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The statement and proof of the Z-spectral decomposition theorem for a pseudo-
Anosov flow 4> on a 3-manifold M are in error (see [1]) There are counter-examples
which show that the theorem as stated is false We remark that the results of § 9 of
[1], concerning analogues of the Z-spectral decomposition theorem for basic sets
of Axiom A flows, are unaffected by this error

To correct the statement of the theorem, we shall define a 'dynamic blowup' of
a singular periodic orbit of <j> There are several possible ways to dynamically blow
up a singular orbit, and we shall show how to parameterize them below Given
a e H'(M, Z) as in the statement of the theorem, it will only be necessary to blow
up those singular orbits y such that (a, y) = 0, we refer to such a y as an ar-null
singular orbit After the first sentence of the theorem [1, p 334], insert the following

There is a way to dynamically blow up each a-null singular orbit of <j>, such that
if <f>* is the resulting flow, then the following hold

For the remainder of the theorem, replace the symbol 4> with the symbol <j>*
The introduction to [1] also mis-states the main result of [2], concerning the

existence of a surface transverse to <f> and Poincare dual to a, such a surface exists
only after blowing up a-null singular orbits Also, these methods are not sufficient
to settle Oertel's conjecture, although partial results can still be obtained (see [2])

First we define dynamic blowups in the context of pseudo-Anosov maps Let s
be a singular fixed point of a pseudo-Anosov map f S-* S, and consider first the
case where / does not rotate the separatnces To obtain a dynamic blowup of s,
replace s by a finite set of pseudo-Anosov fixed points which are connected in a
tree pattern by invariant paths Here is a more precise description Let D be a
coordinate disc centered on s List the stable and unstable separatnces in circular
order as {/„ neZ/2N}, where N>3 Let pn = £nc\dD. Choose an embedded tree
T=T,ci D, such that T intersects dD transversely in the set {/>„}, and every interior
vertex of T is of even valence s 4 Let /* be the edge of T incident on pn, and let
T° = cl ( T - U KK}) With these conditions on T, the map / can be replaced by a
map f which is semi-conjugate to f, by a semi-conjugacy p S^S which collapses
T° to the point s, so that f* has a prong singularity at each interior vertex of T, f*
leaves T° invariant, and each edge E of T° is an invariant path for f*, with f*
acting as a translation on int (E) We say that f* is obtained by dynamically blowing
up s The set {£„} is partitioned in such a way that £„ and £m are in the same partition
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element if and only if (* n / „ 7s 0 , the blowup is determined up to isotopy by the
partition Not all partitions occur, it is a simple matter to describe which partitions
are allowable Notice that the tree T is a directed graph, 1 e each edge E is naturally
oriented according to the direction that points on E are moved under f* For each
interior vertex v of T, the edges incident on v point alternately toward and away
from v, going around v in circular order

When / rotates the separatnces at s through a fraction K/N of a complete
rotation, a dynamic blowup is similarly defined with the additional proviso that T
is invariant under a K/N rotation of D

If y is a singular periodic orbit of a pseudo-Anosov flow <f>, a dynamic blowup
of y is defined as follows Choose a local cross-section near y, having a pseudo-
Anosov singular fixed point s, and choose a dynamic blowup of 5 by picking a tree
T as above This can be suspended, to obtain a dynamic blowup of y The result
is determined up to conjugacy by a partition of the set whose elements are the stable
and unstable manifolds of y The effect is to introduce several annuh, each of which
is invariant under the blown up flow </>*, one annulus for each orbit of edges of T°
under the rotation action

