THE \(\lambda \)-PROPERTY IN SCHREIER’S SPACE \(S \) AND
THE LORENTZ SPACE \(d(a, 1) \)

by THADDEUS J. SHURA and DAVID TRAUTMAN

(Received 7 March, 1989)

0. Abstract. We add Schreier’s space \(S \) and the Lorentz space \(d(a, 1) \) to the list of
classical Banach spaces which enjoy the \(\lambda \)-property, investigate the extreme point
structure of \(S \), and show that \(d(a, 1) \) has a \(\lambda \)-function which is continuous on \(S \),
though not even uniformly so.

1. Introduction. Let \(X \) be a Banach space, \(B_X \) the unit ball of \(X \), \(S_X \) the surface of
\(B_X \), and \(\text{ext } B_X \) the set of extreme points of \(B_X \). For points \(x, y \in X \), we write \([x, y)\) for
\(\{\lambda x + (1 - \lambda)y : 0 < \lambda \leq 1\} \).

DEFINITION 1.1. (a) \(X \) has the \(k \)-property, if for each \(x \in B_X \), there exists \(e \in \text{ext } B_X \),
\(y \in B_X \), \(0 < \lambda \leq 1 \) such that
\[x = \lambda e + (1 - \lambda)y. \]
In this case we say that the triple \((e, y, \lambda)\) is amenable to \(x \), and write \((e, y, \lambda) \sim x\).

(b) If \(X \) has the \(\lambda \)-property, for each \(x \in B_X \), we define
\[\lambda(x) := \sup\{\lambda : (e, y, \lambda) \sim x\}. \]

(c) If there exists \(\lambda_0 > 0 \) such that \(\lambda(x) \geq \lambda_0 \), for all \(x \in B_X \), we say that \(X \) has the
uniform \(\lambda \)-property.

(d) Finally, we say that \(X \) has the convex series representation property (C.S.R.P.), if
for each \(x \in B_X \), there exist \(\lambda_n \geq 0 \), \(e_n \in \text{ext } B_X \), \((n = 1, 2, \ldots) \), such that
\[x = \sum_n \lambda_n e_n \]
and \(\sum_n \lambda_n = 1 \).

These notions were developed by R. Aron and R. H. Lohman in [1], where (among
other results) they proved: the uniform \(\lambda \)-property implies C.S.R.P. An easy exercise
shows that C.S.R.P. implies the \(\lambda \)-property. Spaces that enjoy either the \(\lambda \)-property or
the uniform \(\lambda \)-property are not rare [1], [3], [4], [8], and it is our belief that some strong
theorems are lurking behind these concepts. In an attempt to better understand these
properties we decided to investigate a couple of “exotic” sequence spaces. We begin with
Schreier’s space \(S \).

2. Schreier’s space \(S \).

DEFINITION 2.1. (a) Let \(R^N \) denote the (vector) space of real sequences \(x = (x(1), x(2), \ldots) \) which are finitely-non-zero (i.e., have “finite support”). A subset \(E \) of the
natural numbers \(N \) is admissible, if \(E = \{n_1, n_2, \ldots , n_k\} \), with \(k \leq n_1 < n_2 \ldots < n_k \). We
denote by \(\mathcal{A} \) the collection of all admissible subsets of \(N \).

(b) For \(x \in R^N \), we define
\[\|x\|_S := \sup_{E \in \mathcal{A}} \sum_{j \in E} |x(j)|. \]
(Routine calculations show that \(\|\cdot\|_S \) is a norm on \(R^N \).)
The space S has been studied extensively in [2], where it is shown that S is hereditarily-c_0; (hence l_1 does not embed in it). In this section we shall show that S has enough extreme points to enjoy C.S.R.P., even though we fall short of a useful characterization of $\text{ext } B_S$. First we note that S is not c_0 in disguise.

Proposition 2.2. S is not isomorphic to c_0.

