THE λ -PROPERTY IN SCHREIER'S SPACE S AND THE LORENTZ SPACE d(a, 1)

by THADDEUS J. SHURA and DAVID TRAUTMAN

(Received 7 March, 1989)

0. Abstract. We add Schreier's space S and the Lorentz space d(a, 1) to the list of classical Banach spaces which enjoy the λ -property, investigate the extreme point structure of S, and show that d(a, 1) has a λ -function which is continuous on $S_{d(a,1)}$, though not even uniformly so.

1. Introduction. Let X be a Banach space, B_X the unit ball of X, S_X the surface of B_X , and ext B_X the set of extreme points of B_X . For points $x, y \in X$, we write [x, y) for $\{\lambda x + (1 - \lambda)y : 0 < \lambda \le 1\}$.

DEFINITION 1.1. (a) X has the λ -property, if for each $x \in B_X$, there exists $e \in \text{ext } B_X$, $y \in B_X$, $0 < \lambda \le 1$ such that

$$x = \lambda e + (1 - \lambda)y$$

In this case we say that the triple (e, y, λ) is *amenable* to x, and write $(e, y, \lambda) \sim x$.

(b) If X has the λ -property, for each $x \in B_X$, we define

$$\lambda(x) := \sup\{\lambda : (e, y, \lambda) \sim x\}.$$

(c) If there exists $\lambda_0 > 0$ such that $\lambda(x) \ge \lambda_0$, for all $x \in B_X$, we say that X has the uniform λ -property.

(d) Finally, we say that X has the convex series representation property (C.S.R.P.), if for each $x \in B_X$, there exist $\lambda_n \ge 0$, $e_n \in \text{ext } B_X$, (n = 1, 2, ...), such that $x = \sum_n \lambda_n e_n$ and $\sum \lambda_n = 1$.

These notions were developed by R. Aron and R. H. Lohman in [1], where (among other results) they proved: the uniform λ -property implies C.S.R.P. An easy exercise shows that C.S.R.P. implies the λ -property. Spaces that enjoy either the λ -property or the uniform λ -property are not rare [1], [3], [4], [8], and it is our belief that some strong theorems are lurking behind these concepts. In an attempt to better understand these properties we decided to investigate a couple of "exotic" sequence spaces. We begin with Schreier's space S.

2. Schreier's space S.

DEFINITION 2.1. (a) Let $R^{(N)}$ denote the (vector) space of real sequences $x = (x(1), x(2), \ldots)$ which are finitely-non-zero (i.e., have "finite support"). A subset E of the natural numbers N is admissible, if $E = \{n_1, n_2, \ldots, n_k\}$, with $k \le n_1 < n_2 \ldots < n_k$. We denote by \mathscr{A} the collection of all admissible subsets of N.

(b) For $x \in R^{(N)}$, we define

$$\|x\|_{\mathcal{S}} := \sup_{E \in \mathscr{A}} \sum_{j \in E} |x(j)|.$$

(Routine calculations show that $\|\cdot\|_{S}$ is a norm on $R^{(N)}$.)

Glasgow Math. J. 32 (1990) 277-284.

(c) Schreier's space S is the $\|\cdot\|_S$ -completion of $R^{(N)}$. (From here on, we will write " $\|\cdot\|$ ", for $\|\cdot\|_S$ ".)

The space S has been studied extensively in [2], where it is shown that S is hereditarily- c_0 ; (hence l_1 does not embed in it). In this section we shall show that S has enough extreme points to enjoy C.S.R.P., even though we fall short of a useful characterization of ext B_S . First we note that S is not c_0 in disguise.

PROPOSITION 2.2. S is not isomorphic to c_0 .

Proof. If we denote by $\{s_n\}_{n=1}^{\infty}$ the canonical unit vector basis for S, then for each n, l_1^n is isometric to the norm-one complemented subspace of S spanned by $\{s_i: n+1 \le i \le 2n\}$. Thus (see [6, p. 74)] S* fails to have finite co-type. Hence S* is not isomorphic to c_0^* , and so S is not isomorphic to c_0 .