The mathematical error in the proof of the theorem first occurs in § 3 If £ is a
quasi-orbit, the intersection number (a, £) is assumed to take values in Z2n{+oo}
This assumption is unjustified (a, £) takes values in Z u {+00} Counter-examples
show that negative values can occur, in which case the theorem fails The error
recurs in § 4, in which the terms of the generalized splice equation are assumed to
take values in Z2u{+°o}, rather than Zu{+oo} The error is manifested in the
following incorrect statement, from the proof of Lemma 4 2 'Note that each directed
loop of F^ corresponds uniquely to a symbolic quasi-loop m of FA such that
0< Ua(m)< +00' The only restriction is Ua(m)eZ The proof of Proposition 7 1
contains another manifestation of the error One effect of the error is that the
invariant sets L(a), R(a), and Lq(a) as defined in the paper are inutile Theorem
3 8 is incorrect with these definitions Also, the auxiliary graph T'A used in Lemma
4.2 is inutile We shall construct new auxiliary graphs TA and F2

A below, to take
over various tasks previously performed by F'A

The following corrections in the proof are needed First of all, recall that § 1
reduces to the case when <f> is the suspension flow of a pseudo-Anosov map/ which
fixes all singularities and does not rotate the separatnces This reduction no longer
seems necessary or appropriate, so we shall henceforth abandon it, and deal directly
with a general pseudo-Anosov map /

For notational convenience, we shall drop the subscript A from the notation FA,
Fl

A and F2
A, denoting these as F, F1, and F2

The contents of § 4 starting with Lemma 4 2 should be replaced with the following
discussion, whose aim is to show how to choose the blowups needed to define # # ,
and to give the correct versions of R(a), L(a) and Lq(a)

Let y be an Af-pronged a-null singular orbit Choose a point s = syeynS Let
{mneJi\neZ/2N} be the list of Markov rectangles containing the point s, listed
in circular order around 5 Choose a 2JV-pronged star 2 r , and glue the endpoints

https://doi.org/10.1017/S0143385700005903 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005903


Correction to 'Equivalent spectral decomposition ' 789

{vn | n € Z/2N} of 2T in a 1-1 manner to the vertices {mn \ n e Z/2N} of the digraph
F Doing this for each a-null singular orbit y, we obtain a graph F1, having F as a
subgraph Although F is a directed graph, F1 is not, since no orientations are assigned
to the edges of each star 1y A closed, oriented edge loop L in F1 is semi-directed
if it passes over each directed edge of F in the positive sense Each semi-directed
loop L of F1 determines in a natural manner a symbolic quasi-loop of F, and thus
a penodic quasi-orbit denoted O(L) The generalized splice equation holds for
semi-directed loops, and from this it easily follows that Ua extends to a cohomology
class on F1, denoted U\ The non-negative cocycle ua constructed in proposition
3 2 can then be extended to a cocycle u\ on F1 representing U\

For each a-null singular orbit y, we now specify how y is to be blown up Choose
a zero-dimensional-cochain fy on 2V whose coboundary is uJ,|ST Note that/,, is
well-defined on the endpoints {vn} of S r , up to an additive constant Let {£n\n€
Z/2N} be the list of separatnces at s = sy as above, rotated by <f> through K/N of
a complete rotation Choose the notation so that £„ is stable when n is even and
unstable when n is odd Choose a small coordinate disc D = Dyc S centered on s,
such that the sector of D between /„ and £n+1 is contained in the Markov rectangle
mn Let yn = dD n £„ Choose a point xn contained in the interior of the arc [yn, yn+i]
of dD Let Fy {*„}-» Z be defined by Fy(xn) = fy(vn) Since (a, y) = 0, it is easy to
check that/r is rotationally invariant, under aK/JV rotation on {vn} Thus, Fy can
be extended to a K/ N rotationally invariant real-valued continuous function on
dD, still denoted Fy, such that on the arc [yn, yn+1], if « is even then Fy is increasing,
and if n is odd then Fy is decreasing Thus, at the point yn, Fy has a local minimum
on dD if n is even and a local maximum if n is odd Collapse dD to a K/N
rotationally invariant tree TyczD, with endpoint set {yn}, in such a way that the
following conditions are satisfied

