THE λ-PROPERTY IN SCHREIER'S SPACE S AND THE LORENTZ SPACE $d(a, 1)$

by THADDEUS J. SHURA and DAVID TRAUTMAN

(Received 7 March, 1989)
0. Abstract. We add Schreier's space S and the Lorentz space $d(a, 1)$ to the list of classical Banach spaces which enjoy the λ-property, investigate the extreme point structure of S, and show that $d(a, 1)$ has a λ-function which is continuous on $S_{d(a, 1)}$, though not even uniformly so.

1. Introduction. Let X be a Banach space, B_{X} the unit ball of X, S_{X} the surface of B_{X}, and ext B_{X} the set of extreme points of B_{X}. For points $x, y \in X$, we write $[x, y)$ for $\{\lambda x+(1-\lambda) y: 0<\lambda \leq 1\}$.

Definition 1.1. (a) X has the λ-property, if for each $x \in B_{X}$, there exists $e \in$ ext B_{X}, $y \in B_{X}, 0<\lambda \leq 1$ such that

$$
x=\lambda e+(1-\lambda) y .
$$

In this case we say that the triple (e, y, λ) is amenable to x, and write $(e, y, \lambda) \sim x$.
(b) If X has the λ-property, for each $x \in B_{\boldsymbol{X}}$, we define

$$
\lambda(x):=\sup \{\lambda:(e, y, \lambda) \sim x\} .
$$

(c) If there exists $\lambda_{0}>0$ such that $\lambda(x) \geq \lambda_{0}$, for all $x \in B_{X}$, we say that X has the uniform λ-property.
(d) Finally, we say that X has the convex series representation property (C.S.R.P.), if for each $x \in B_{X}$, there exist $\lambda_{n} \geq 0, e_{n} \in \operatorname{ext} B_{X},(n=1,2, \ldots)$, such that $x=\sum_{n} \lambda_{n} e_{n}$ and $\sum_{n} \lambda_{n}=1$.

These notions were developed by R. Aron and R. H. Lohman in [1], where (among other results) they proved: the uniform λ-property implies C.S.R.P. An easy exercise shows that C.S.R.P. implies the λ-property. Spaces that enjoy either the λ-property or the uniform λ-property are not rare [1], [3], [4], [8], and it is our belief that some strong theorems are lurking behind these concepts. In an attempt to better understand these properties we decided to investigate a couple of "exotic" sequence spaces. We begin with Schreier's space S.

2. Schreier's space S.

Definition 2.1. (a) Let $R^{(N)}$ denote the (vector) space of real sequences $x=$ $(x(1), x(2), \ldots$) which are finitely-non-zero (i.e., have "finite support"). A subset E of the natural numbers N is admissible, if $E=\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$, with $k \leq n_{1}<n_{2} \ldots<n_{k}$. We denote by \mathscr{A} the collection of all admissible subsets of N.
(b) For $x \in R^{(N)}$, we define

$$
\|x\|_{s}:=\sup _{E \in \mathscr{A}} \sum_{j \in E}|x(j)| .
$$

(Routine calculations show that $\|\cdot\|_{s}$ is a norm on $R^{(N)}$.)
(c) Schreier's space S is the $\|\cdot\|_{S}$-completion of $R^{(N)}$. (From here on, we will write " $\|\cdot\|$ ", for $\|\cdot\| s$ ".)

The space S has been studied extensively in [2], where it is shown that S is hereditarily- c_{0}; (hence l_{1} does not embed in it). In this section we shall show that S has enough extreme points to enjoy C.S.R.P., even though we fall short of a useful characterization of ext B_{S}. First we note that S is not c_{0} in disguise.

Proposition 2.2. S is not isomorphic to c_{0}.
Proof. If we denote by $\left\{s_{n}\right\}_{n=1}^{\infty}$ the canonical unit vector basis for S, then for each n, l_{1}^{n} is isometric to the norm-one complemented subspace of S spanned by $\left\{s_{i}: n+1 \leq i \leq\right.$ $2 n\}$. Thus (see [6, p. 74)] S^{*} fails to have finite co-type. Hence S^{*} is not isomorphic to c_{0}^{*}, and so S is not isomorphic to \boldsymbol{c}_{0}.