For each *n*, let $S_n := \operatorname{span}\{s_i : i \le n\}$. Since S_n is finite-dimensional, ext $B_n \ne \emptyset$ (where $B_n := B_{S_n}$). In fact we shall show that

ext
$$B_n \cap$$
 ext $B_s \neq \emptyset$.

The reader can easily show (by using 1-sets introduced below) that the vectors (1, 1), $(1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$, and $(1, \frac{2}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ are all in ext B_s (when we write $x = (x(1), x(2), \dots, x(n))$), we mean x(j) = 0 when j > n).

DEFINITION 2.3. Let $x \in B_s$.

(a) If $E \in \mathcal{A}$, and $\sum_{j \in E} |x(j)| = 1$, we say that E is a 1-set for x.

(b) If (in addition) $E = \{n_1 < n_2 < ... < n_k\}$ and $k < n_1$, we say E is a non-maximal 1-set, for x.

Since for $E \in \mathcal{A}$, $x \to \sum_{j \in E} |x(j)|$ is a semi-norm, we clearly have the following result.

LEMMA 2.4. Let x, b, $c \in B_s$ with $x = \lambda b + (1 - \lambda)c$ for some $0 < \lambda < 1$. Then any 1-set for x is a 1-set for b and c.

A slight modification of the above shows that for vectors x, b_1, b_2, \ldots in B_s and scalars $\lambda_1, \lambda_2, \ldots$ each >0 with $\sum_n \lambda_n = 1$ and $x = \sum_n \lambda_n b_n$, every 1-set for x is a 1-set for each b_n .

LEMMA 2.5. Let $n \ge 1$ and $x \in \text{ext } B_n$. If x has a non-maximal 1-set E, then $x \in \text{ext } B_s$.

Proof. Clearly we may assume that max $E \le n$. Suppose $x = \lambda b + (1 - \lambda)c$, for some $0 < \lambda < 1$ and some $b, c \in B_s$. If E is a non-maximal 1-set for x, then, by Lemma 2.4, E is a non-maximal 1-set for b and c. So b(j) = 0 = c(j), for j > n, since $E \cup \{j\} \in \mathcal{A}$ for every j > n. But x(j) = b(j) = c(j) for $j \le n$, since $x \in \text{ext } B_n$. Thus x = b = c, and $x \in \text{ext } B_s$.

We note that ext $B_n \notin \text{ext } B_s$. Some calculations show that $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \in \text{ext } B_s \sim \text{ext } B_s$, for instance. To show that S has C.S.R.P. we need some lemmata about certain representations.

LEMMA 2.6. Let $x \in B_s$. Then for all $\epsilon > 0$, there exists N such that for $E \in \mathcal{A}$ with $N < \min E$, we have $\sum_{i \in E} |x(i)| < \epsilon$.

Proof. If $x \in B_s$, then $||x - y|| < \varepsilon$ for some finite vector $y \in B_s$.

THE λ -PROPERTY

LEMMA 2.7. Let $x \in B_s$ have infinite support. Then there exist vectors $b, c \in B_s$ such that $x = \frac{1}{2}b + \frac{1}{2}c$, and b has finite support.

Proof. Without loss of generality we may assume ||x|| = 1. Let

$$\alpha := \min\{|x(j)| : j \in E \in \mathcal{A}, E \text{ is a 1-set for } x, x(j) \neq 0\},\$$

and

$$\epsilon := \min \left\{ 1 - \sum_{j \in E} |x(j)| : E \in \mathcal{A}, \sum_{j \in E} |x(j)| < 1 \right\}.$$

Lemma 2.6 implies that $\epsilon > 0$. Choose an integer *M* larger than any element in any 1-set for *x* and larger than any element in any $E \in \mathcal{A}$ which determines ϵ . Finally, enlarge *M* (if needed) so that for $E \in \mathcal{A}$, min $E \ge M$ implies

$$\sum_{j\in E} |x(j)| < \frac{1}{2} \min\{\alpha, \epsilon\}.$$

Now define vectors b and c by

$$\begin{cases} b(j) = x(j) = c(j), & \text{for } 1 \le j < M, \\ b(j) = 0, & \text{for } j \ge M, \\ c(j) = 2x(j), & \text{for } j \ge M. \end{cases}$$