Proof. If we denote by $\{s_n\}_{n=1}^\infty$ the canonical unit vector basis for S, then for each n, l_1^n is isometric to the norm-one complemented subspace of S spanned by $\{s_i : n + 1 \leq i \leq 2n\}$. Thus (see [6, p. 74]) S^* fails to have finite co-type. Hence S^* is not isomorphic to c_0^*, and so S is not isomorphic to c_0.

For each n, let $S_n := \text{span} \{s_i : i \leq n\}$. Since S_n is finite-dimensional, $\text{ext } B_n \neq \emptyset$ (where $B_n := B_{S_n}$). In fact we shall show that $\text{ext } B_n \cap \text{ext } B_S \neq \emptyset$.

The reader can easily show (by using 1-sets introduced below) that the vectors $(1, 1)$, $(1, 1, 1, \frac{1}{2})$, and $(1, \frac{2}{3}, \frac{1}{3}, \frac{1}{3})$ are all in $\text{ext } B_S$ (when we write $x = (x(1), x(2), \ldots, x(n))$, we mean $x(j) = 0$ when $j > n$).

Definition 2.3. Let $x \in B_S$.

(a) If $E \in \mathcal{A}$, and $\sum_{j \in E} |x(j)| = 1$, we say that E is a 1-set for x.

(b) If (in addition) $E = \{n_1 < n_2 < \ldots < n_k\}$ and $k < n_1$, we say E is a non-maximal 1-set, for x.

Since for $E \in \mathcal{A}$, $x \rightarrow \sum_{j \in E} |x(j)|$ is a semi-norm, we clearly have the following result.

Lemma 2.4. Let $x, b, c \in B_S$ with $x = \lambda b + (1 - \lambda)c$ for some $0 < \lambda < 1$. Then any 1-set for x is a 1-set for b and c.

A slight modification of the above shows that for vectors x, b_1, b_2, \ldots in B_S and scalars $\lambda_1, \lambda_2, \ldots$ each > 0 with $\sum_n \lambda_n = 1$ and $x = \sum_n \lambda_nb_n$, every 1-set for x is a 1-set for each b_n.

Lemma 2.5. Let $n \geq 1$ and $x \in \text{ext } B_n$. If x has a non-maximal 1-set E, then $x \in \text{ext } B_S$.

Proof. Clearly we may assume that $\text{max } E \leq n$. Suppose $x = \lambda b + (1 - \lambda)c$, for some $0 < \lambda < 1$ and some $b, c \in B_S$. If E is a non-maximal 1-set for x, then, by Lemma 2.4, E is a non-maximal 1-set for b and c. So $b(j) = 0 = c(j)$, for $j > n$, since $E \cup \{j\} \in \mathcal{A}$ for every $j > n$. But $x(j) = b(j) = c(j)$ for $j \leq n$, since $x \in \text{ext } B_n$. Thus $x = b = c$, and $x \in \text{ext } B_S$.

We note that $\text{ext } B_n \notin \text{ext } B_S$. Some calculations show that $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}) \in \text{ext } B_5 \sim \text{ext } B_S$, for instance. To show that S has C.S.R.P. we need some lemmata about certain representations.

Lemma 2.6. Let $x \in B_S$. Then for all $\epsilon > 0$, there exists N such that for $E \in \mathcal{A}$ with $N < \text{min } E$, we have $\sum_{j \in E} |x(j)| < \epsilon$.

Proof. If $x \in B_S$, then $\|x - y\| < \epsilon$ for some finite vector $y \in B_S$.

(c) Schreier's space S is the $\|\cdot\|_S$-completion of $R^{(N)}$. (From here on, we will write $"||\cdot||"$, for $\|\cdot\|_S$.)
LEMMA 2.7. Let $x \in B_s$ have infinite support. Then there exist vectors $b, c \in B_s$ such that $x = \frac{1}{2}b + \frac{1}{3}c$, and b has finite support.