For each n, let $S_{n}:=\operatorname{span}\left\{s_{i}: i \leq n\right\}$. Since S_{n} is finite-dimensional, ext $B_{n} \neq \varnothing$ (where $B_{n}:=B_{S_{n}}$). In fact we shall show that

$$
\text { ext } B_{n} \cap \text { ext } B_{S} \neq \varnothing
$$

The reader can easily show (by using 1 -sets introduced below) that the vectors (1,1), $\left(1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$, and $\left(1, \frac{2}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ are all in ext B_{S} (when we write $x=(x(1), x(2), \ldots, x(n))$, we mean $x(j)=0$ when $j>n)$.

Definition 2.3. Let $x \in B_{S}$.
(a) If $E \in \mathscr{A}$, and $\sum_{j \in E}|x(j)|=1$, we say that E is a 1 -set for x.
(b) If (in addition) $E=\left\{n_{1}<n_{2}<\ldots<n_{k}\right\}$ and $k<n_{1}$, we say E is a non-maximal 1-set, for x.

Since for $E \in \mathscr{A}, x \rightarrow \sum_{j \in E}|x(j)|$ is a semi-norm, we clearly have the following result.
Lemma 2.4. Let $x, b, c \in B_{S}$ with $x=\lambda b+(1-\lambda) c$ for some $0<\lambda<1$. Then any 1 -set for x is a 1-set for b and c.

A slight modification of the above shows that for vectors x, b_{1}, b_{2}, \ldots in B_{S} and scalars $\lambda_{1}, \lambda_{2}, \ldots$ each >0 with $\sum_{n} \lambda_{n}=1$ and $x=\sum_{n} \lambda_{n} b_{n}$, every 1 -set for x is a 1 -set for each b_{n}.

Lemma 2.5. Let $n \geq 1$ and $x \in \operatorname{ext} B_{n}$. If x has a non-maximal 1 -set E, then $x \in \operatorname{ext} B_{S}$.
Proof. Clearly we may assume that $\max E \leqslant n$. Suppose $x=\lambda b+(1-\lambda) c$, for some $0<\lambda<1$ and some $b, c \in B_{s}$. If E is a non-maximal 1 -set for x, then, by Lemma $2.4, E$ is a non-maximal 1 -set for b and c. So $b(j)=0=c(j)$, for $j>n$, since $E \cup\{j\} \in \mathscr{A}$ for every $j>n$. But $x(j)=b(j)=c(j)$ for $j \leq n$, since $x \in \operatorname{ext} B_{n}$. Thus $x=b=c$, and $x \in \operatorname{ext} B_{s}$.

We note that ext $B_{n} \notin$ ext B_{S}. Some calculations show that $\left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) \in$ ext $B_{5} \sim$ ext B_{S}, for instance. To show that S has C.S.R.P. we need some lemmata about certain representations.

Lemma 2.6. Let $x \in B_{S}$. Then for all $\epsilon>0$, there exists N such that for $E \in \mathscr{A}$ with $N<\min E$, we have $\sum_{j \in E}|x(j)|<\epsilon$.

Proof. If $x \in B_{S}$, then $\|x-y\|<\varepsilon$ for some finite vector $y \in B_{S}$.

Lemma 2.7. Let $x \in B_{S}$ have infinite support. Then there exist vectors $b, c \in B_{s}$ such that $x=\frac{1}{2} b+\frac{1}{2} c$, and b has finite support.

Proof. Without loss of generality we may assume $\|x\|=1$. Let

$$
\alpha:=\min \{|x(j)|: j \in E \in \mathscr{A}, E \text { is a } 1 \text {-set for } x, x(j) \neq 0\}
$$

and

$$
\epsilon:=\min \left\{1-\sum_{j \in E}|x(j)|: E \in \mathscr{A}, \sum_{i \in E}|x(j)|<1\right\} .
$$

Lemma 2.6 implies that $\epsilon>0$. Choose an integer M larger than any element in any 1 -set for x and larger than any element in any $E \in \mathscr{A}$ which determines ϵ. Finally, enlarge M (if needed) so that for $E \in \mathscr{A}, \min E \geq M$ implies

$$
\sum_{j \in E}|x(j)|<\frac{1}{2} \min \{\alpha, \epsilon\} .
$$

Now define vectors b and c by

$$
\left\{\begin{array}{lll}
b(j)=x(j)=c(j), & \text { for } \quad 1 \leq j<M, \\
b(j)=0, & \text { for } \quad j \geq M \\
c(j)=2 x(j), & \text { for } & j \geq M
\end{array}\right.
$$