The only thing left to show is that $c \in B_S$. Towards this end, let $E \in \mathcal{A}$. If max E < M, then $\sum_{i \in F} |c(i)| \le ||x|| = 1$. If max $E \ge M$, then

$$\sum_{j \in E} |c(j)| = \sum_{\substack{j \in E \\ j < M}} |c(j)| + \sum_{\substack{j \in E \\ j \geq M}} |c(j)| < 1 - \epsilon + 2 \cdot \frac{\epsilon}{2} = 1.$$

Note that for $x \in B_s$, applying the above Lemma recursively we obtain a representation $x = \sum_i 2^{-i}b_i$, where each $b_i \in B_s$ and each b_i has finite support. Also note that we immediately obtain the following result.

COROLLARY 2.8. If $x \in \text{ext } B_s$, then x has finite support.

In fact, we can show more.

LEMMA 2.9. Let $x \in B_s$ have finite support. Then x can be represented as $x = \frac{1}{2}b + \frac{1}{2}c$, for two vectors b, $c \in B_s$ each of finite support, and each having a non-maximal 1-set.

Proof. Without loss of generality, we may assume $x \neq 0$. Let $N = \max(\text{support } x) + 1$, and let $\epsilon = \min\left\{1 - \sum_{j \in E} |x(j)| : E = \{n_1, \ldots, n_k\}, k < n_1 < N\right\}$. (If $\epsilon = 0$, then x already has a non-maximal 1-set, and we can choose b = c = x.) Choose M > N such that $\frac{N-2}{M} < \epsilon$. (The case where $N \le 2$ is trivial.)

Define vectors b and c via

$$\begin{cases} b(j) = x(j) = c(j), & \text{for } 1 \le j \le M, \\ b(j) = 0 = c(j), & \text{for } j > 2M, \\ b(j) = \frac{1}{M} = -c(j), & \text{for } M + 1 \le j \le 2M \end{cases}$$

Clearly, $x = \frac{1}{2}b + \frac{1}{2}c$, and ||b|| = ||c||.

To show that $||b|| \le 1$, let $E \in \mathcal{A}$. If min $E \ge N$, then $\sum_{j \in E} |b(j)| \le M$. $\frac{1}{M} = 1$. If max E < N, then $\sum_{i \in E} |b(j)| = \sum_{j \in E} |x(j)| \le 1$. In the only remaining case

$$\sum_{j \in E} |b(j)| = \left(\sum_{\substack{j \in E \\ j < N}} + \sum_{\substack{j \in E \\ j \ge N}}\right) |b(j)|$$
$$\leq 1 - \varepsilon + \frac{N - 2}{M} < 1.$$

So ||b|| = ||c|| = 1, and each has $\{M + 1, M + 2, \dots, 2M\}$ for a non-maximal 1-set.

THEOREM 2.10. Schreier's space S has C.S.R.P.

Proof. Let $x \in B_s$. By the remark following Lemma 2.7, we may write $x = \sum_n 2^{-n}b_n$, where $||b_n|| = 1$ and support b_n is finite, (n = 1, 2, ...). Using Lemma 2.9 on each b_n , we can write $x = \sum_j \lambda_j c_j$, for some choices of λ_j and c_j such that $\sum_j \lambda_j = 1$, $||c_j|| = 1$, and each vector c_j has finite support and a non-maximal 1-set. Now each vector c_j belongs to some S_n , where n := n(j). Since S_n has C.S.R.P. [2], for each j we can write $c_j = \sum_i \lambda_{j,i} e_{j,i}$, a convex series where the $e_{j,i} \in \text{ext } B_n$. Finally $x = \sum_{i,j} \lambda_{j,i} e_{j,i}$, and the vectors $e_{j,i}$ all belong to ext B_s , by Lemmas 2.4 and 2.5.