Proof. Without loss of generality we may assume $\|x\| = 1$. Let

$$\alpha := \min \{ |x(j)| : j \in E \in \mathcal{A}, E \text{ is a 1-set for } x, x(j) \neq 0 \},$$

and

$$\epsilon := \min \left\{ 1 - \sum_{j \in E} |x(j)| : E \in \mathcal{A}, \sum_{j \in E} |x(j)| < 1 \right\}.$$

Lemma 2.6 implies that $\epsilon > 0$. Choose an integer M larger than any element in any 1-set for x and larger than any element in any $E \in \mathcal{A}$ which determines ϵ. Finally, enlarge M (if needed) so that for $E \in \mathcal{A}$, $\min E \geq M$ implies

$$\sum_{j \in E} |x(j)| < \frac{1}{2} \min \{ \alpha, \epsilon \}.$$

Now define vectors b and c by

$$\begin{cases}
 b(j) = x(j) = c(j), & \text{for } 1 \leq j < M, \\
 b(j) = 0, & \text{for } j \geq M, \\
 c(j) = 2x(j), & \text{for } j \geq M.
\end{cases}$$

The only thing left to show is that $c \in B_s$. Towards this end, let $E \in \mathcal{A}$. If $\max E < M$, then $\sum_{j \in E} |c(j)| \leq \|x\| = 1$. If $\max E \geq M$, then

$$\sum_{j \in E} |c(j)| = \sum_{j < M} |c(j)| + \sum_{j \geq M} |c(j)| < 1 - \epsilon + 2 \cdot \frac{\epsilon}{2} = 1.$$

Note that for $x \in B_s$, applying the above Lemma recursively we obtain a representation $x = \sum_{i} 2^{-i}b_i$, where each $b_i \in B_s$ and each b_i has finite support. Also note that we immediately obtain the following result.

COROLLARY 2.8. If $x \in \text{ext} B_s$, then x has finite support.

In fact, we can show more.

LEMMA 2.9. Let $x \in B_s$ have finite support. Then x can be represented as $x = \frac{1}{2}b + \frac{1}{3}c$, for two vectors $b, c \in B_s$ each of finite support, and each having a non-maximal 1-set.

Proof. Without loss of generality, we may assume $x \neq 0$. Let $N = \max(\text{support } x) + 1$, and let $\epsilon = \min \left\{ 1 - \sum_{j \in E} |x(j)| : E \in \{n_1, \ldots, n_k\}, k < n_1 < N \right\}$. (If $\epsilon = 0$, then x already has a non-maximal 1-set, and we can choose $b = c = x$.) Choose $M > N$ such that

$$\frac{N - 2}{M} < \epsilon.$$ (The case where $N \leq 2$ is trivial.)
Define vectors b and c via

$$
\begin{align*}
 b(j) &= x(j) = c(j), & \text{for } 1 \leq j \leq M, \\
 b(j) &= 0 = c(j), & \text{for } j > 2M, \\
 b(j) &= \frac{1}{M} = -c(j), & \text{for } M + 1 \leq j \leq 2M.
\end{align*}
$$

Clearly, $x = \frac{1}{2}b + \frac{1}{2}c$, and $\|b\| = \|c\|$.

To show that $\|b\| \leq 1$, let $E \in \mathcal{A}$. If $\min E \geq N$, then $\sum_{j \in E} |b(j)| \leq M \cdot \frac{1}{M} = 1$. If $\max E < N$, then $\sum_{j \in E} |b(j)| = \sum_{j \in E} |x(j)| \leq 1$. In the only remaining case

$$
\sum_{j \in E} |b(j)| = \left(\sum_{j \in E} + \sum_{j \neq N} \right) |b(j)| \\
\leq 1 - \varepsilon + \frac{N - 2}{M} < 1.
$$

So $\|b\| = \|c\| = 1$, and each has $\{M + 1, M + 2, \ldots, 2M\}$ for a non-maximal 1-set.

Theorem 2.10. Schreier’s space S has C.S.R.P.