The only thing left to show is that $c \in B_{S}$. Towards this end, let $E \in \mathscr{A}$. If $\max E<M$, then $\sum_{j \in E}|c(j)| \leq\|x\|=1$. If $\max E \geq M$, then

$$
\sum_{j \in E}|c(j)|=\sum_{\substack{j \in E \\ j<M}}|c(j)|+\sum_{\substack{j \in E \\ j \geq M}}|c(j)|<1-\epsilon+2 \cdot \frac{\epsilon}{2}=1 .
$$

Note that for $x \in B_{S}$, applying the above Lemma recursively we obtain a representation $x=\sum_{i} 2^{-i} b_{i}$, where each $b_{i} \in B_{S}$ and each b_{i} has finite support. Also note that we immediately obtain the following result.

Corollary 2.8. If $x \in$ ext B_{S}, then x has finite support.
In fact, we can show more.
Lemma 2.9. Let $x \in B_{S}$ have finite support. Then x can be represented as $x=\frac{1}{2} b+\frac{1}{2} c$, for two vectors $b, c \in B_{S}$ each of finite support, and each having a non-maximal 1-set.

Proof. Without loss of generality, we may assume $x \neq 0$. Let $N=\max$ (support $x)+1$, and let $\epsilon=\min \left\{1-\sum_{j \in E}|x(j)|: E=\left\{n_{1}, \ldots, n_{k}\right\}, k<n_{1}<N\right\}$. (If $\epsilon=0$, then x already has a non-maximal 1 -set, and we can choose $b=c=x$.) Choose $M>N$ such that $\frac{N-2}{M}<\epsilon$. (The case where $N \leq 2$ is trivial.)

Define vectors b and c via

Clearly, $x=\frac{1}{2} b+\frac{1}{2} c$, and $\|b\|=\|c\|$.
To show that $\|b\| \leq 1$, let $E \in \mathscr{A}$. If $\min E \geq N$, then $\sum_{j \in E}|b(j)| \leq M \cdot \frac{1}{M}=1$. If $\max E<N$, then $\sum_{j \in E}|b(j)|=\sum_{j \in E}|x(j)| \leq 1$. In the only remaining case

$$
\begin{aligned}
\sum_{j \in E}|b(j)| & =\left(\sum_{\substack{j \in E \\
j<N}}+\sum_{\substack{j \in E \\
j \geq N}}\right)|b(j)| \\
& \leq 1-\varepsilon+\frac{N-2}{M}<1 .
\end{aligned}
$$

So $\|b\|=\|c\|=1$, and each has $\{M+1, M+2, \ldots, 2 M\}$ for a non-maximal 1-set.
Theorem 2.10. Schreier's space S has C.S.R.P.
Proof. Let $x \in B_{S}$. By the remark following Lemma 2.7, we may write $x=\sum_{n} 2^{-n} b_{n}$, where $\left\|b_{n}\right\|=1$ and support b_{n} is finite, $(n=1,2, \ldots)$. Using Lemma 2.9 on each b_{n}, we can write $x=\sum_{j} \lambda_{j} c_{j}$, for some choices of λ_{j} and c_{j} such that $\sum_{j} \lambda_{j}=1,\left\|c_{j}\right\|=1$, and each vector c_{j} has finite support and a non-maximal 1-set. Now each vector c_{j} belongs to some S_{n}, where $n:=n(j)$. Since S_{n} has C.S.R.P. [2], for each j we can write $c_{j}=\sum_{i} \lambda_{j, i} e_{j, i}$, a convex series where the $e_{j, i} \in \operatorname{ext} B_{n}$. Finally $x=\sum_{i, j} \lambda_{j, i} e_{j, i}$, and the vectors $e_{j, i}$ all belong to ext B_{S}, by Lemmas 2.4 and 2.5.

This of course implies that S has the λ-property although we do not know whether it has the uniform λ-property. We mention here that the extreme points of B_{S} all have supports with even cardinality (we omit the proof). It is of interest to note the following result.

