t)) dt ≤ g(x), x ∈ �+,

for all u ∈ C(�+) with M − g(x) ≤ u(x) ≤ M, x ∈ �+.
Then there exists a solution y(x) to equation (2), with y(x) → M as x → ∞, which is
positive and nondecreasing on (0,∞) (strictly increasing unless there exists x0 ≥ 0 such
that F(x, M) ≡ 0 for all x ≥ x0).

Proof. First, we notice that it suffices to find a solution to the integral equation

y(x) = M −
∫ ∞

x
(t − x)F(t, y(t)) dt, x ∈ �+, (3)

in the subset C = {u ∈ C(�+) : M − g(x) ≤ u(x) ≤ M, x ∈ �+}. Indeed, assume that
y ∈ C is a solution to the integral equation (3). Then it certainly satisfies the differential
equation (2), is non-negative and has limit M as x → ∞ for it belongs to C and we
have g(x) → 0 as x → ∞. On the other hand, since F is non-negative, we have by (2)
that y is a concave function on �+, which together with the non-negativity implies that
y is nondecreasing, even more, strictly increasing unless there is x0 ≥ 0 defining the
interval [x0,∞) on which y be constant. Since y(x) → M as x → ∞, the possibility of
being constant on a final interval implies that y ≡ M on this interval. This is the case
if and only if F(x, M) ≡ 0 for all x ≥ x0. Finally, all cases also yield that y is strictly
positive on (0,∞).

Before proceeding any further, let us extract more conclusions from the hypotheses
(H1) and (H2). The first one comes from (H2) and is a uniform bound for the integral
appearing in the integral equation (3), i.e., for all x ≥ 0 and all u ∈ C,

0 ≤
∫ ∞

x
(t − x)F(t, u(t)) dt ≤ g(x) ≤ M. (4)

Now the continuity of F in (H1) tells us that F is bounded in [0, 1] × [0, M], say by N,
which together with (H2), gives that for each u ∈ C, the function F(t, u(t)) is integrable
on �+, even more, the integrals are uniformly bounded,

0 ≤
∫ ∞

x
F(t, u(t)) dt ≤

∫ 1

0
F(t, u(t)) dt +

∫ ∞

1
F(t, u(t)) dt

≤ N +
∫ ∞

1
tF(t, u(t)) dt ≤ N +

∫ ∞

0
tF(t, u(t)) dt ≤ N + g(0). (5)
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Once these comments have been made, we look for a solution to the integral
equation (3). This will be a fixed point of the operator

T : C → C(�+) , Tu(x) = M −
∫ ∞

x
(t − x)F(t, u(t)) dt,

and the existence of such fixed point will be implied by the Schauder Fixed Point
Theorem. Observe first that C ⊂ C(�+) is a nonempty (the constant function equal to
M belongs to C), closed, convex and bounded subset of C(�+). Now, this operator is
well defined and leaves invariant the set C. Indeed, by elementary calculus, if u ∈ C,
Tu is more than continuous, it is continuously differentiable with derivative

(Tu)′(x) =
∫ ∞

x
F(t, u(t)) dt, x ≥ 0,

approaching 0 as x → ∞, as (5) shows. The fact that C is invariant under T is obvious
from (4).

It remains to prove that T is compact on C. For this, it suffices to prove that T is
continuous on C and that T(C) is a relatively compact subset of C(�+).

We start showing that T is continuous on C. Take u0 ∈ C and ε > 0. Since g(x) → 0
as x → ∞, there exists x0 > 0 such that

g(x) ≤ ε

4
, for all x ≥ x0. (6)

Now, since F is continuous on �+ × �+, it is uniformly continuous on [0, x0] × [0, M],
thus there exists δ > 0 such that if y1, y2 ∈ [0, M] and |y1 − y2| ≤ δ then

|F(x, y1) − F(x, y2)| ≤ ε

x2
0

, for all x ∈ [0, x0]. (7)

If now u ∈ C and ‖u − u0‖∞ ≤ δ then, for x ≥ x0, using (6),

|Tu(x) − Tu0(x)| ≤
∫ ∞

x
(t − x)|F(t, u0(t)) − F(t, u(t))| dt

≤
∫ ∞

x
(t − x)F(t, u0(t)) dt +

∫ ∞

x
(t − x)F(t, u(t)) dt ≤ 2g(x) ≤ ε

2
,

and for x ≤ x0, using (6) and (7),

|Tu(x) − Tu0(x)| ≤
(∫ x0

x
+

∫ ∞

x0

)
(t − x)|F(t, u(t)) − F(t, u0(t))| dt

. . . ≤
∫ x0

0
t

ε

x2
0

dt + 2g(x0) = ε

x2
0

x2
0

2
+ 2g(x0) ≤ ε.