Proof. Let $x \in B_S$. By the remark following Lemma 2.7, we may write $x = \sum_n 2^{-n} b_n$, where $\|b_n\| = 1$ and support b_n is finite, $(n = 1, 2, \ldots)$. Using Lemma 2.9 on each b_n, we can write $x = \sum \lambda_j c_j$, for some choices of λ_j and c_j such that $\sum \lambda_j = 1$, $\|c_j\| = 1$, and each vector c_j has finite support and a non-maximal 1-set. Now each vector c_j belongs to some S_n, where $n := n(j)$. Since S_n has C.S.R.P. [2], for each j we can write $c_j = \sum_i \lambda_{j,i} e_{j,i}$, a convex series where the $e_{j,i} \in \text{ext} B_n$. Finally $x = \sum_{i,j} \lambda_{j,i} e_{j,i}$, and the vectors $e_{j,i}$ all belong to $\text{ext} B_S$, by Lemmas 2.4 and 2.5.

This of course implies that S has the λ-property although we do not know whether it has the uniform λ-property. We mention here that the extreme points of B_S all have supports with even cardinality (we omit the proof). It is of interest to note the following result.

Proposition 2.11. $\text{ext} B_S$ is countable.

Proof. The earlier lemmas show that $\text{ext} B_S \subseteq \bigcup_n \text{ext} B_n$. We now show that each $\text{ext} B_n$ is finite. Since B_n is compact, it suffices to show that for each $x \in B_n$, there is a ball (in the B_n topology) of radius $\varepsilon = \varepsilon(x)$ such that this ball meets $\text{ext} B_n$ (at most) at the point x. Let $x \in B_n$, and assume $\|x\| = 1$. Define

$$
\delta_1 = \min\{|x(j)| : x(j) \neq 0\},
$$

$$
\delta_2 = \min\left\{1 - \sum_{j \in E} |x(j)| : E \in \mathcal{A} \text{ and } \sum_{j \in E} |x(j)| < 1 \right\}.
$$

Let $\delta = \frac{1}{2} \min\{\delta_1, \delta_2\}$, and choose $\varepsilon > 0$ so that $2\varepsilon < \delta$.

Suppose $y \in B_n$ with $\|x - y\| < \varepsilon$. Note that by choice of ε, whenever $x(j) \neq 0$, $x(j)$
and $y(j)$ have the same sign. Now define z by

$$z(j) = \begin{cases} 0, & \text{if } j > n, \\ 2y(j) - x(j), & \text{if } j \leq n. \end{cases}$$

Clearly $z \in S_n$ and $y = \frac{1}{2}x + \frac{1}{2}z$. If we can show $z \in B_n$, then $y \notin \text{ext } B_n$, unless $y = x$ and $x \in \text{ext } B_n$. Note that ε was chosen small enough so that $x(j)$, $y(j)$, and $z(j)$ have the same sign as j ranges over the support of x. So for all j, we have

$$x(j) - z(j) = 2(x(j) - y(j)),$$

$$|x(j)| - |z(j)| = 2(|x(j)| - |y(j)|).$$

Letting $E \in A$, we may assume $E \subset \{1, \ldots, n\}$. If E is not a 1-set for x, then

$$\sum_{j \in E} |z(j)| \leq \sum_{j \in E} |x(j)| + 2n \varepsilon < 1.$$

If E is a 1-set for x, then letting $E_0 = \{j \in E : x(j) = 0\}$, and $E_1 = E \setminus E_0$, we have

$$\sum_{j \in E} |z(j)| = \sum_{j \in E_1} |z(j)| + \sum_{j \in E_0} |z(j)|$$

$$= \sum_{j \in E_1} |x(j)| - \sum_{j \in E_1} (|x(j)| - |z(j)|) + \sum_{j \in E_0} |z(j)|$$

$$= \sum_{j \in E_1} |x(j)| - 2 \sum_{j \in E_1} (|x(j)| - |y(j)|) + 2 \sum_{j \in E_0} |y(j)|$$

$$= 2 \sum_{j \in E} |y(j)| - \sum_{j \in E_1} |x(j)| \leq 1.$$

Thus $\|z\| \leq 1$.