Proposition 2.11. ext B_{S} is countable.
Proof. The earlier lemmas show that ext $B_{S} \subset \bigcup_{n}$ ext B_{n}. We now show that each ext B_{n} is finite. Since B_{n} is compact, it suffices to show that for each $x \in B_{n}$, there is a ball (in the B_{n} topology) of radius $\epsilon=\epsilon(x)$ such that this ball meets ext B_{n} (at most) at the point x. Let $x \in B_{n}$, and assume $\|x\|=1$. Define

$$
\begin{aligned}
& \delta_{1}=\min \{|x(j)|: x(j) \neq 0\}, \\
& \delta_{2}=\min \left\{1-\sum_{j \in E}|x(j)|: E \in \mathscr{A} \text { and } \sum_{j \in E}|x(j)|<1\right\} .
\end{aligned}
$$

Let $\delta=\frac{1}{2} \min \left\{\delta_{1}, \delta_{2}\right\}$, and choose $\epsilon>0$ so that $2 n \epsilon<\delta$.
Suppose $y \in B_{n}$ with $\|x-y\|<\epsilon$. Note that by choice of ϵ, whenever $x(j) \neq 0, x(j)$
and $y(j)$ have the same sign. Now define z by

$$
z(j)= \begin{cases}0, & \text { if } j>n, \\ 2 y(j)-x(j), & \text { if } j \leq n .\end{cases}
$$

Clearly $z \in S_{n}$ and $y=\frac{1}{2} x+\frac{1}{2} z$. If we can show $z \in B_{n}$, then $y \notin$ ext B_{n}, unless $y=x$ and $x \in \operatorname{ext} B_{n}$. Note that ϵ was chosen small enough so that $x(j), y(j)$, and $z(j)$ have the same sign as j ranges over the support of x. So for all j, we have

$$
\begin{aligned}
x(j)-z(j) & =2(x(j)-y(j)), \\
|x(j)|-|z(j)| & =2(|x(j)|-|y(j)|) .
\end{aligned}
$$

Letting $E \in \mathscr{A}$, we may assume $E \subset\{1, \ldots, n\}$. If E is not a 1 -set for x, then

$$
\sum_{j \in E}|z(j)| \leq \sum_{j \in E}|x(j)|+2 n \epsilon<1
$$

If E is a 1 -set for x, then letting $E_{0}=\{j \in E: x(j)=0\}$, and $E_{1}=E \backslash E_{0}$, we have

$$
\begin{aligned}
\sum_{j \in E}|z(j)| & =\sum_{j \in E_{1}}|z(j)|+\sum_{j \in E_{0}}|z(j)| \\
& =\sum_{j \in E_{1}}|x(j)|-\sum_{j \in E_{1}}(|x(j)|-|z(j)|)+\sum_{j \in E_{0}}|z(j)| \\
& =\sum_{j \in E_{1}}|x(j)|-2 \sum_{j \in E_{1}}(|x(j)|-|y(j)|)+2 \sum_{j \in E_{0}}|y(j)| \\
& =2 \sum_{j \in E}|y(j)|-\sum_{j \in E_{1}}|x(j)| \leq 1 .
\end{aligned}
$$

Thus $\|z\| \leq 1$.
3. The Lorentz sequence space $\boldsymbol{d}(\boldsymbol{a}, \mathbf{1})$. We consider here Lorentz sequence spaces of type $d(a, 1)$. These "weighted" versions of l_{1} turn out to have the λ-property, while failing the uniform λ-property. This was demonstrated in Theorems 5 and 6 in [8], both of which we improve here by producing the exact form of the λ-function for norm-one vectors. This is then used to prove a continuity result. First we establish some definitions and notation.

Definition 3.1. Let $a=\left(a_{n}\right) \in c_{0} \backslash l_{1}$ be a positive strictly decreasing sequence with $a_{1}=1$. The space $d(a, 1)$ consists of all real sequences $x=(x(n)) \in c_{0}$ such that $\sup \sum|x(\pi(n))| a_{n}<\infty$, where the supremum is taken over all permutations π of the natural numbers. (If $\|x\|$ is taken to be this supremum, then $d(a, 1)$ is a Banach space.)