Together this gives ‖Tu − Tu0‖∞ ≤ ε whenever u ∈ C and ‖u − u0‖∞ ≤ δ, showing
that T is continuous at u0.

We continue by proving that T(C) is relatively compact. Observe that for each
x ∈ �+, the set T(C)(x) ≡ {Tu(x) : u ∈ C} is contained in [0, M], so it is relatively
compact in �+. Observe also that (5) implies that the set {(Tu)′ : u ∈ C} is (uniformly)
bounded in C(�+) by N + g(0), and therefore T(C) is uniformly Lipschitz in �+,
providing that T(C) is equicontinuous at each x ∈ �+. As a consequence, by the
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Arzelà-Ascoli Theorem, each sequence {Tun} ⊂ T(C) ⊆ C has a subsequence which
converges uniformly on each compact subset of �+ to a function v ∈ C.

But given the structure of the set C, a sequence {vn} ⊂ C which converges uniformly
on each compact subset of �+ to a function v ∈ C, must, in fact, converge uniformly
to v in �+. Indeed, take ε > 0 and let x1 > 0 be such that g(x) ≤ ε for all x ≥ x1. Since
vn, n ∈ �, and v, all belong to C, their values remain between M − g(x) and M, so

|vn(x) − v(x)| ≤ g(x), all n ∈ � and all x ∈ �+.

In particular,

|vn(x) − v(x)| ≤ g(x) ≤ ε, all n ∈ � and all x ≥ x1.

Now, since {vn} converges uniformly to v in [0, x1], there exists n0 ∈ � such that

|vn(x) − v(x)| ≤ ε, all n ≥ n0 and all x ∈ [0, x1].

This tells us that if n ≥ n0, then ‖vn − v‖∞ ≤ ε, proving that the convergence of {vn}
to v is uniform in �+.

With this observation we conclude that T(C) is relatively compact in C(�+). And
therefore, by the Schauder Fixed Point Theorem, the operator T has a fixed point,
which is one solution to our integral equation (3). �

REMARK 1. A closer look at the proof of the theorem shows that one can replace
F ∈ C(�+ × �+, �+) by F ∈ C(�+ × [0, M], �+).

REMARK 2. The function g(x) could become an important tool if one desires to
know a bit more about the growth of the solutions to their limit M. The fact that the
solution found is in the set C tells us that it is always bounded below by the function
M − g(x).

Dubé and Mingarelli [2], and Wahlén [6] considered the same equation (2) and
obtained a result on existence and uniqueness of positive non-decreasing solutions
asymptotically equal to M. They assumed a Lipschitz condition on the second variable
of F , which gave way to the use of the Banach fixed point theorem. The complete list
of conditions they imposed are

(L1) F ∈ C(�+ × �+, �+).
(L2)

∫ ∞
0 tF(t, u(t)) dt ≤ M for all u ∈ C(�+, [0, M]).

(L3) There exists k ∈ C(�+, �+) with
∫ ∞

0 tk(t) dt < ∞ (Dubé and Mingarelli used
the more restrictive hypothesis

∫ ∞
0 tk(t) dt < 1) such that for any u1, u2 ∈ [0, M],

|F(x, u1) − F(x, u2) | ≤ k(x)|u1 − u2|, x ≥ 0.

One could think that condition (L2) is weaker than (H2), because there is no need
to find the function g. In fact, let us see that conditions (L1-3), all together, imply
conditions (H1-2), showing thus that our result is an improvement on theirs, at least
in what to the existence matters.
— (L1-3) =⇒ (H1-2). Take u0 ∈ C(�+, [0, M]) and consider the function g0(x) =∫ ∞

x (t − x)F(t, u0(t)) dt, x ≥ 0, which is non-negative and bounded above by the
constant M by (L2), and also decreases to 0 at ∞. Now, for any u ∈ C(�+, [0, M]) we
have, by (L2),

∫ ∞
x (t − x)F(t, u(t)) dt ≤ M for all x ≥ 0; also, using that ‖u − u0‖∞ ≤ M
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and (L3), we have for x ≥ 0,∫ ∞

x
(t − x)F(t, u(t)) dt ≤

∫ ∞

x
(t − x)F(t, u0(t)) dt +

∫ ∞

x
t|F(t, u(t)) − F(t, u0(t))| dt

≤ g0(x) +
∫ ∞

x
tk(t)|u(t) − u0(t)| dt ≤ g0(x) + M

∫ ∞

x
tk(t) dt.