3. The Lorentz sequence space $d(a, 1)$. We consider here Lorentz sequence spaces of type $d(a, 1)$. These “weighted” versions of l_1 turn out to have the λ-property, while failing the uniform λ-property. This was demonstrated in Theorems 5 and 6 in [8], both of which we improve here by producing the exact form of the λ-function for norm-one vectors. This is then used to prove a continuity result. First we establish some definitions and notation.

Definition 3.1. Let $a = (a_n) \in c_0 \setminus l_1$ be a positive strictly decreasing sequence with $a_1 = 1$. The space $d(a, 1)$ consists of all real sequences $x = (x(n)) \in c_0$ such that $\sup_{\pi} \sum |x(\pi(n))| a_n < \infty$, where the supremum is taken over all permutations π of the natural numbers. (If $\|x\|$ is taken to be this supremum, then $d(a, 1)$ is a Banach space.)

If $x = (x(n)) \in d(a, 1)$, and $x \neq 0$, we write

$$M_1(x) = \|x\|_\infty, \quad \text{and} \quad F_1(x) = \{n : |x(n)| = M_1(x)\},$$

$$M_2(x) = \|x - xc_{F_1(x)}\|_\infty, \quad F_2(x) = \{n : |x(n)| = M_2(x)\},$$

where $c_{F_1(x)}$ is the characteristic function of $F_1(x)$, etc. Then $M_k(x) \downarrow 0$, and if $M_k(x) > 0$, then $M_k(x) > M_{k+1}(x)$. Also $F_k(x)$ and $F_j(x)$ are disjoint if $M_k(x), M_j(x) > 0$ and $k \neq j$. Let

$$N(x) = \{k : M_k(x) - M_{k+1}(x) > 0\}, \quad \text{and for } k \in N(x), \quad n_k(x) = \text{card} \left(\bigcup_{i=1}^{k} F_i(x) \right),$$

$$s_k(x) = \sum_{n=1}^{n_k(x)} a_n.$$
If we let \(n_0(x) = 0 \), then we can write \(\|x\| \) as

\[
\|x\| = \sum_{k \in N(x)} M_k(x) \cdot (s_k(x) - s_{k-1}(x)).
\]

Importantly, for \(x \in d(a, 1) \), \(\|x\| \) can also be realized in another way.

Proposition 3.2. For any \(x \in d(a, 1) \),

\[
\|x\| = \sum_k M_k(x) \cdot [s_k(x) - s_{k-1}(x)] = \sum_n [M_n(x) - M_{n+1}(x)] \cdot s_n(x).
\]

Proof. It suffices to note that either sum is equal to

\[
\sum_k \sum_{j=k}^\infty (M_k(x) - M_{k+1}(x))(s_j(x) - s_{j-1}(x))
\]

The extreme points of \(B_{d(a,1)} \) were characterized by W. J. Davis [10].

Proposition 3.3. \(e \in \text{ext } B_{d(a,1)} \) if and only if \(e \) has the form

\[
e = \left(\sum_{n=1}^{k} a_n \right)^{-1} \left(\sum_{n=1}^{k} \varepsilon_n x_{a_n} \right),
\]

for some integer \(k \), \(i_1 < i_2 < \ldots < i_k \), and signs \(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k \), (where \((x_i) \) is the canonical unit vector basis of \(d(a, 1) \).)

Using this characterization, we can establish the following result.

Proposition 3.4. The space \(d(a, 1) \) has C.S.R.P.