(l) two points on 3D are identified only if they have the same Fy value,
(n) for each n, the shorter of the two intervals [xn_l5 yn], [yn,xn~\ is identified with

a sub-interval of the other
The tree Ty can be used in the definition of a dynamic blowup of y Note that

by (I), Fy induces a function on Ty, still denoted Fy The orientation on each edge
of Ty agrees with the direction of the gradient of Fy

Applying the construction in the previous paragraph to each a-null singular orbit
y, we have defined the blown up flow <f>* The suspension of T° is a union of
invanant annuh of <£#, denoted Susp(T°) The semi-conjugacy p Af-»M from
<f>* to </> collapses all invanant annuh, and takes each quasi-orbit I* of 4>* to a
quasi-orbit £ = p(£*) of <j>, preserving (a, ) We must prove that (a, £#)eZ>n{+°o}
for each quasi-orbit £# of <$>* To do this, we must study some properties of 4>*

We introduce a new auxiliary graph F2, which will be a directed graph Consider
an a-null singular orbit y Adopting the notation above, let xn, yn e Ty be the images
of xn,yn under the collapsing 8Dy-* Ty Of the two points xn_,, xn, let zn be the
one closest to yn Let fy be the smallest sub-tree of Ty containing each xn> or
equivalently the smallest sub-tree containing each zn Notice that T° <=• fy Glue fy

to F by identifying xn with the vertex mn of F, this may result in identification of
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vertices of F Doing this for each a-null orbit y, the result is a directed graph
denoted F2 By construction, the 1-cocycle ua on F and the 1-cocycle SFy on fy

combine to yield a non-negative 1-cocycle u2 on F2 , and u2
a is positive on each

directed edge of Ty

Each directed loop L in F2 determines a penodic quasi-orbit O{L) of </># such
that u2(L) =(ot, O{L)), as follows Each portion of L restricted to F determines an
orbit of </># which is not contained in any invariant annulus, each portion of L
restncted to Ty determines a sequence of orbits in Susp (T°) These orbits piece
together to give O(L)

Conversely, we must show that for each periodic quasi-orbit £#, either (a, £#) =
+00, or there is a directed loop L in F2 with £# = O(L), for then it will follow that
(a, £#) = u2

a(L) > 0 We shall give the argument in the case where <f> does not permute
separatnces, the other case is left to the reader Assume (a, £#)<+oo Let £# =
(£?)icez/j» a°d consider C* not contained in any invariant annulus p{Ct) approaches
some a-null singular orbit y in positive time Consider the coordinate disc D = Dy

around s = syeynS The point set p(ft)<~>D accumulates on s along some stable
separatnx /„ In constructing a symbolic path Lk in F for the orbit £*, as Lk

approaches +oo there are two possibilities Lk will cycle infinitely around a loop in
F representing y, and this loop will pass through either the symbol win_, or the
symbol mn, since these are the two Markov rectangles incident on s and /„ In the
tree fy, at least one of the two points xn_,, xn is identified with zn Choose Lk to
cycle through mn_, if *„_, = zn, and to cycle through mn if xn = zn In either case,
under the identification map F -* F2, Lk should then be truncated at zn A similar
construction is made for the negative direction of Lk Do this for each f * not
contained in an invanant annulus of £ Each remaining portion of £* is contained
in Susp(T°) for some a-null orbit y, and consists of a sequence of orbits
£t+\, , £?-i, yielding a directed path Ek+i, , £*•_, in T° Note that Lk ends
at some vertex zn € fy, and Lfc. starts at some other vertex zn.e ty Condition (n) in
the construction of Ty guarantees that the edge-path % from zn to zn in ty intersects
Vy in the directed path Ek+1, , Ek^t Thus, % is directed Now concatenate %
between Lk and Lfc.. Doing this for each appropriate portion of £# results in the
desired directed loop in F2 representing £#