If we now define, for x ≥ 0,

g(x) = min
{

g0(x) + M
∫ ∞

x
tk(t) dt , M

}
,

we observe that g(x) ∈ [0, M] for all x ≥ 0, that g(x) → 0 as x → ∞ and that∫ ∞

x
(t − x)F(t, u(t)) dt ≤ g(x), x ≥ 0,

for all u ∈ C(�+, [0, M]), in particular, for all u ∈ C(�+) with M − g(x) ≤ u(x) ≤
M, x ≥ 0. �

REMARK 3. Notice also that the existence of the function g makes smaller the
set of functions u where one has to test the uniform integrability condition (H2) on
functions of the type (t − x)F(t, u(t)). In order to make that set of test functions a little
bit smaller, one could equally assume
(H2)′ There exist M > 0 and g : �+ → [0, M] with g(x) → 0 as x → ∞ such that∫ ∞

x
(t − x)F(t, u(t)) dt ≤ g(x), x ∈ �+,

for all increasing and concave u ∈ C(�+) with M − g(x) ≤ u(x) ≤ M, x ∈ �+.
The proof of Theorem 1 now with (H2) replaced by (H2)′ goes exactly the same as
before.

The proof of Theorem 1 relied strongly on the fact that the hypotheses (H1-2)
implied that

∫ ∞
0 F(t, u(t)) dt is uniformly bounded for all u ∈ C. Our next Theorem

includes dependance on the first derivative and the uniform boundedness of the integral
of F is not a straightforward deduction of the corresponding hypotheses (H1-2).

THEOREM 2. Assume that M > 0, that N ≥ 0, and that F = F(x, y, z) is a non-
negative continuous function on �+ × [0, M] × [0, N], for which the following hypothesis
is fulfilled.

(H3) There exist g : �+ → [0, M] with g(x) → 0 as x → ∞ and h : �+ → [0, N] with
h(x) → 0 as x → ∞ such that∫ ∞

x
(t − x)F(t, u(t), u′(t)) dt ≤ g(x), x ∈ �+, (H3.1)∫ ∞

x
F(t, u(t), u′(t)) dt ≤ h(x), x ∈ �+, (H3.2)

for all u ∈ C1, where C1 is the set of concave and nondecreasing functions u ∈
C1(�+, [0, M]) with M − g(x) ≤ u(x) ≤ M and 0 ≤ u′(x) ≤ h(x).
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Then there exists a solution y(x) to the equation

y′′(x) + F(x, y(x), y′(x)) = 0, (8)

with y(x) → M as x → ∞, which is positive, concave and nondecreasing on (0,∞).

Proof. Again, it suffices to find a fixed point to the operator T in the set C1 (closed,
convex, bounded and not empty subset of C1(�+)), where this time, T is defined as
follows,

Tu(x) = M −
∫ ∞

x
(t − x)F(t, u(t), u′(t)) dt, x ∈ �+.

We let the reader check that T is well defined and leaves invariant the set C1. Note
especially that, for u ∈ C1 and x ∈ �+,

(Tu)′(x) =
∫ ∞

x
F(t, u(t), u′(t)) dt ≤ h(x) ≤ N.

Next we show that T is continuous on C1 (with respect to the ‖·‖∞,1-topology).
Take u0 ∈ C1 and ε > 0.

By (H3), there exists x0 > 1 such that

g(x) <
ε

8
, and h(x) <

ε

8
, for all x ≥ x0.

Now, F is uniformly continuous on [0, x0] × [0, M] × [0, N], so there exists δ > 0 such
that

|F(t1, u1, v1) − F(t2, u2, v2)| <
ε

4x2
0

,

whenever (tj, uj, vj) ∈ [0, x0] × [0, M] × [0, N], j = 1, 2, with |t1 − t2| + |u1 − u2| +
|v1 − v2| < δ.