Proof. Assume first that \(\|x\| = 1 \), and that \(x \) has the form

\[
x = (x(1) \geq x(2) \geq \ldots \geq x(k) > 0).
\]

For any \(j \), define \(s_j = \sum_{i=1}^{j} a_i \), and denote by \(e_m \) that extreme point with non-negative coefficients and support = \(\{1, 2, \ldots, m\} \). Further denote by \(\nu^n \) that vector defined by \(\nu^n(i) = 1 \), if \(1 \leq n \), and \(0 \), otherwise. Then

\[
x = (x(1), x(2), \ldots, x(k), 0, \ldots)
= x(k) \cdot \nu^k + (x(1) - x(k)), \ldots, x(k-1) - x(k), 0, \ldots)
= \ldots = x(k)\nu^k + (x(k-1) - x(k))\nu^{k-1}
+ (x(k-2) - x(k-1))\nu^{k-2} + \ldots (x(2) - x(3))\nu^2 + (x(1) + x(2))\nu^1
= [x(k)s_k]e_k + [(x(k-1) - x(k))s_{k-1}]e_{k-1}
+ [(x(k-2) - x(k-1))s_{k-2}]e_{k-2} + \ldots
+ [(x(2) - x(3))s_2]e_2 + [(x(1) - x(2))s_1]e_1.
\]

Let \(\alpha_l = (x(l) - x(l+1))s_l \), \((l = k, k-1, \ldots, 2, 1) \) and note that

\[
\alpha_k + \alpha_{k-1} + \ldots + \alpha_1 = x(k)(s_k - s_{k-2}) + x(k-1)(s_{k-1} - s_{k-2})
+ \ldots + x(2)(s_2 - s_1) + x(1)s_1
= x(k)a_k + x(k-1)a_{k-1} + \ldots + x(2)a_2 + x(1)a_1
= \|x\| = 1.
\]
THE λ-PROPERTY

Now assume that $||x|| = 1$ and that x has the form $x = (x(1) \geq x(2) \geq \ldots > 0)$. Then (using the notation above) $1 = ||x|| = \lim \sum _{k \geq 1} a_x(i) = \lim \sum _{k \geq 1} \alpha_i$. Arbitrary vectors x with $||x|| = 1$ are an isometry away from the two cases already considered, and if $||x|| < 1$,

$$x = ||x|| \cdot \frac{x}{||x||} + \frac{1 - ||x||}{2} \cdot e + \frac{1 - ||x||}{2} (-e)$$

(where e is any extreme point), leads to a convex series representation.

Proposition 3.4 implies that $d(a, 1)$ has the λ-property, but we can say more. In [8] a lower bound is proven for the λ-function.

If $x \in B_{d(a, 1)}$, $x \neq 0$, then $\lambda(x) \geq \sup _{k \in \mathbb{N}(x)} [M_k(x) - M_{k+1}(x)] s_k(x)$. (*)

In the same paper an exact formula is given for unit vectors of finite support.

If $x \in d(a, 1)$ with $||x|| = 1$, and support x is finite, then

$$\lambda(x) = \max _{k \in \mathbb{N}(x)} [M_k(x) - M_{k+1}(x)] s_k(x).$$ (**)

Proposition 3.2 allows us to replace the “sup” in (*) by a “max”, and we can now remove the hypothesis about support x in (**).

Using the results above, we can also establish the following theorems.

THEOREM 3.5. Assume $x \in d(a, 1)$, $||x|| = 1$. Then

$$\lambda(x) = \max _{n} [M_n(x) - M_{n+1}(x)] s_n(x)$$

THEOREM 3.6. The λ-function for $d(a, 1)$ is continuous on $\{x : ||x|| = 1\}$, Lipschitz-continuous on $\{x : ||x|| \leq r\}$, $(0 < r < 1)$, though not even uniformly continuous on $\{x : ||x|| = 1\}$.

Consideration of space forces us to omit proofs of these last two results, which will appear in [9].

REMARK. R. H. Lohman [7] has recently shown that for Banach spaces the λ-property is equivalent to the C.S.R.P.

REFERENCES

4. A. S. Granero, The λ-function in the spaces $(\oplus \sum X)_p$ and $L_p(\mu, X)$ (preprint).

Kent State University at Salem
Salem, Ohio 44460
U.S.A.

The Citadel
Charleston
South Carolina 29409
U.S.A.