Now we say how to define the sets R(a), L(a), and Lq(a), which are invariant
sets of <$>* R(a) is defined as the chain kernel of </># with respect to a, i e the set
of all points x such that for all e, T, there exists an e, T cycle X through x such
that (a,X) = 0 L(a) is defined as the closure of all periodic orbits y of <j>* such
that (a, y) = 0 Lq(a) is defined as the closure of all quasi-periodic orbits £ of <j>*
such that (a, f> = 0 Observe that L(a) and V{a) do not intersect the interior of
any invanant annulus of <f>* This is a consequence of the fact that M2 is positive
on each directed edge of fy, for each a-null singular orbit y

The statement of Proposition 3 7 is true with the new definition of L(a) An
analogue of Proposition 4 3 holds, characterizing the subgraph of F2 which is the
union of all simple loops L for which u2(L) = 0 Proposition 4 7 is proven exactly
as before
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The pseudo-Anosov shadowing theory presented in § 5 needs the following
changes After proving Lemma 5 1 Visitors enter and leave through corridors, an
addendum to the lemma needs to be proven for the invariant tree Ts constructed
by blowing up a singular fixed point s of a pseudo-Anosov map The addendum
says that if e is small enough in terms of the diameter of Ts, then in an appropriately
constructed neighbourhood N(TS), an e-chain which visits N(TS) enters through
the stable corridor corresponding to some endpoint v0 of Ts, and leaves through
the unstable corridor corresponding to some endpoint t>i of Ts, and there is a directed
path in T", leading from v0 to u, Using this addendum, a version of Lemma 5 3,
general pseudo-Anosov shadowing, should be proven for/*, stating that arbitrary
chains of f* are shadowed by quasi-orbits, and stating the appropriate version of
uniqueness The remainder of § 5 is unchanged, and in particular we have recovered
the proof of Theorem 3 8, that R(a) = Lq(a)

To adapt the construction given in § 6 of an isolating block JV for R(a), as before
one starts with a pseudo-Markov partition Mp for/ such that for each PeMp, and
for each a-null periodic orbit y of <$>, ynP<=int(P) In particular, if y is an
n-pronged singular orbit and y n P # (f>, then P is a 2n-gon In § 6, we produced a
certain subset Mp{a)<=- Mp, which was a pseudo-Markov partition for the invariant
set R(a)nS In the present context we must follow a more involved procedure in
order to obtain a pseudo-Markov partition Jtp(a) for R(a)nS Consider a 2M-
gonPeJP , M > 3 , with n-pronged singular point xeP P decomposes into In
quadrants, each bounded by one stable and one unstable separatnx For each
quadrant Q<=P, consider Q = cl (p"'(int (Q))) Observe that if Q intersects the
interior of an invariant path of/*, then int (Q) is disjoint from R(a), this follows
from the fact that R(a) is disjoint from the interior of each invariant annulus of
<$>*, together with a simple splicing argument Thus, for each fc-pronged periodic
point s of/* in p~x{P) obtained from the blowup of x, there is a Markov 2fe-gon Ps <=
p~\P) containing s, such that if s^s' then PsnPs =0, and u ,{PS}3 .R(a)n
p~\P) Hence we obtain a pseudo-Markov partition Jtp(a) for R{a) n S, as follows
For each 2/i-gon PeMp with n>3 , and for each singularity 5 of/* in p~\P), P5

is an element of Mp{a) And for each rectangular Pe Mp such that R(a) r\ p~\P) ^
0, p~x(P) is an element of Mp(a) The isolating block N for R(a) can now be
constructed from Mp{a) exactly as in § 6

In § 7, the shadowing proof of Proposition 7 1 goes through as stated, with 4>*
in place of <f>

The proof of property (E) in § 8 is as before, except that in the final paragraph
of the proof, the graph F2 and the class U2e H\F2, Z) are used, in place of F^ and
UpeHl(Tp,I)
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