This of course implies that S has the λ -property although we do not know whether it has the uniform λ -property. We mention here that the extreme points of B_S all have supports with even cardinality (we omit the proof). It is of interest to note the following result.

PROPOSITION 2.11. ext B_s is countable.

Proof. The earlier lemmas show that $\operatorname{ext} B_S \subset \bigcup_n \operatorname{ext} B_n$. We now show that each ext B_n is finite. Since B_n is compact, it suffices to show that for each $x \in B_n$, there is a ball (in the B_n topology) of radius $\epsilon = \epsilon(x)$ such that this ball meets ext B_n (at most) at the point x. Let $x \in B_n$, and assume ||x|| = 1. Define

$$\delta_1 = \min\{|x(j)| : x(j) \neq 0\},\$$

$$\delta_2 = \min\left\{1 - \sum_{j \in E} |x(j)| : E \in \mathcal{A} \text{ and } \sum_{j \in E} |x(j)| < 1\right\}$$

Let $\delta = \frac{1}{2} \min{\{\delta_1, \delta_2\}}$, and choose $\epsilon > 0$ so that $2n\epsilon < \delta$. Suppose $y \in B_n$ with $||x - y|| < \epsilon$. Note that by choice of ϵ , whenever $x(j) \neq 0$, x(j)

and y(j) have the same sign. Now define z by

$$z(j) = \begin{cases} 0, & \text{if } j > n, \\ 2y(j) - x(j), & \text{if } j \le n. \end{cases}$$

Clearly $z \in S_n$ and $y = \frac{1}{2}x + \frac{1}{2}z$. If we can show $z \in B_n$, then $y \notin \text{ext } B_n$, unless y = x and $x \in \text{ext } B_n$. Note that ϵ was chosen small enough so that x(j), y(j), and z(j) have the same sign as j ranges over the support of x. So for all j, we have

$$\begin{aligned} x(j) - z(j) &= 2(x(j) - y(j)), \\ |x(j)| - |z(j)| &= 2(|x(j)| - |y(j)|). \end{aligned}$$

Letting $E \in \mathcal{A}$, we may assume $E \subset \{1, \ldots, n\}$. If E is not a 1-set for x, then

$$\sum_{j\in E} |z(j)| \leq \sum_{j\in E} |x(j)| + 2n\epsilon < 1.$$

If E is a 1-set for x, then letting $E_0 = \{j \in E : x(j) = 0\}$, and $E_1 = E \setminus E_0$, we have

$$\sum_{i \in E} |z(j)| = \sum_{j \in E_1} |z(j)| + \sum_{j \in E_0} |z(j)|$$

=
$$\sum_{j \in E_1} |x(j)| - \sum_{j \in E_1} (|x(j)| - |z(j)|) + \sum_{j \in E_0} |z(j)|$$

=
$$\sum_{j \in E_1} |x(j)| - 2 \sum_{j \in E_1} (|x(j)| - |y(j)|) + 2 \sum_{j \in E_0} |y(j)|$$

=
$$2 \sum_{j \in E} |y(j)| - \sum_{j \in E_1} |x(j)| \le 1.$$

Thus $||z|| \leq 1$.

3. The Lorentz sequence space d(a, 1). We consider here Lorentz sequence spaces of type d(a, 1). These "weighted" versions of l_1 turn out to have the λ -property, while failing the uniform λ -property. This was demonstrated in Theorems 5 and 6 in [8], both of which we improve here by producing the exact form of the λ -function for norm-one vectors. This is then used to prove a continuity result. First we establish some definitions and notation.

DEFINITION 3.1. Let $a = (a_n) \in c_0 V_1$ be a positive strictly decreasing sequence with $a_1 = 1$. The space d(a, 1) consists of all real sequences $x = (x(n)) \in c_0$ such that $\sup \sum |x(\pi(n))| a_n < \infty$, where the supremum is taken over all permutations π of the natural numbers. (If ||x|| is taken to be this supremum, then d(a, 1) is a Banach space.)