If $x=(x(n)) \in d(a, 1)$, and $x \neq 0$, we write

$$
\begin{array}{cc}
M_{1}(x)=\|x\|_{\infty}, \quad \text { and } & F_{1}(x)=\left\{n:|x(n)|=M_{1}(x)\right\}, \\
M_{2}(x)=\left\|x-x c_{F_{1}(x)}\right\|_{\infty}, & F_{2}(x)=\left\{n:|x(n)|=M_{2}(x)\right\},
\end{array}
$$

where $c_{F_{1}(x)}$ is the characteristic function of $F_{1}(x)$, etc. Then $M_{k}(x) \downarrow 0$, and if $M_{k}(x)>0$, then $M_{k}(x)>M_{k+1}(x)$. Also $F_{k}(x)$ and $F_{j}(x)$ are disjoint if $M_{k}(x), M_{j}(x)>0$ and $k \neq j$. Let $N(x)=\left\{k: M_{k}(x)-M_{k+1}(x)>0\right\}$, and for $k \in N(x)$, define $n_{k}(x)=\operatorname{card}\left(\bigcup_{i=1}^{k} F_{i}(x)\right)$, and $s_{k}(x)=\sum_{n=1}^{n_{k}(x)} a_{n}$.

If we let $n_{0}(x)=0$, then we can write $\|x\|$ as

$$
\|x\|=\sum_{k \in N(x)} M_{k}(x) \cdot\left(s_{k}(x)-s_{k-1}(x)\right) .
$$

Importantly, for $x \in d(a, 1),\|x\|$ can also be realized in another way.
Proposition 3.2. For any $x \in d(a, 1)$,

$$
\|x\|=\sum_{k} M_{k}(x) \cdot\left[s_{k}(x)-s_{k-1}(x)\right]=\sum_{n}\left[M_{n}(x)-M_{n+1}(x)\right] \cdot s_{n}(x)
$$

Proof. It suffices to note that either sum is equal to

$$
\sum_{k} \sum_{j \leq k}\left(M_{k}(x)-M_{k+1}(x)\right)\left(s_{j}(x)-s_{j-1}(x)\right)
$$

The extreme points of $B_{d(a, 1)}$ were characterized by W. J. Davis [10].
Proposition 3.3. $e \in \operatorname{ext} B_{d(a, 1)}$ if and only if e has the form

$$
e=\left(\sum_{n=1}^{k} a_{n}\right)^{-1}\left(\sum_{n=1}^{k} \epsilon_{n} x_{i_{n}}\right)
$$

for some integer k, $i_{1}<i_{2}<\ldots<i_{k}$, and signs $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{k}$, (where $\left(x_{i}\right)$ is the canonical unit vector basis of $d(a, 1)$.)

Using this characterization, we can establish the following result.
Proposition 3.4. The space $d(a, 1)$ has C.S.R.P.
Proof. Assume first that $\|x\|=1$, and that x has the form

$$
x=(x(1) \geq x(2) \geq \ldots \geq x(k)>0)
$$

For any j, define $s_{j}=\sum_{i=1}^{j} a_{i}$, and denote by e_{m} that extreme point with non-negative coefficients and support $=\{1,2, \ldots, \mathrm{~m}\}$. Further denote by v^{n} that vector defined by $v^{n}(i)=1$, if $1 \leq n$, and 0 , otherwise. Then

$$
\begin{aligned}
x= & (x(1), x(2), \ldots, x(k), 0, \ldots) \\
= & x(k) \cdot v^{k}+(x(1)-x(k), \ldots, x(k-1)-x(k), 0, \ldots) \\
= & \ldots=x(k) v^{k}+(x(k-1)-x(k)) v^{k-1} \\
& +\left(x(k-2)-x(k-1) v^{k-2}+\ldots(x(2)-x(3)) v^{2}+(x(1)+x(2)) v^{1}\right. \\
= & {\left[x(k) s_{k}\right] e_{k}+\left[(x(k-1)-x(k)) s_{k-1}\right] e_{k-1} } \\
& +\left[(x(k-2)-x(k-1)) s_{k-2}\right] e_{k-2}+\ldots \\
& +\left[(x(2)-x(3)) s_{2}\right] e_{2}+\left[(x(1)-x(2)) s_{1}\right] e_{1} .
\end{aligned}
$$