Thus, if u ∈ C1 with ‖u − u0‖∞,1 < δ, and x ≤ x0, we have

|Tu(x) − Tu0(x)| ≤
∫ ∞

x
(t − x)|F(t, u(t), u′(t)) − F(t, u0(t), u′

0(t))| dt

≤
∫ x0

x
(t − x)|F(t, u(t), u′(t)) − F(t, u0(t), u′

0(t))| dt

+
∫ ∞

x0

(t − x)(F(t, u(t), u′(t)) + F(t, u0(t), u′
0(t))) dt

≤ ε

4x2
0

x2
0

2
+ 2g(x0) <

ε

2
,
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and

|(Tu)′(x) − (Tu0)′(x)| ≤
∫ ∞

x
|F(t, u(t), u′(t)) − F(t, u0(t), u′

0(t))| dt

≤
∫ x0

x
|F(t, u(t), u′(t)) − F(t, u0(t), u′

0(t))| dt

+
∫ ∞

x0

(F(t, u(t), u′(t)) + F(t, u0(t), u′
0(t))) dt

≤ ε

4x2
0

x0 + 2h(x0) <
ε

2
.

Of course, if x > x0, only the second summands in the above estimates are needed to
obtain

|Tu(x) − Tu0(x)| ≤ 2g(x) <
ε

4
, and |(Tu)′(x) − (Tu0)′(x)| ≤ 2h(x) <

ε

4
.

All this yields ‖Tu − Tu0‖∞,1 < ε whenever u ∈ C1 with ‖u − u0‖∞,1 < δ.
Next, we shall prove that TC1 = {Tu : u ∈ C1} is relatively compact in C1(�+),

by applying again the Arzelà-Ascoli Theorem (twice) on TC1 and (TC1)′ = {(Tu)′ :
u ∈ C1}.

Notice that for a given x ∈ �+, we have

TC1(x) ⊆ [0, M], and (TC1)′(x) ⊆ [0, N],

so both sets are relatively compact in �+.
Since (TC1)′ is (uniformly) bounded as a set of C(�+), then TC1 is uniformly

Lipschitz in �+, and consequently, TC1 is equicontinuous at each x ∈ �+.
Also, notice that the set of second derivatives (TC1)′′ = {(Tu)′′ : u ∈ C1} is well

defined and coincides with the set of functions {F(·, u(·), u′(·)) : u ∈ C1}, which is
locally uniformly bounded in �+, i.e., for each x0 ∈ �+ there exists a neighbourhood
Ux0 of x0 in �+ and a constant L(x0) such that 0 ≤ F(x, u(x), u′(x)) ≤ L(x0) for all x ∈
Ux0 (for instance, Ux0 = [0, x0 + 1) and L(x0) = max{F(x, u, v) : (x, u, v) ∈ [0, x0 +
1] × [0, M] × [0, N]}). This implies that (TC1)′ is locally uniformly Lipschitz in �+

and, consequently, that (TC1)′ is equicontinuous at each x ∈ �+.
All this implies (by applying twice the Arzelà-Ascoli Theorem) that each sequence

{Tun} ⊂ TC1 contains a subsequence {Tunk} such that both sequences, {Tunk} and
{(Tunk )′}, converge uniformly on each compact subset of �+ to given functions ũ
and ṽ. An argument similar to the one given at the end of the proof of Theorem 1
gives that, in fact, the convergence is uniform in all �+ for both subsequences. The
completeness of C1 as a closed subset of C1(�+) implies that ũ′ = ṽ and that Tunk → ũ
in the ‖·‖∞,1-norm.

With this we conclude that TC1 is relatively compact in C1(�+). And therefore,
by the Schauder Fixed Point Theorem, the operator T has a fixed point, which is one
solution to our integral equation. �

In a recent paper, Ehrnström [3] has considered the same equation of Theorem 2,
and has given a result about uniqueness and existence of solutions asymptotically
equal to M, using hypotheses similar to the ones given by Wahlén [6], i.e., imposing
a Lipschitz condition on the second and third variables of F . All these conditions are
listed below, besides the non-negativity and continuity of F .
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(L4)
∫ ∞

0 tF(t, u(t), u′(t)) dt ≤ M for all u ∈ C1(�+, [0, M]) with u′ ≥ 0.
(L5) There exists k ∈ C(�+, �+) with

∫ ∞
0 tk(t) dt < ∞ such that for any u1, u2 ∈

[0, M], and any v1, v2 ∈ �+,

|F(x, u1, v1) − F(x, u2, v2)| ≤ k(x)(|u1 − u2| + |v1 − v2|), x ≥ 0.