If $x = (x(n)) \in d(a, 1)$, and $x \neq 0$, we write

$$M_1(x) = ||x||_{\infty}, \text{ and } F_1(x) = \{n : |x(n)| = M_1(x)\},\$$

$$M_2(x) = ||x - xc_{F_1(x)}||_{\infty}, F_2(x) = \{n : |x(n)| = M_2(x)\},\$$

where $c_{F_i(x)}$ is the characteristic function of $F_1(x)$, etc. Then $M_k(x) \downarrow 0$, and if $M_k(x) > 0$, then $M_k(x) > M_{k+1}(x)$. Also $F_k(x)$ and $F_j(x)$ are disjoint if $M_k(x)$, $M_j(x) > 0$ and $k \neq j$. Let $N(x) = \{k : M_k(x) - M_{k+1}(x) > 0\}$, and for $k \in N(x)$, define $n_k(x) = \operatorname{card}\left(\bigcup_{i=1}^k F_i(x)\right)$, and $s_k(x) = \sum_{n=1}^{n_k(x)} a_n$. If we let $n_0(x) = 0$, then we can write ||x|| as

$$||x|| = \sum_{k \in N(x)} M_k(x) \cdot (s_k(x) - s_{k-1}(x)).$$

Importantly, for $x \in d(a, 1)$, ||x|| can also be realized in another way.

PROPOSITION 3.2. For any $x \in d(a, 1)$,

$$||x|| = \sum_{k} M_{k}(x) \cdot [s_{k}(x) - s_{k-1}(x)] = \sum_{n} [M_{n}(x) - M_{n+1}(x)] \cdot s_{n}(x).$$

Proof. It suffices to note that either sum is equal to

$$\sum_{k} \sum_{j \le k} (M_k(x) - M_{k+1}(x))(s_j(x) - s_{j-1}(x))$$

The extreme points of $B_{d(a,1)}$ were characterized by W. J. Davis [10].

PROPOSITION 3.3. $e \in \text{ext } B_{d(a,1)}$ if and only if e has the form

$$e = \left(\sum_{n=1}^{k} a_n\right)^{-1} \left(\sum_{n=1}^{k} \epsilon_n x_{i_n}\right),$$

for some integer k, $i_1 < i_2 < \ldots < i_k$, and signs $\epsilon_1, \epsilon_2, \ldots, \epsilon_k$, (where (x_i) is the canonical unit vector basis of d(a, 1).)

Using this characterization, we can establish the following result.

PROPOSITION 3.4. The space d(a, 1) has C.S.R.P.

Proof. Assume first that ||x|| = 1, and that x has the form

$$x = (x(1) \ge x(2) \ge \ldots \ge x(k) > 0).$$

For any *j*, define $s_j = \sum_{i=1}^{j} a_i$, and denote by e_m that extreme point with non-negative coefficients and support = $\{1, 2, ..., m\}$. Further denote by v^n that vector defined by $v^n(i) = 1$, if $1 \le n$, and 0, otherwise. Then

$$x = (x(1), x(2), \dots, x(k), 0, \dots)$$

= $x(k) \cdot v^{k} + (x(1) - x(k), \dots, x(k-1) - x(k), 0, \dots)$
= $\dots = x(k)v^{k} + (x(k-1) - x(k))v^{k-1}$
+ $(x(k-2) - x(k-1)v^{k-2} + \dots + (x(2) - x(3))v^{2} + (x(1) + x(2))v^{1}$
= $[x(k)s_{k}]e_{k} + [(x(k-1) - x(k))s_{k-1}]e_{k-1}$
+ $[(x(k-2) - x(k-1))s_{k-2}]e_{k-2} + \dots$
+ $[(x(2) - x(3))s_{2}]e_{2} + [(x(1) - x(2))s_{1}]e_{1}$.
Let $\alpha_{l} = (x(l) - x(l+1))s_{l}, (l = k, k-1, \dots, 2, 1)$ and note that

 $\alpha_{k} + \alpha_{k-1} + \ldots + \alpha_{1} = x(k)(s_{k} - s_{k-2}) + x(k-1)(s_{k-1} - s_{k-2})$ $+ \ldots + x(2)(s_{2} - s_{1}) + x(1)s_{1}$ $= x(k)a_{k} + x(k-1)a_{k-1} + \ldots + x(2)a_{2} + x(1)a_{1}$ = ||x|| = 1.