Let $\alpha_{l}=(x(l)-x(l+1)) s_{l},(l=k, k-1, \ldots, 2,1)$ and note that

$$
\begin{aligned}
\alpha_{k}+\alpha_{k-1}+\ldots+\alpha_{1}= & x(k)\left(s_{k}-s_{k-2}\right)+x(k-1)\left(s_{k-1}-s_{k-2}\right) \\
& +\ldots+x(2)\left(s_{2}-s_{1}\right)+x(1) s_{1} \\
= & x(k) a_{k}+x(k-1) a_{k-1}+\ldots+x(2) a_{2}+x(1) a_{1} \\
= & \|x\|=1
\end{aligned}
$$

Now assume that $\|x\|=1$ and that x has the form $x=(x(1) \geq x(2) \geq \ldots>0)$. Then (using the notation above) $1=\|x\|=\lim _{k} \sum_{i=1}^{k} a_{i} x(i)=\lim _{k} \sum_{i=1}^{k} \alpha_{i}$. Arbitrary vectors x with $\|x\|=1$ are an isometry away from the two cases already considered, and if $\|x\|<1$,

$$
x=\|x\| \cdot \frac{x}{\|x\|}+\frac{1-\|x\|}{2} \cdot e+\frac{1-\|x\|}{2}(-e)
$$

(where e is any extreme point), leads to a convex series representation.
Proposition 3.4 implies that $d(a, 1)$ has the λ-property, but we can say more. In [8] a lower bound is proven for the λ-function.

$$
\begin{equation*}
\text { If } x \in B_{d(a, 1)}, x \neq 0, \quad \text { then } \quad \lambda(x) \geq \sup _{k \in N(x)}\left[M_{k}(x)-M_{k+1}(x)\right] s_{k}(x) \tag{*}
\end{equation*}
$$

In the same paper an exact formula is given for unit vectors of finite support.
If $x \in d(a, 1)$ with $\|x\|=1$, and support x is finite, then

$$
\begin{equation*}
\lambda(x)=\max _{k \in N(x)}\left[M_{k}(x)-M_{k+1}(x)\right] s_{k}(x) \tag{**}
\end{equation*}
$$

Proposition 3.2 allows us to replace the "sup" in (*) by a "max", and we can now remove the hypothesis about support x in (**).

Using the results above, we can also establish the following theorems.
Theorem 3.5. Assume $x \in d(a, 1),\|x\|=1$. Then

$$
\lambda(x)=\max _{n}\left[M_{n}(x)-M_{n+1}(x)\right] \cdot s_{n}(x)
$$

Theorem 3.6. The λ-function for $d(a, 1)$ is continuous on $\{x:\|x\|=1\}$, Lipschitzcontinuous on $\{x:\|x\| \leq r\},(0<r<1)$, though not even uniformly continuous on $\{x:\|x\|=1\}$.

Consideration of space forces us to omit proofs of these last two results, which will appear in [9].

Remark. R. H. Lohman [7] has recently shown that for Banach spaces the λ-property is equivalent to the C.S.R.P.

REFERENCES

1. R. M. Aron and R. H. Lohman, A geometric function determined by extreme points of the unit ball of a normed space, Pacific J. Math. 127 (1987), 209-236.
2. P. G. Casazza and T. J. Shura, Tsirelson's space, Lecture Notes in Mathematics No 1363 (Springer-Verlag, 1989).
3. A. S. Granero, On the Aron-Lohman's λ-property (preprint).
4. A. S. Granero, The λ-function in the spaces $\left(\oplus \sum X\right)_{p}$ and $L_{p}(\mu, X)$ (preprint).
5. P. R. Halmos, A Hilbert space problem book, (Van Nostrand, 1967).
6. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II; function spaces (SpringerVerlag, 1979).
7. R. H. Lohman, The λ-property in Banach spaces, in Banach Space Theory, Contemporary Mathematics 85 (1989), 345-354.
8. R. H. Lohman, T. J. Shura, Calculation of the λ-function for several classes of normed linear spaces, in Nonlinear and convex analysis: Proceedings in honor of Ky Fan (Marcel Dekker, 1987).
9. T. J. Shura, Dissertation, Kent State University, (to appear).
10. W. J. Davis, Positive bases in Banach spaces, Rev. Roumaine Math. Pures Appl., 16 (1971), 487-492.

Kent State University at Salem
Salem, Ohio 44460
U.S.A.

The Citadel
Charleston
South Carolina 29409
U.S.A.