Again, as we did before, we prove that our result includes the one of Ehrnström,
except for the uniqueness part. For that, assume (L4-5), and take u ∈ C1(�+, [0, M])
concave and nondecreasing. Set K(x) = ∫ ∞

x k(t) dt, K∞ = max{k(x) : x ∈ [0, 1]}, and
A(x) = ∫ ∞

x F(t, M, 0) dt. These quantities exist, are nonnegative and finite, and K(x) +
A(x) ↘ 0 as x ↗ ∞. Observe that the concavity and monotonicity of u easily implies
that xu′(x) ≤ u(x) − u(0)(≤ M) for all x ∈ �+. Then, using the Lipschitz condition, for
0 ≤ x < 1,∫ ∞

x
F(t, u(t), u′(t)) dt ≤

∫ ∞

x
|F(t, u(t), u′(t)) − F(t, M, 0)| dt +

∫ ∞

x
F(t, M, 0) dt

≤
∫ ∞

x
k(t)(|u(t) − M| + u′(t)) dt + A(x)

≤ M
∫ ∞

x
k(t) dt +

∫ 1

x
k(t)u′(t) dt +

∫ ∞

1
k(t)u′(t) dt + A(x)

≤ MK(x) + K∞
(
u(1) − u(x)

) +
∫ ∞

1
k(t)tu′(t) dt + A(x)

≤ MK(x) + MK∞ +
∫ ∞

1
k(t)

(
u(t) − u(0)

)
dt + A(x)

≤ MK(x) + MK∞ + MK(1) + A(x) ≤ N,

where N = 2MK(0) + MK∞ + A(0). And for x > 1,

∫ ∞

x
F(t, u(t), u′(t)) dt ≤

∫ ∞

x
|F(t, u(t), u′(t)) − F(t, M, 0)| dt +

∫ ∞

x
F(t, M, 0) dt

≤
∫ ∞

x
k(t)(|u(t) − M| + u′(t)) dt + A(x)

≤ M
∫ ∞

x
k(t) dt +

∫ ∞

x
k(t)tu′(t) dt + A(x)

≤ 2MK(x) + A(x) ≤ N.

Define

h(x) =
{

MK(x) + MK∞ + MK(1) + A(x), if 0 ≤ x ≤ 1,

2MK(x) + A(x), if 1 < x.

Observe that h is independent of u, that 0 ≤ h(x) ≤ N for all x ∈ �+, and that h(x) → 0
as x → ∞. Now one has to find the appropriate g, with 0 ≤ g(x) ≤ M, x ∈ �+, and
g(x) → 0 as x → ∞. This is done by the same procedure as before, and is left to the
reader. (For instance, setting g0(x) = ∫ ∞

x (t − x)F(t, M, 0) dt and K1(x) = ∫ ∞
x tk(t) dt,

then g(x) = min{M, (M + N)K1(x) + g0(x)}.)
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EXAMPLE . To illustrate our result compared with the one of Ehrström, we consider
the very simple linear equation y′′ + y′ = 0. In this case F(x, y, z) = z. The solutions
of this equation are of the type y = A + Be−x. In particular, those nonnegative and
nondecreasing solutions asymptotically equal to 1 are reached when A = 1 and B ∈
[−1, 0]. Obviously then, the result of Ehrström does not apply because they are not
unique. On the other hand, taking g(x) = h(x) = e−x, x ∈ �+, we see that our result
does apply: If u ∈ C1(�+) is a nonnegative and concave function with 1 − g(x) ≡
1 − e−x ≤ u(x) ≤ 1 and 0 ≤ u′(x) ≤ e−x ≡ h(x), then, for x ∈ �+,∫ ∞

x
(t − x)u′(t) dt = −(t − x)(1 − u(t))|∞t=x +

∫ ∞

x
(1 − u(t)) dt

≤
∫ ∞

x
e−t dt = e−x = g(x),

and ∫ ∞

x
u′(t) dt = 1 − u(x) ≤ e−x = h(x).
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presented there as is, instead of

∫ ∞
x tF(t, u(t)) dt ≤ g(x), x ∈ �+.
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