Now assume that ||x|| = 1 and that x has the form $x = (x(1) \ge x(2) \ge ... > 0)$. Then (using the notation above) $1 = ||x|| = \lim_{k} \sum_{i=1}^{k} a_i x(i) = \lim_{k} \sum_{i=1}^{k} \alpha_i$. Arbitrary vectors x with ||x|| = 1 are an isometry away from the two cases already considered, and if ||x|| < 1,

$$x = ||x|| \cdot \frac{x}{||x||} + \frac{1 - ||x||}{2} \cdot e + \frac{1 - ||x||}{2} (-e)$$

(where e is any extreme point), leads to a convex series representation.

Proposition 3.4 implies that d(a, 1) has the λ -property, but we can say more. In [8] a lower bound is proven for the λ -function.

If
$$x \in B_{d(a,1)}$$
, $x \neq 0$, then $\lambda(x) \ge \sup_{k \in N(x)} [M_k(x) - M_{k+1}(x)] s_k(x)$. (*)

In the same paper an exact formula is given for unit vectors of finite support.

If $x \in d(a, 1)$ with ||x|| = 1, and support x is finite, then

$$\lambda(x) = \max_{k \in N(x)} [M_k(x) - M_{k+1}(x)] s_k(x).$$
 (**)

Proposition 3.2 allows us to replace the "sup" in (*) by a "max", and we can now remove the hypothesis about support x in (**).

Using the results above, we can also establish the following theorems.

THEOREM 3.5. Assume $x \in d(a, 1)$, ||x|| = 1. Then

$$\lambda(x) = \max_{n} \left[M_n(x) - M_{n+1}(x) \right] \cdot s_n(x)$$

THEOREM 3.6. The λ -function for d(a, 1) is continuous on $\{x : ||x|| = 1\}$, Lipschitzcontinuous on $\{x : ||x|| \le r\}$, (0 < r < 1), though not even uniformly continuous on $\{x : ||x|| = 1\}$.

Consideration of space forces us to omit proofs of these last two results, which will appear in [9].

REMARK. R. H. Lohman [7] has recently shown that for Banach spaces the λ -property is equivalent to the C.S.R.P.

REFERENCES

1. R. M. Aron and R. H. Lohman, A geometric function determined by extreme points of the unit ball of a normed space, *Pacific J. Math.* 127 (1987), 209-236.

2. P. G. Casazza and T. J. Shura, *Tsirelson's space*, Lecture Notes in Mathematics No 1363 (Springer-Verlag, 1989).

3. A. S. Granero, On the Aron–Lohman's λ -property (preprint).

4. A. S. Granero, The λ -function in the spaces $(\bigoplus \sum X)_p$ and $L_p(\mu, X)$ (preprint).

5. P. R. Halmos, A Hilbert space problem book, (Van Nostrand, 1967).

6. J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces II*; function spaces (Springer-Verlag, 1979).

7. R. H. Lohman, The λ -property in Banach spaces, in Banach Space Theory, Contemporary Mathematics 85 (1989), 345–354.

THADDEUS J. SHURA AND DAVID TRAUTMAN

8. R. H. Lohman, T. J. Shura, Calculation of the λ -function for several classes of normed linear spaces, in *Nonlinear and convex analysis: Proceedings in honor of Ky Fan* (Marcel Dekker, 1987).

9. T. J. Shura, Dissertation, Kent State University, (to appear).

10. W. J. Davis, Positive bases in Banach spaces, Rev. Roumaine Math. Pures Appl., 16 (1971), 487-492.

KENT STATE UNIVERSITY AT SALEM SALEM, OHIO 44460 U.S.A.

The Citadel Charleston South Carolina 29409 U.S.A.